
Theory Comput Syst (2008) 43: 322–361
DOI 10.1007/s00224-007-9047-0

Abstract Interface Behavior of Object-Oriented
Languages with Monitors

Erika Ábrahám · Andreas Grüner · Martin Steffen

Published online: 3 October 2007
© Springer Science+Business Media, LLC 2007

Abstract We characterize the observable behavior of multi-threaded, object-oriented
components with re-entrant monitors. We show that a compositional approach leads
to observable uncertainty wrt. monitor operations at the interface which we capture
by may- and must-approximations for potential, resp. necessary lock ownership. The
concepts are formalized in an object calculus. We show the soundness of the abstrac-
tions.

Keywords Formal semantics · Object oriented languages · Thread-based
concurrency · Monitors · Open systems · Observable interface behavior

1 Introduction

1.1 Motivation

Compositionality is the key to describe and verify large systems. A compositional
argument, that a program meets its specification, uses only the abstract descriptions
or specifications of the program’s constituent components and, in particular, must
not refer to internal representation-dependent details of those components. Thus, for

E. Ábrahám
Albert-Ludwigs-University Freiburg, Freiburg, Germany
e-mail: eab@informatik.uni-freiburg.de

A. Grüner
Christian-Albrechts-University Kiel, Kiel, Germany
e-mail: ang@informatik.uni-kiel.de

M. Steffen (�)
University of Oslo, Oslo, Norway
e-mail: msteffen@ifi.uio.no

mailto:eab@informatik.uni-freiburg.de
mailto:ang@informatik.uni-kiel.de
mailto:msteffen@ifi.uio.no

Theory Comput Syst (2008) 43: 322–361 323

compositional arguments it is crucial to separate clearly between the component’s
internal and its external behavior.

Now, which criteria should separate the externally visible from the internal behav-
ior? An elegant, simple, and mathematically well-founded approach to that question
is to take the observational standpoint: The starting point is the syntax and the op-
erational semantics of a language; in general, this part is a priori given or at least
straightforward. It is straightforward, as no internal details are abstracted away yet,
and no questions of observability are yet involved. With the given syntax and internal
semantics at hand, a component or open program is nothing else than a syntactical
program fragment interacting with the syntactical rest of the program, its environ-
ment, context, or observer.

In this paper, we tackle the question of abstract interface behavior for concur-
rent object-oriented class-based languages with re-entrant monitors. Using an appro-
priate object calculus, the answer is given in the form of an operational semantics
for components, distinguishing component internal steps from external steps which
represent observable component-environment interactions occurring at the interface.
A representation-independent, abstract account of the behavior of open programs is
also necessary for compositional optimization of components: only if the two pro-
grams show the same external behavior it is guaranteed that one can replace one for
the other without changing the interaction with any client code.

1.2 Approach and Contribution

Before embarking on the technical development starting in Sect. 2, we survey the
approach in a little more detail. Below we discuss how to capture the legal system
behavior at the border between a component and its environment. Afterwards, in
Sect. 1.2.2, we sketch the particular problems in the chosen setting, i.e., when dealing
with monitors in an object-oriented setting. Section 1.2.3 discusses the issue of full
abstraction.

1.2.1 Capturing Open System Behavior

The observable interface behavior of an open program can be represented as message
traces, i.e., sequences of component-environment interactions at the interface. Using
some standard notation, this may be written as

C
t�⇒ Ć, (1)

where t is the trace of interface actions by which C evolves into Ć, potentially exe-
cuting internal steps, as well, not recorded in t . Following the structural approach to
operational semantics, the reduction of (1) represents the behavior of the component
by a syntactic rewriting of the component C into Ć, where C, resp. Ć contains the
user-syntax as well as the run-time configurations of the component. It is customary
to distinguish in the formulation of the operational semantics between user-syntax to
represent the programs at compile time and additional syntactic material (the run-
time syntax, not available to the programmer) to represent the configurations of the

324 Theory Comput Syst (2008) 43: 322–361

component at run-time. The corresponding syntactic definitions are given in detail in
Sect. 2.1.

We think, however, of the open program C not to act in isolation, it rather interacts
with its environment. So consider C ‖ E, where E is C’s environment, i.e., both
together C ‖ E form a closed program. Instead of considering unrestricted traces as
in the judgment (1), we are interested in traces t where there exists an environment E

such that

C ‖ E
t�⇒̄
t

Ć ‖ É (2)

by which we mean: component C exhibits trace t and E produces the dual trace t̄ ,
both together canceling out to internal steps. In other words, our goal is to formulate
an open semantics with the environment existentially abstracted away.

As there are countably infinite many possible environments E, the challenge is
to capture in the semantics of the open system what is common to all those envi-
ronments. This requires an abstract representation of all potential E of the judgment
(2), in form of assumptions about the environment. This means, instead of provid-
ing an operational semantics formalizing reductions in the style of judgment (1), the
semantics specifies the behavior of C under certain assumptions �E about the envi-
ronment, where �E acts as an abstract representation of the environment. Following
standard notation from logics, we do not write �E ‖ C, but rather �E � C, such that
the reductions will look like1

�E � C
t�⇒ �́E � Ć. (3)

Clearly, an operational semantics in the style of (3) is (quite) more complex than a
formulation which ignores the environments as in (1), since it requires an appropriate
abstract characterization of the absent environment. Indeed, we take the characteriza-
tion of the interface behavior one step further still: In the same way as (3) represents
the environments abstractly as �E , a second step abstract away from the component
C existentially, as well. This yields a formalization

�
t�⇒ �́, (4)

which describes the traces t which are possible at all at the interface between an
arbitrary component and an arbitrary environment. We call such traces legal. The �

in judgment (4) represents now both the existentially abstracted environment E and
the component C of judgment (2).

1.2.2 Multi-Threading Concurrency and Re-entrant Monitors

Above we discussed the observable interface behavior in a general framework. Given
a specific language, the characterization of the allowed, legal interface behavior gives

1To avoid later confusion: The symbol � used later does not only formalize assumptions about the envi-
ronment, but also commitments of the component, to make the setting symmetric. The notation �E with
subscript E is used only here for explanatory reasons.

Theory Comput Syst (2008) 43: 322–361 325

insight into the semantical nature of the considered language and its features. This
paper concentrates on the following features:

• types and classes: the languages are statically typed, and only well-typed programs
are considered.

• references: each object carries a unique identity. New objects are dynamically al-
located on the heap.

• concurrency: the mentioned languages feature concurrency based on threads (as
opposed to processes or active objects [5]).

• monitor synchronization: objects can play the role of monitors [6, 12], guarantee-
ing that synchronized methods are executed mutually exclusive. Recursion—direct
or indirect—via method call requires re-entrant monitors.

These key aspects of modern class-based object-oriented languages like Java [11]
or C# [9] are formalized in an abstract object calculus. The interface behavior is
formulated in an assumption-commitment framework and based on three orthogonal
abstractions:

• a static abstraction, i.e., the type system;
• an abstraction of the stacks of recursive method invocations, representing the re-

cursive nature of method calls in a multi-threaded setting;
• finally as the main contribution, an abstraction of lock ownership.

The contribution of this paper over our previous work in this field (e.g., [3] dealing
with deterministic, single-threaded programs, or [4] considering thread classes) is to
capture re-entrant monitor behavior, the basic synchronization and mutex-mechanism
of, e.g., multi-threaded Java.

In comparison with the mentioned work, the setting here is simpler in one respect:
We disallow object instantiation across the interface here; of course, instantiation of
objects from classes as such is supported, only not across the boundary between com-
ponent and environment. The resulting semantical consequences of allowing such
interaction have been investigated at length elsewhere, for instance in [26]. In a nut-
shell, such a framework makes it necessary to equip the interface behavior with an ab-
stract, approximative representation of the heap, i.e., to represent the object’s pointer
structure, their “connectivity”. This is characteristic of class-based object-oriented
languages and a semantical consequence when considering instantiation of classes
from an observational standpoint. This complication is conceptually orthogonal from
the aspect on which we concentrate here, namely monitor locks. Indeed, it would be
principally straightforward to combine the findings concerning abstract heap repre-
sentations with the interface descriptions characterizing monitors. For sake of clarity,
we ignore this heap aspect here by simply disallowing cross-border instantiation.

Incorporating monitors into the formal calculus is not only pragmatically motivated
—after all, Java and similar languages offer monitor synchronization—but also se-
mantically interesting, because the observable equivalences induced by a language
offering synchronized methods and one without are incomparable.

Such a characterization of the abstract interface behavior is relevant and useful for
the following reasons. Firstly: the set of traces according to judgment (3) is in gen-
eral more restricted than the one obtained when ignoring the environments altogether.

326 Theory Comput Syst (2008) 43: 322–361

This means, when reasoning about the trace-based behavior of C, for instance for the
purpose of verification, with more precise knowledge of the possible traces we can
carry out stronger arguments about C. Secondly, an application for a trace descrip-
tion is black-box testing, in that one describes the behavior of a component in terms
of the interface traces and then synthesize appropriate test drivers from it. Obviously
it makes no sense to specify interface behavior which is not possible, at all, since
in this case one could not generate a corresponding tester. Currently we are devel-
oping a corresponding test language and tool. Finally, and not as the least gain, the
formulation gives insight into the inherent semantical nature of the language, as the
assumptions �E and the semantics captures the existentially abstracted environment
behavior. For instance, one insight to be learned from [2, 3] and also from this paper
is, that the presence of classes in the language necessitates an abstract representation
of the heap as part of �E .

One main result of the paper, namely that the abstract trace semantics appropri-
ately abstracts from the concrete, internal semantics, is formulated as a soundness
result (cf. Lemma 3.25): If a component actually exhibits a trace according to judg-
ment (1), then the abstract trace characterization of judgment (4) accepts the trace as
possible.

1.2.3 Observational Equivalence and Full Abstraction

The observational approach has in particular been used to give a convincing answer
to the question, when two programs are equivalent: Two components C1 and C2 are
equivalent if they can not be discriminated in the following sense:

for all environments E, letting E ‖ C1 and E ‖ C2 run, one sees no difference,

where E ‖ C means the closed program consisting of C and the “rest” E (the context,
the observer, the environment). In general, one might not choose the parallel construct
‖ as composition operation, and can define a context C[_] abstractly as a “program
with a hole”; in our setting, the context or environment, however, will be composed
using ‖.

This allows to define observational equivalence of two program fragments C1 and
C2 as follows: C1 ≡obs C2 if C[C1] and C[C2] yield the same results, for all contexts,
only that we have not clarified what it actually means, that two closed programs yield
the same observational result. Indeed, different choices are possible here and have
been investigated in the literature. The simplest possible external result or observation
about a closed program is that it halts, written C[P] ⇓. For sequential programs,
termination is, indeed, the crucial observation; the resulting equivalence, known as
“observable equivalence” has been introduced by Morris [19] for a call-by-name
λ-calculus.

For concurrent programs, the idea requires a small amount of refinement, as ter-
mination is no longer a useful criterion to distinguish programs: Processes or re-
active programs are often not supposed to terminate. Instead, the observer runs in
parallel with the program under observation, typically interacting via message ex-
change. From the outside it is seen whether both reach a defined point (written
C[P] ⇓succ) witnessed by a predefined communication, here called “success”. In a

Theory Comput Syst (2008) 43: 322–361 327

non-deterministic setting and when comparing two processes wrt. their successful-
ness confronted with all possible observers, one distinguishes necessary and poten-
tial success, leading to must, resp., may testing equivalence. The important notion of
testing equivalence has been introduced by de Nicola and Hennessy [8].

The approach gives a natural and easy definition of when two programs are equiv-
alent, but does not tell what actually the denotation or meaning of a program is. The
quantification over all possible contexts gives the contextual definition its strength
and simplicity. It makes it hard to apply, however, when proving equivalence of two
programs. For that purpose, an explicit denotation is better. Given both an implicit,
contextual, and an explicit, denotational semantics, their coincidence is called full
abstraction [18, 21]: Two programs are observationally equivalent iff they have the
same denotation. Let us write ≡obs for observational and ≡D for denotational equiva-
lence. The denotational semantics is an abstraction of the actual program, as it ignores
internals of the code. With the observational definition as reference, the denotational
semantics is sound, if C1 ≡D C2 implies C1 ≡obs C2. The inverse implication, hence
“full” abstraction, corresponds to completeness.

In our setting, the denotation of an open program is, in first approximation, a set
of interface traces, and indeed the development of the abstract interface behavior in
terms of legal traces can be motivated to provide one corner stone for full abstraction.
However, we do not address full abstraction in this paper. It is nonetheless worth-
while, to put the formalization of the abstract interface behavior presented here into
perspective and point out what has been achieved (and what is missing) for full ab-
straction wrt., say, may testing equivalence.

As indicated, the notion of full abstraction is based on a comparison between an
observational, contextual equivalence (such as may-testing equivalence) on the one
hand, and a denotational equivalence (e.g. based on having the same set of interface
traces) on the other hand. Such a comparison has two directions: the observational
equivalence is taken as reference, and the denotationally given one must neither be
too abstract nor too concrete, i.e, too discriminating. In general, completeness is the
trickier direction. When only interested in soundness, one can enrich the denotations
with as many details as wished, for instance, include internal implementation details
into the interaction traces without losing soundness. By adding details to the seman-
tics, the corresponding equivalence just gets unnecessarily discriminating, but stays
sound, compared to the observational equivalence. Completeness, i.e., being not too
abstract (but still containing enough discriminating power to remain sound) is harder.
The task is to show that if two programs are observationally equal, they have the
same set of traces (if we stick to that picture). Contrapositively: if two components
have different traces, i.e., if there exists at least one trace that one component is able
to exhibit but the other not, then there must be an observer or environment, that can
distinguish those components. This renders the proof of completeness a constructive
argument: given a (distinguishing) trace, program an environment in the given lan-
guage that observes this trace. Clearly, this programming task can succeed only if the
given trace is legal. The need for such a characterization for the completeness part
of full abstraction is an additional motivation for the definition of the legal traces, as
sketched in Sect. 1.2.1 and worked out later in Sect. 3.

Even if capturing the interface behavior is an important step towards completeness
and full abstraction, two steps remain to be done for the full result. One is, the con-

328 Theory Comput Syst (2008) 43: 322–361

structive proof itself, i.e., programming the observing environment for a given legal
trace. This can be seen as the completeness of the legal-trace abstraction as provided
in Sect. 3. The second missing piece is that simply taking the set of traces as seman-
tics, as we pretended in slight simplification, will not do the job, it is too concrete. So
on top of the characterization of legal traces, one needs to relax the definition by con-
sidering the traces only up-to certain equivalences, which capture the observational
uncertainty inherent in the language. We are currently working on the details and will
report on them in a subsequent publication. Working out observational equivalence
and full abstraction is left for future work.

Overview The paper is organized as follows. Section 2 contains syntax and opera-
tional semantics of the calculus. Section 3 contains an independent characterization
of the interface behavior of an open system, especially capturing the effects of lock
ownership. Furthermore, it contains the basic soundness results of the abstractions.
Section 4 concludes with related and future work.

2 A Multi-Threaded Calculus with Monitors

This section presents the calculus, which is based on a multi-threaded object calculus,
similar to the one presented in [10] and in particular [13].

2.1 Syntax

The abstract syntax of the calculus is given in Table 1. Names n (see the clause for
values v) are used to refer to classes, objects, and threads. In the text, we generally use
o and its syntactic variants as names for objects, c for classes, and n for thread names
and when being unspecific. A program is given by a collection of classes where a class
c[(O)] carries a name c and defines its methods and fields in O . An object o[c,F,n]
keeps a reference to the class c it instantiates, stores the current value of the fields or
instance variables, and maintains a lock n, referring to the name of the thread hold-
ing the lock. The special name ⊥thread (which is not a value) denotes that the lock
is free. The ensemble of methods or method suite M is kept in the class. A method
ς(self :c).λ(x: 	T).t provides the method body t abstracted over the ς -bound “self”
parameter and the formal parameters of the method [1]. We distinguish between syn-
chronized and non-synchronized methods conventionally by superscripts ls resp. lu,
and write just l when unspecific. The methods are stored in the classes, but the fields
are kept in the objects, of course. For uniform treatment, the syntax represents fields
as methods without parameters, except the self-parameter, and whose body is either a
value or yet undefined. Immediately after instantiation, all fields carry the undefined
reference ⊥c, where c is the (return) type of the field. Furthermore, the lock is free
for new objects. Besides objects and classes, the dynamic configuration of a program
contains named threads n〈t〉 as active entities.

A thread t is basically a sequence of expressions, where the let-construct is used
for sequencing and for local declarations.2 Expressions include method calls v.l(v),

2The sequential composition t1; t2 of two threads is syntactic sugar for letx:T = t1 in t2, where x does not
occur free in t2.

Theory Comput Syst (2008) 43: 322–361 329

Table 1 Abstract syntax

the creation of new objects new c where c is a class name, and thread creation new〈t〉.
We use f for instance variables or fields and l = ς(s:T).λ().v, resp. ς(s:T).λ().⊥c

for field variable definition. Field access is written as v.l() and field update as v′.l :=
ς(s:T).λ().v. By convention, we abbreviate the latter constructs by l = v, l = ⊥c,
v.l, and v′.l := v. We will also use v⊥ to denote either a value v or a symbol ⊥c for
being undefined. Note that the syntax does not allow to set a field back to undefined,
using v.l := ς(s:T).λ().⊥c , resp., v.l := ⊥c, for short.

Apart from disallowing instantiation across the interface between component and
environment, as mentioned shortly in the introduction, we impose the following two
restrictions on the language: firstly, we disallow direct access (read or write) to fields
across object boundaries. Secondly, we forbid that any occurrence of thread creation
new〈t〉 contains a self-parameter, i.e., a name occurring bound by ς . The reason is
that a new thread must start its life “outside” any monitor.

The available types are given in the following grammar:

T ::= B | None | thread | [l:U, . . . , l:U] | [(l:U, . . . , l:U)] | n
U ::= T × · · · × T → T

Besides base types B if wished, the type thread denotes the type of thread names,
and None represents the absence of a return value. The name n of a class serves as
the type for the named instances of the class. Finally we need for the type system,
i.e., as auxiliary type constructions, the type or interface of unnamed objects, written
[l1:U1, . . . , lk:Uk] and the interface type for classes, written [(l1:U1, . . . , lk:Uk)]. We
write Unit → T for T1 × · · · × Tk → T when k = 0.

2.2 Type System

The type system presented next characterizes the well-typed programs. The derivation
rules are split into two sets: one for typing on the level of components, i.e., global
configurations, and secondly one for their syntactic sub-constituents.

So Table 2, to start with, defines the typing on the level of global configurations,
i.e., for “sets” of objects, classes, and threads. On this level, the typing judgments are

330 Theory Comput Syst (2008) 43: 322–361

Table 2 Static semantics (components)

of the form

� � C : �, (5)

where � and � are name contexts, i.e., finite mappings from names to types. In the
judgment, � plays the role of the typing assumptions about the environment, and
� the commitments of the configuration, i.e., the names offered to the environment.
Sometimes, the words required and provided interface are used to describe the dual
roles. � must contain at least all external names referenced by C and dually � men-
tions the names offered by C. For a pair � and � of assumption and commitment
context to be well-formed we furthermore require that the domains of � and � are
disjoint except for thread names.

The empty configuration is denoted by 0; it is well-typed in any context and ex-
ports no names (cf. rule T-EMPTY). Two configurations in parallel can refer mutually
to each other’s commitments, and together offer the union of their names (cf. rule
T-PAR). It will be an invariant of the operational semantics that the identities of par-
allel entities are disjoint. Therefore, �1 and �2 in the rule for parallel composition
are merged disjointly, which is indicated by writing �1,�2 (analogously for the as-
sumption contexts).

Remark 2.1 (Thread names and parallel composition) Note that T-PAR does not al-
low a thread name to occur on both sides of the parallel composition. The typing
excludes terms of the form n〈t1〉 ‖ n〈t2〉 as part of the component. Indeed, the opera-
tional semantics will not need to consider the behavior of the parallel composition of
a thread n with another one of the same name.

The ν-binder hides the bound object or thread name inside the component (cf. the
rules T-NUt resp., T-NU1

o and T-NU2
o). In the T-NU-rules, we assume that the bound

name o, resp. n is new to � and �. Also, in those rules, the ν-construct does not only

Theory Comput Syst (2008) 43: 322–361 331

introduce a local scope for its bound name, but asserts something stronger, namely
the existence of a likewise named entity. This highlights one difference of let-bindings
for variables and the introduction of names via the ν-operator: the language construct
to introduce names is the new-operator, which opens a new local scope and a named
component “running in parallel”.

Let-bound variables are stack allocated and checked in a stack-organized vari-
able context �. Names created by new are heap allocated and thus checked in a
“parallel” context (cf. again the assumption-commitment rule T-PAR). The rules for
named classes introduce the name of the class and its type into the commitment (cf.
T-NCLASS); The code of the class [(O)] is checked in an assumption context where
the name of the class is available.

An instantiated object will be available in the exported context � by rule T-NOBJ.
Running threads are treated similarly, except that they always possess the type None,
which expresses that they do not return with a value.3

The last rule is a rule of subsumption. It expresses a very simple form of subtyping:
we allow that an object respectively class contains at least the members which are
required by the interface. This corresponds to width subtyping. Note, however, that
each named object has exactly one type, namely its class.

Definition 2.2 (Subtyping) The relation ≤ on types is defined as identity for all types
except for object interfaces where we have:

[(l1:U1, . . . , lk:Uk, lk+1:Uk+1, . . .)] ≤ [(l1:U1, . . . lk:Uk)].
For well-formed name contexts �1 and �2 , we define in abuse of notation �1 ≤ �2,
if �1 and �2 have the same domain and additionally �1(n) ≤ �2(n) for all names.

The same definition is applied, of course, also for name contexts �, used for the
commitments. The relations ≤ are obviously reflexive, transitive, and antisymmetric.

The typing rules of Table 3 formalize typing judgments for threads and objects
and their syntactic sub-constituents. Besides assumptions about the provided names
of the environment kept in � as before, the typing is done relative to assumptions
about occurring free variables. They are kept separately in a variable context �, a
finite mapping from variables to types.

The typing rules are rather straightforward and in many cases identical to the ones
from [13] and [4]. We allow ourselves to write 	T and 	v for T1 ×· · ·×Tk and v1, . . . , vk

and similar abbreviations, where we assume that the number of arguments match in
the rules. Different from the object-based setting are the ones dealing with objects and
classes. Rule T-CLASS is the introduction rule for class types, the rule of instantiation
of a class T-NEWC requires reference to a class-typed name. In the rule T-MEMB

and T-FUPDATE we use the meta-mathematical notation T .l to pick the type in T

associated with label l, i.e., T .l denotes U , when T = [. . . , l:U, . . .] and analogously
for T = [(. . . , l:U, . . .)]. Note also that the deadlocking expression stop has every
type.

3For the thread in T-NTHREAD, the type None can be generated by the atomic thread stop. In principle, a
variable could have the type None, as well, but there are no values except variables of this type.

332 Theory Comput Syst (2008) 43: 322–361

Table 3 Static semantics (2)

2.3 Operational Semantics

As the typing system, the operational semantics, is given in two stages. Section 2.3.1
starts with component-internal steps, i.e., those definable without reference to the
environment. In particular, the steps have no observable external effect and are for-
mulated independently of the assumption and commitment contexts. The external
steps presented in Sect. 2.3.2, define the interaction of the component with the envi-
ronment. The external steps are defined in reference to assumption and commitment
contexts. The static part of the contexts corresponds to the static type system from
Sect. 2.2 on component level and takes care that, e.g., only well-typed values are
received from the environment.

Theory Comput Syst (2008) 43: 322–361 333

Table 4 Internal steps

2.3.1 Internal Steps

Table 4 contains the internal reduction steps (the ones for conditionals, sequencing
via let, thread creation, etc., are straightforward), distinguishing between confluent
steps (i.e., steps not leading to race conditions), written �, and other internal tran-
sitions, written

τ→. The first 5 rules deal with the basic sequential constructs, all as
�-steps, and where in COND2, v1 �= v2 is assumed. The basic evaluation mechanism
is substitution (cf. rule RED). Note that the rule requires that the leading let-bound
variable of a thread can be replaced only by values. This means the redex (if any)
is uniquely determined within the thread which makes the reduction strategy deter-
ministic. The stop-thread terminates for good, i.e., the rest of the thread will never be
executed (cf. rule STOP).

The step NEWOi describes the creation of an instance of a component internal
class c[(F,M)], i.e., a class whose name is contained in the configuration. Note that
instantiation is a confluent step. The fields F of the class are taken as template for
the created object. The lock of a new object is free and thus initialized with ⊥thread .
The identity of the object is new and local—for the time being—to the instantiating
thread; the new named object and the thread are thus enclosed in a ν-binding.

The CALLi-rules treat internal method calls, i.e., a call to an object contained in
the configuration, where for synchronized methods, CALLs

i1
takes the free lock and

334 Theory Comput Syst (2008) 43: 322–361

Table 5 Structural congruence

Table 6 Reduction modulo congruence

adds a release-statement at the end of the method body. Rule CALLs
i2

describes re-
entrant calls. In the call-steps, M.l(o)(v) stands for t[o/s][v/	x], when the method
suite [M] equals [. . . , l = ς(s:T).λ(x: 	T).t, . . .].

The rule CALLu
i deals with non-synchronized methods, in which case the lock is

ignored. Field access is formalized by FLOOKUP. Note that the step is a
τ→-step, not

a confluent one, as it accesses the instance state of an object. The same holds for field
update in rule FUPDATE, where [c, (l1 = f1, . . . , lk = fk, f = v′).f := v,n] stands
for [c, l1 = f1, . . . , lk = fk, f = v,n]. Note further that instances of a component
class invariantly belong to the component and not to the environment. This means
that an instance of a component class resides after instantiation in the component,
and named objects will never be exported from the component to the environment
or vice versa; of course, names to objects may well be exported. The above reduc-
tion relations are used modulo structural congruence, which captures the algebraic
properties of parallel composition and the hiding operator. The basic axioms for ≡
are shown in Table 5 where in the fourth axiom, n does not occur free in C1. The
congruence relation is imported into the reduction relations in Table 6. Note that all
syntactic entities are always tacitly understood modulo α-conversion.

2.3.2 External Steps

The external steps of the operational semantics describe the interactions between
a component and its environment. They are given in terms of a labeled transition
system, where the labels represent the corresponding interaction:

γ ::= n〈call o.l(v)〉 | n〈return(v)〉 | ν(n:T).γ basic labels

a ::= γ ? | γ ! receive and send labels

A component exchanges information with the environment via calls and returns.
Note that there are no separate external labels for object instantiation as we have

Theory Comput Syst (2008) 43: 322–361 335

forbidden cross-border instantiation, i.e., we do not consider the situation that the
environment instantiates classes of the component and vice versa. In the labels of
the transitions, n is the thread that issues the call or returns from the call. Besides
that, a thread name may appear as an argument of a method call or as a return value.
Scope extrusion of a name across the interface is indicated by the ν-binder. Given a
label ν(�).γ ′ where � is a name context such that ν(�) abbreviates a sequence of
single ν(n:T) bindings (whose names are assumed all disjoint, as usual) and where
γ ′ does not contain any binders; we call γ ′ the core of the label and refer to it by
�γ �. Furthermore, thread(γ) denotes the thread of the label. The definitions are used
analogously for send and receive labels. Note that for incoming labels, � contains
only bindings to environment objects and thread names, as the environment cannot
create component objects; dually for outgoing communication. We write shortly γc

for call and γr for return labels.
The external semantics is formalized as labeled transitions between judgments of

the form

�,� � C : �,�, (6)

where �,� represent the assumptions about the environment of the component C

and �,� the commitments. The assumptions require the existence (plus static typing
information) of named entities in the environment. The semantics maintains as in-
variant that the assumption and commitment contexts are disjoint concerning object
and class names, whereas a thread name occurs as assumption iff it is mentioned in
the commitments. By convention, the contexts � (and their alphabetic variants) con-
tain exactly all bindings for thread names. This means, as invariant we maintain for
all judgments4 �,� � C : �,� that �, �, and � are pairwise disjoint. Thus, the
transitions are of the following form:

�,� � C : �,� → a�́, �́ � Ć : �́, �́.

The assumption context �,� can be seen as an abstraction of the (not-present) envi-
ronment.

Notation 2.3 We abbreviate the triple of name contexts �,�,� as �. Furthermore
we understand �́, �́, �́ as �́, etc.

The steps of the operational semantics for open systems checks the static assump-
tions, i.e., whether at most the names actually occurring in the core of the label are
mentioned in the ν-binders of the label, and whether the transmitted values are of the
correct types. This is covered in the following definition.

Definition 2.4 (Well-formedness and well-typedness of a label) We call a label a =
ν(�).�a� well-formed, written � a, if dom(�) ⊆ fn(�a�) and if � is a well-formed

4The judgment from (6) is the same as used for typing in (5), only that here, by convention, we explicitly
mention the binding part for thread names as � to stress the mentioned invariant.

336 Theory Comput Syst (2008) 43: 322–361

Table 7 Typechecking labels

name-context for (object and thread) names, i.e., no name bound in � occurs twice.
The assertion

�́ � o.l? : 	T → T (7)

(“an incoming call of the method labeled l in object o expects arguments of type 	T
and gives back a result of type T ”) is given by the following rule, i.e., implication:

; �́ � o : c ; �́ � c : [(. . . , l: 	T → T , . . .)]
�́ � o.l? : 	T → T

Note that the receiver o of the call is checked in the commitment context �́, only, to
assure that o is a component object. Note further that to check the interface type of
the class c, the full �́ is consulted, since the argument types 	T or the result type T

may refer to both component and environment classes. For outgoing calls, �́ � o.l! :
	T → T is defined dually. In particular, in the first premise, �́ is replaced by �́.

Well-typedness of an incoming core label a with expected type 	T , resp., T , and
relative to the name context �́ is asserted by

�́ � a : 	T → _ resp., �́ � a : _ → T , (8)

as given by Table 7. We use � � a : wt as notation to assert well-typedness.

Besides checking whether the assumptions are met before a transition, the contexts
are updated by a transition step, i.e., extended by new names, whose scope extrudes.
All external transitions may exchange bound names in the label, i.e., bound references
to objects and threads, but not to classes since class names cannot be communicated.
For the binding part �′ = �′,�′,�′ of a label ν(�′).γ , we distinguish references to
existing objects and threads whose scope extrudes across the border. For incoming
communication, with the binding part �′ = �′,�′, the bindings �′ and �′ are object
references respectively thread names transmitted by scope extrusion. For object ref-
erences, the distinction is based on the class types which are never transmitted. In the
incoming step, �′ extends the assumption context � and �′ extends the assumption
and the commitment context. For outgoing communication, the situation is dual. Cf.
Definition 2.5.

Definition 2.5 (Context update) For a name context � and an incoming label a =
ν(�′).�a� where n is a thread name s.t. �′ � n, we define �́ = � + a as:

�́ = � + �′, �́ = � + (�′,�n), and �́ = � + �′.

In case �′ �� n, i.e., the thread is not new to the component, the summand �n is
omitted. We write �+a for the update of �. The update for outgoing communication
is defined dually.

Theory Comput Syst (2008) 43: 322–361 337

In the definition, the special symbol �n is used to remember whether a new thread
n starts its life at the component side or at the environment side. The semantics main-
tains as invariant that for each thread name n mentioned in the �-context, either
� � �n or � � �n: A thread known both at the environment and the components
started on exactly one side. Hence, in the shown situation in Definition 2.5 of an
incoming communication, the thread with the new name n has its origin in the en-
vironment. The information about �n is important since in the situation where, e.g.,
� � �n, i.e., thread n starts in the environment, the first interfaces interaction of n

must not only be a call, but it must be an incoming call. The above definition as-
sumes that thread names are not communicated as arguments in method calls across
the interface, i.e., the only way a new thread name becomes known at the interface
is that the thread itself actively crosses the border. It is straightforward to extend the
definitions to also cover the possibility that a new thread gets known at the interface
by communicating the name as argument of a method call. See for instance [4] where
this has been considered for a calculus featuring thread classes (but no monitors).

The operational rules of Table 8 use two additional expressions

blocks and returns v.

The three CALLI-rules deal with incoming calls. For all three cases, the contexts are
updated to �́ to include the information concerning new objects and threads. Fur-
thermore, it is checked whether the label is type-correct and that the step is possible
according to the (updated) assumptions �́. In the rules, fn(�a�) refers to the free
names of �a� (which equal names(�a�)).

The three rules for incoming calls deal with three different situations as to when
an incoming call may happen: A call of a thread which is new to the component plus
two different situations, where the name of the calling thread is already known in the
component.

The first call rule CALLI0 deals with the situation, that the thread n enters the com-
ponent for the first time. This is assured by the premise �′ � n, where �′, according
to our conventions, is the part of the bindings �′ transmitted boundedly, which is re-
sponsible for thread names. The last three premises (which are identical for the other
two CALLI-rules, as well) assure well-formedness of the label and well-typedness of
the transmitted values. Additionally, the context � is updated to �́ by the information
about new names transmitted via label a.

For reentrant method calls (cf. rule CALLI1), the thread is blocked, i.e., it has left
the component previously via an outgoing call. Rule CALLI2 treats likewise a sit-
uation, where the thread is already contained in the component nonetheless, but all
method calls of the thread have been answered. As a consequence, the component
contains the entity n〈stop〉. As the thread n must have crossed the border before, the
marker for its creator �n must be contained in either � or in �. The premise � � �n

assures that n had started its life on the environment side. This bit of information is
important as otherwise one could mistake the code n〈stop〉 for the code of a (dead-
locked) outgoing call.

Outgoing calls are dealt with in rule CALLO. To distinguish the situation from
component-internal calls, the receiver must be part of the environment, expressed by
� � or . Starting with a well-typed component, there is no need in re-checking now

338 Theory Comput Syst (2008) 43: 322–361

Table 8 External steps

that only values of appropriate types are handed out, as the operational steps preserve
well-typedness (“subject reduction”).

Note that the steps of Table 8 are independent of lock manipulations, e.g., an in-
coming call, which hands over the message via one of the CALLI-rules does not
attempt to obtain the lock; this is done by the internal steps from Table 4. This decou-
ples the responsibilities of component and environment in the spirit of the assump-
tion/commitment set-up. Whether an incoming call can be sent by the environment
depends only on the past interface interaction and the environment, but not on an
internal state of the component!

The rules RETO and RETI deal with the return actions. The return steps work
similar as the calls. Returns are simpler than calls in that only one value is commu-
nicated, not a tuple (and we don’t have compound types). To avoid case distinctions
and to stress the parallel with the treatment of the calls, we denote the binding part of
the label by ν(�′) as before.

Finally, we characterize the initial situation. Initially, we assume that the compo-
nent contains at most one thread and no objects. More precisely, assume that �0 � C0
is the initial judgment. Then C0 contains no objects. Concerning threads: if �0 � �,
then C neither contains a thread. If otherwise, �0 � �, C contains exactly one thread
and is of the form C ≡ ν(n:thread).C′. In particular, for the context �0 it means, that
it contains only class names, but neither thread names nor object names. These con-
ditions imply, that initially only calls are possible, but no returns. If initially, �0 � �,
i.e., the initial thread starts in the environment, then only CALLI0 is applicable, spe-
cializing the premise � � o to � � �. If initially �0 � �, then only CALLO is
applicable.

Theory Comput Syst (2008) 43: 322–361 339

3 Interface Behavior

Next we characterize the possible (“legal”) interface behavior as interaction traces
between component and environment. “Half” of the work has been done already
in the definition of the external steps in Table 8: For incoming communication, for
which the environment is responsible, the assumption contexts were used to check
whether they originate from a realizable environment. Concerning the reaction of
the component, no such checks were necessary. After all, the code of the program is
given; so the reaction of the component is not only realizable, but a fortiori “realized”.
To characterize when a given trace is legal, we need to require that the behavior of the
component side, i.e. the outgoing communication, adheres to the dual discipline we
imposed on the environment in the definition of the semantics. Now, we analogously
abstract away from the program code, rendering the situation symmetric.

The calls and returns of each thread must be “parenthetic”, i.e., each return must
have a prior matching call, and we must take into account whether the thread is res-
ident inside the component or outside. In particular, we must take into account re-
strictions due to the fact that the method bodies are executed in mutual exclusion wrt.
individual objects.

Remark 3.1 (Atomic communication) For the operational semantics of Sect. 2.3, the
lock-taking is part of the internal steps (cf. the CALLs

i -rules). The handing-over of
the call at the interface and the actual entry into the synchronized method body is
non-atomic; in other words: at the interface, objects are input-enabled.

An alternative scheme would be atomic lock grabbing, i.e., the lock is atomically
taken by the interface interaction. This would simplify the logical characterization
as to when a lock is guaranteed to be taken resp. free, based on the interface trace,
because the uncertainty of observation as to when the lock is actually taken, is then
gone: When an outgoing call is performed, e.g., it is guaranteed that the lock is taken
at that very point.

This, however, would contradict the clean separation of concerns between the
assumption and the commitment contexts. The assumption contexts represent the
(worst-case) abstraction of the environment, and dually the commitment over-
approximates the actual situation of the component. So conceptually, for incoming
communication, the assumption contexts are consulted to check, whether there is ex-
ists an realizable environment responsible for that step (and dually for outgoing com-
munication). With atomic locking, the enabledness of an incoming call would depend
on the commitment context, and dually outgoing communication on the assumptions
about the environment. This reverses the two roles of assumptions and commitments,
at least wrt. lock-availability—all other aspects such as type checking, connectivity,
etc. remain—and thus breaks the clean separation of responsibilities in the semantics,
rendering it less compositional.

The legal traces are specified by a system for judgments of the form

� � r � s : trace (9)

stipulating that under assumptions �,� and with the commitments �,�, the trace
s is legal (remember the conventions from Notation 2.3).

340 Theory Comput Syst (2008) 43: 322–361

Table 9 Balance (for one thread)

Roughly, the assertions used in the operational semantics are grouped into those
for static typing and those for connectedness. Here, without the code of the program,
we need an additional assertion concerning the balance of calls and returns (“enabled-
ness”). In the operational semantics, such an assertion was not even needed for the
behavior of the environment, since, for instance, an incoming return step of a thread
is possible only when the thread is blocked. Thus the program syntax takes care that
calls and returns happen only in a well-balanced manner. Without code, we need an
independent characterization.

3.1 Balance Conditions

We start with auxiliary definitions concerning the parenthetic nature of calls and re-
turns. Starting from an initial configuration, the operational semantics from Sect. 2.3
assures strict alternation of incoming and outgoing communication and additionally
that there is no return without matching prior call.

Definition 3.2 (Balance) Let s ↓n be the projection of trace s onto thread n. The
balance of a thread n in a sequence s of labels is given by the rules of Table 9. We
write � s : balancedn if � s : balanced+

n or � s : balanced−
n . We call a (not necessar-

ily proper) prefix of a balanced trace weakly balanced. We write � s : wbalanced+
n if

the trace is weakly balanced in n, i.e., if the projection of the trace on n is weakly bal-
anced, and if the last label is an incoming communication or if s ↓n is empty; dually
for � s : wbalanced−

n . The function pop (on the projection of a trace onto a thread n)
is defined as follows:

1. pop s = ⊥, if s is balanced in n.
2. pop (s1 a s2) = s1 a if a = γc? and s2 is balanced+

n .
3. pop (s1 a s2) = s1 a if a = γc! and s2 is balanced−

n .

We use pop n r for pop (r ↓n).

To be explicit, we refer to a balanced trace also as strongly balanced.

Theory Comput Syst (2008) 43: 322–361 341

Note that the communication labels alone do not contain enough information to
determine their source and target. For call labels ν(�).n〈call o.l(v)〉, only the target
of the communication, the callee o is contained, the caller remains anonymous. This
is justified by the fact that the callee does not get hold of the identity of the caller.
The identity of the caller can therefore not be observed and should thus not be men-
tioned in the interface behavior. Return labels ν(�).n〈return(v)〉 do not mention any
communication partner. However, even without being explicitly mentioned, the com-
munication partners are determined by the communication history. For instance, the
source of a return is target of the matching call. For a call it is assured that it leaves
the same clique that the previous communication, call or return, has entered.

Based on a weakly balanced history, we defined the source and target of a com-
munication event at the end of a trace with the help of the function pop.5

Definition 3.3 (Sender and receiver) Let r a be the non-empty projection of a bal-
anced trace onto the thread n. Sender and receiver of label a after history r are defined
by mutual recursion and pattern matching over the following cases:

sender(γc!) = �n

sender(r ′ a′ γc!) = receiver(r ′ a′)
sender(r ′ a′ γc!) = receiver(pop(r ′ a′))

receiver(r ν(�).n〈call or .l(v)〉!) = or

receiver(r γc!) = sender(pop(r))

For γc? resp. γr?, the definition is dual.

Note that source and target are well-defined. In particular, the recursive definition
terminates. Furthermore the weak balance of the argument guarantees that the call of
pop yields a well-defined result and that the case distinction is exhaustive.

�,� � r � a : �,� asserts that after r , the action a is enabled. Input enabled-
ness checks whether, given a sequence of past communication labels, an incoming
call is possible in the next step; analogously for output enabledness. To be input en-
abled, one checks against the last matching communication. If there is no such label,
enabledness depends on where the thread started:

Definition 3.4 (Enabledness) Given γ = ν(�).n〈call or .l(v)〉. Then call-enabled-
ness of γ after history r and in the contexts �,� and �,� is defined as:

�,� � r � γ ? : �,� if pop n r = ⊥ and � � �n or
pop n r = r ′γ ′!

(10)

�,� � r � γ ! : �,� if pop n r = ⊥ and � � �n or
pop n r = r ′γ ′?

(11)

5Since we apply the definition onto the projection of a trace onto a thread, we omit in the function the
thread name as parameter.

342 Theory Comput Syst (2008) 43: 322–361

For return labels γ = ν(�).n〈return(v)〉, � � r � γ ! abbreviates pop n r =
r ′ν(�′).n〈call o2.l(v)〉?, and dually for incoming returns γ ?.

We also say, the thread is input-call enabled after r if �,� � r � γc? : �,�

for some incoming call label γc?, respectively input-return enabled in case of an
incoming return label. The definitions are used dually for output-call enabledness and
output-return enabledness. When leaving the kind of communication unspecified we
just speak of input-enabledness or output-enabledness. Note that return-enabledness
implies call-enabledness, but not vice versa.

We further combine enabledness and determining sender and receiver (cf. Defini-
tions 3.4 and 3.3) into the notation

� � r � os
a→ or . (12)

3.2 Side Conditions for Monitors

Next we address the restrictions imposed by the fact that the methods are synchro-
nized. We assume in the following that all methods are synchronized, unless stated
otherwise. We proceed in two stages. The first step in Sect. 3.2.1 concentrates on
individual threads: given the interaction history of a single thread, we present two
abstractions, one characterizing situations where the thread may hold the lock of a
given object, and a second one where, independent of the scheduling, the thread must
hold the lock. The second step in Sect. 3.2.2 takes a global view, i.e., considers all
threads, to characterize situations in a trace which are (in-)consistent with the fact
that objects act as monitors. The formalization is based on a precedence or causal re-
lation of events of the given trace. This precedence relation formalizes three aspects
that regulate the possible orderings of events in a trace:

mutual exclusion: If a thread has taken the lock of a monitor, interactions of other
threads with that monitor must either occur before the lock is taken, or after it has
been released again.

data dependence: no value (unless generated new) can be transmitted before it has
been received.

control dependence: within a single thread, the events are linearly ordered.

The formalization of mutual exclusion is complicated by the fact that the locks
are not taken atomically, i.e., we often do not have immediate information when
the lock is taken and relinquished. Instead we must work with the may- and must-
approximations calculated in Sect. 3.2.1 below. This uncertainty of observation influ-
ences also data dependence: The point it time where a value is “received” is not when
it is handed over at the interface, what counts in this respect is when the value enters
the monitor.

3.2.1 Lock Ownership

We start by characterizing when, given a history of interaction of a single thread, it
may own the lock of an object. The “may”-uncertainty is due to the fact that the actual
lock manipulation is separated by the corresponding visible interface interaction by
some internal i.e., non-observable reduction steps.

Theory Comput Syst (2008) 43: 322–361 343

Table 10 Potential lock ownership for �-locks

Definition 3.5 (May lock ownership) Given a sequence s of interactions of a single
thread and a component object o, the judgment � � s : ♦o (“after s, the thread of s

may own the lock of o.”) is given by the rules of Table 10. For environment locks,
i.e., when o is an environment object, the definition is dual.

Observing that � � t : ♦no is decidable (Lemma 3.11 below) we consider � � t :
�no as boolean predicates and write � � t : ¬♦no for � �� t : ♦no (and later analo-
gously for the must-predicate �).

Rule M-♦ states that a balanced tail s2 can be ignored, lock-wise. To assure that
the premise is invoked on a proper prefix of the trace in the conclusion, we insist that
s2 is not the empty trace. The two M-I♦-rules deal with incoming calls, depending on
the receiver of the communication (remember that we use γc to refer to call labels and
γr for return labels). If the call concerns the object o in question, the thread may own
the lock afterwards. So this is an “introduction rule” for ♦-information. Remember
that the receiver of a call γc is the object mentioned in the label (cf. Definition 3.3). If
the receiver is distinct from o (cf. rule M-I♦2), the thread may own the lock of o, if
that was the case already before the call.6 Note that we do not have a corresponding
rule for incoming return labels. Intuitively it means that an incoming return does
not affect the information that the thread may own a given component lock. Since
the same remark applies to the must-relation, discussed below, one can summarize
that incoming returns do not carry any information wrt. ownership of �-locks. An
outgoing call finally does not affect the ♦-information,7 i.e., if a thread may own a
lock before the outgoing call, it may do so afterwards (cf. rule M-O♦).

Example 3.6 (♦-predicate) We illustrate the meaning of the ♦-predicate on a very
simple example. The example is in particular intended to avoid possible misconcep-
tions what “potential” lock ownership means. We concentrate on component locks as
opposed to environment locks, and it is enough to consider one single thread. Con-
sider the following trace consisting of only one incoming call:

t = t ′ γc? = t ′ n〈call or .l(o)〉?. (13)

6The premise receiver(γc) �= o can be omitted. It is useful, however, to separate M-I♦1 from M-I♦2.
7This is in contrast to the �-knowledge. An outgoing call turns the knowledge that a thread may hold a
lock into the stronger assertion that it now must hold the lock (cf. rule M-O�2 from Table 11 below).

344 Theory Comput Syst (2008) 43: 322–361

The receiving object or is a component object and assume that the locks of both o

and or are free before the call occurs, i.e., after t ′. According to the rules of Table 10
we have

� � t : ♦or and � � t : ¬♦o (14)

where � is some appropriate initial context, left unspecified in this example. So, how
do we interpret the two assertions of (14)? Well, � � t : ♦o does not assert that there
exists a component for which there is an execution such that the thread holds the lock
of o. This interpretation would be consistent with the assertion for or on the left-hand
side of (14). But applying this interpretation to � � t : ¬♦o for object o reveals the
problem: it is perfectly possible that there exists a component C which performs t ,

i.e., � � C
t�⇒ �́ � Ć where in Ć, the thread n owns the lock of o (which contradicts

the above-mentioned interpretation of ¬♦o): after delivering the call to or , the thread
may acquire the lock of o, as well, using internal steps.

Having clarified what � � t : ♦o does not mean, now what does it assert? The

correct interpretation is, that for all components C such that � � C
t�⇒, there exists

a post-configuration �́ � Ć such that � � C
t�⇒ �́ � Ć where the thread owns the

lock of o. Coming back to the original sample trace of (13): given t , there are many
possible components C able to perform that trace, but for all of them it is possible
that the thread holds the lock of the receiver object or after t . For o, however, there
exist a component C, for which the lock of o is free. In the simplest case C may be
such that the method l of object or does not invoke any method of o which would
be a component-internal call and not visible at the interface. This is expressed by the
negative assertion on the right-hand side of (14).

Now to the definite knowledge that a thread owns the lock of a given object. Note
that the definition of �o is not independent of ♦o, but builds upon it, but not vice
versa.

Definition 3.7 (Must lock ownership) Given a sequence s of interactions of a single
thread and a component object o, the judgment � � s : �o (“after s, the thread of s

must own the lock of o”) is given by the rules of Table 11. For environment locks,
i.e., when o is an environment object, the definition is dual.

Definition 3.5 and 3.7 where given using the interactions of a single thread. To lift
the definition to traces of multiple threads, we use projection and write � � t : �no

for � � (t ↓n) : �o, and analogously for ♦no.
The first rule M-I�1 deals with incoming calls. Since the lock is not acquired

atomically, an incoming call alone does not guarantee that the thread owns the callee’s
lock; it potentially owns it according to rule M-I♦1. If however the lock of an object is
necessarily owned before the call, the same is true afterwards. Thus rule M-I�1 cor-
responds to M-I♦2, but there is no rule for � analogous to M-I♦1. A single incoming
call cannot change a given lock from ♦-status or even from not-♦-status to �-status,
i.e., �o can only be true after the communication, if it was true already before, which
is what M-I�1 (and the absence of an analogue of M-I♦1) stipulates. Rule M-I�2
deals with incoming returns. As for incoming calls, the lock is owned for sure after

Theory Comput Syst (2008) 43: 322–361 345

Table 11 Necessary lock ownership for �-locks

the communication, if this was true before already. Hence � � t : �o as premise. We
need to be careful, however. After the return γr in question, the thread may continue
internally i.e., without performing a further interface communication, and this inter-
nal reduction may relinquish the lock! This may be the case if the mentioned internal
reduction includes the very last internal steps of a synchronized method call, before
the call actually returns at the interface, re-establishing balance. In other words, after
γr?, the component may be in a state where internally, the lock has already been re-
leased, only that the fact has not yet been manifest at the interface. This is captured
in the premise � � r γr? γ ′

r ! : ♦o, i.e., the trace r γr? is extended by one additional
outgoing return γ ′

r !, and if the thread may have the lock after this extended trace, then
it must have the lock after γr?.

The M-O�-rules cover outgoing communication. Remember that outgoing com-
munication leaves the ♦-information unchanged. For �-information, this is different
and characteristic of the non-atomic lock-handling: an incoming call is the sign that
we may have the lock of a component object, but only a following outgoing call is
the observable sign that the component must have the lock (see M-O�1).

Remark 3.8 (♦ vs. �) Example 3.6 should have cautioned us not to jump to con-
clusions how to interpret the words “necessary lock ownership”. Fortunately, for �,
the interpretation is more straightforward in that no quantifier-alternation is involved.
The assertion � � t : �o stipulates that for all components which perform t , and for

all post-configurations after t , i.e., for all situations � � C
t�⇒ �́ � Ć, the thread

owns the lock of o in Ć.
This also makes clear that ♦ and � are not dual to each other, in the sense that

¬♦o is not the same as �¬o (when “¬o” is interpreted as “the thread does not have
the lock”; we will not use the notation ¬o later). Furthermore it sheds light on the
fact that ♦ and � are not defined at the same time (or one is derived from the other
via modal duality), but that the ♦-predicate is defined first, and � later, using ♦.

Let us illustrate the definitions on a few example traces.

Example 3.9 Consider the following trace:

t = t ′ γc?γr ! = n〈call or .l()〉? n〈return()〉!. (15)

Assume that in the prior history t ′, thread n is strongly balanced and all locks are free.
Now, for t , thread n is strongly balanced as well, more precisely �0 � t : balanced−,

346 Theory Comput Syst (2008) 43: 322–361

when �0 is the initial static context, which in particular asserts with �0 � � that the
initial activity starts in the environment.

According to rule M-I♦1, �0 � t ′ γc? : ♦nor . However, we cannot derive the
stronger assertion �0 � t ′ γc? : �nor , because the corresponding M-I�-rules require
that, in order to hold, already �0 � t ′ : �nor , which is not the case.

Adding the subsequent return γr ! in (15) changes the situation as follows. The
only candidate rule which applies for a trailing return for ♦ is M-♦. It does not apply
for t of our example, i.e., we have �0 � t : ¬♦or .

For �, the rule for output M-O� does not apply since the premise �0 � t ′ γc? :
�or does not hold (as explained above) for which we write �0 � t : ¬�or . In other
words, there exists a component which can perform t such that there exists a con-
figuration after t where the thread does not have the lock. This was already implied
by the stronger �0 � t : ¬♦or , of course. It is worth noting that during no point in
the trace t , the lock is definitely taken in the following sense: for all (not necessarily
proper) prefixes t ′ of t we have �0 � t ′ : ¬�or , as just illustrated. Of course at some
point in the internal execution between call γc? and return γr !, the thread must have
held the lock, only that for all components, in the configurations between γc? there
are points where the lock is not taken (immediately after the call and immediately
before returning), and points where the lock is taken. But that is not enough to justify
the �-assertion, only ♦ holds in between.

Let us replace t by a slightly more complex interaction, where at the end there
exist some environment objects:

u = t ′ γ ′
c? γ ′

r ! = t ′ n〈call or .l(o1)〉? n〈return(o2)〉!. (16)

Assume that the argument references o1 and o2 are environment objects, and that
after t ′, their locks are definitely free. According to the definition of the ♦- and �-
predicate, we have �0 � u : ¬♦o1 and �0 � u : ¬�o1, and the same for o2: The
♦ information is only introduced for the receiver of a call (by rule M-I♦1, more
precisely its dual), but not for arguments of a call nor for arguments of a return.
Concerning the �-information: After the incoming call, �o1 does not hold, as this
would require ♦o1 to hold as premise. After the return at the end, neither �o1 nor
�o2 holds, since the only candidate rule, the dual of M-I�2, does not apply.

Lemma 3.10 (Termination) Used in a goal-directed manner and invoked on a weakly
balanced trace, the derivation systems from Table 10 and 11 always terminate.

Proof As the definition of � uses ♦ but not vice versa, we can check termination
separately, starting with ♦.

Given a (finite) weakly balanced trace r resp. its projection onto one chosen thread,
� � r : ♦o terminates since each of the premises mentions only a proper prefix of the
trace of the conclusion (and furthermore, the functions pop and receiver terminate).
Thus, also � � r : �o terminates, since each rule give rise to a recursive call only
of a proper prefix in the premise, or to a call of ♦o (in M-I�2 and M-O�), which
terminates. �

Lemma 3.11 (Decidability) Given a weakly balanced trace t , the relations � � t :
♦no and � � t : �no are decidable.

Theory Comput Syst (2008) 43: 322–361 347

Proof With termination for each � � t : ♦no resp. � � t : �no by Lemma 3.10, it
remains to check that there are only finitely many derivations for a given judgment
� � t : ♦no resp. � � t : �no.

The ♦- and �-systems are almost goal-directed, but not quite. Goal-directed
means that the premises of each rule are determined by the conclusion. This would
imply that the derivation system describes directly a recursive function (since we have
termination).

Starting with the system for ♦o: the rule that destroys goal-directedness is M-♦,
since the balanced trailing s2 can be chosen differently. It is straightforward to see that
we could additionally require that s2 is the maximally balanced trailing trace, without
changing the system.8 This makes the system goal-directed and entails thus decid-
ability. The combination of rules of the �-system are goal-directed from the start: the
very last interaction determines the choice of the rule. This entails decidability. �

Decidability allows to consider the assertions � � t : ♦no and � � t : �no as
boolean predicates (and analogously for �) and justifies the notation � � t : ¬♦no

for � �� t : ♦no we had used earlier in the examples.
The next lemma shows the expected implication between the two relations: if a

thread necessarily owns a lock, then it also may own the lock. Of course this is
only the intuitive meaning of the modal assertions; more precisely, � � t : �no is
intended to mean that for all components performing t , afterwards n holds the lock
of o, and � � t : ♦no means, that if a component C can perform t , then there exists
a post-configuration after t where n holds the lock. Lemma 3.13 is a proof-theoretic
statement about the relationship between the two derivation systems, which, luckily,
matches with our intuition. We need a few simple properties of the ♦- and �-system
first.

Lemma 3.12 (♦ and �) Let t a be a weakly balanced trace, o be a component object,
and n a thread.

1. Let a = γ ?. If � � t : ♦no, then � � t γ ? : ♦no.
2. Let a = γc!. If � � t : ♦no then � � t γc! : ♦no.
3. Let a = γ !. If � � t γ ! : ♦no, then � � t : ♦no.
4. Let a = γ !. If � � t γ ! : ♦no, then � � t γ ! : �no.
5. Let a = γ ?. If � � t γ ? : �no, then � � t : �no.

Proof By straightforward induction, using the properties of balance and weak bal-
ance (see also [26]). �

Lemma 3.13 (� implies ♦) Assume a weakly balanced trace t . If � � t : �no then
� � t : ♦no.

8Different derivations in the system, i.e., different choices wrt. the balanced s2 do not influence the success
of the derivations; in other words, one has “coherence” of the derivation system.

348 Theory Comput Syst (2008) 43: 322–361

Proof Assume � � t : �no, i.e., � � s : �o, where s is the projection of t to n. Now
proceed by induction on the rules of Table 11.

Case: M-I�1
We further distinguish wrt. receiver of the call. If receiver(s′ γc?) = o, then the result
follows directly by M-I♦1. If otherwise receiver(s γc?) �= o, the result follows by
induction and rule M-I♦2.

Case: M-I�2
The premise � � s γr? γ ′

r ! : ♦o implies with Lemma 3.12(3), � � s γr? : ♦o, as
required.

Case: M-O�1
By the premise of the rule and Lemma 3.12(2).

Case:M-O�2
By induction and Lemma 3.12(1). �

3.2.2 Mutual Exclusion

So far we concentrated on each thread in isolation; the definitions of ♦no and �no

have been used on projection of the global trace onto the thread n in question. This
cannot be the whole story, as mutual exclusion is a global property concerning more
than one thread. Especially for the ♦-information, concentrating on the thread-local
view does not give the whole picture: � � t : ♦no means, after t , the thread n may
own the lock, based on local knowledge only, i.e., it may have the lock provided
none of the other threads locks out the thread n in question. The formalization is
based on a precedence relation on the events of a trace. An event is an occurrence of
a label in a trace, i.e., as usual, events are assumed unique. In the following we do
not strictly distinguish (notationally) between labels and events, i.e., we write γ ? for
an event labeled by an incoming communication etc. To formalize the dependencies
for mutual exclusion, we need to require that certain events are positioned before the
lock has been taken, or after it has been released. So the following definition picks
out relevant events of a trace. In the definition, � denotes the prefix relation. The
♦́-function (“after may”) designates the labels after the point where the lock may be
taken, for a given pair of thread and monitor. The �̀-function (“before must”) picks
out the point before a thread enters the monitor.

Definition 3.14 Let t be the projection of a weakly balanced trace onto a thread n.
Then the set of events ♦́(t, o) is given by:

♦́(t, o) = {a | sa � t is the longest prefix s.t. � � s : ♦o}. (17)

Furthermore, the set of events �̀(t, o) is given as:

�̀(t, o) = {a1 | � � t : �o, s a1 a2 � t is the longest prefix s.t.
� � s : ¬♦o, � � sa1a2 : �o}. (18)

We use the following abbreviations: ♦́n(t, o) stands for ♦́(t ↓n, o) and ♦́ �=n(t, o) =
⋃

n′ �=n ♦́(t ↓n′ , o), and analogously for �̀.

Theory Comput Syst (2008) 43: 322–361 349

Note that the “set” given by ♦́ in Definition 3.14 contains one element or is empty.
The same holds for �̀.

Based on these auxiliary definitions, we now introduce the three types of depen-
dencies we need to consider. We start with data dependence.

Definition 3.15 (Data dependence) Given a trace r , reference o, and input label γ ?,
we write �� r : γ ? �

d o (in words: “o is potentially data-dependent on event/label
γ ? of trace r”), if o ∈ names(γ), where r ′γ ? is a prefix of r . When given a tuple 	o
of names, �� r : 	γ ? �

d 	o is meant as asserting �� r : γi? �
d oi , for all oi from 	o.

Then:

D�(r γ !) = {	γ ? � γ !} provided �� r : 	γ ? �
d fn(γ !) ∩ �(r)

D�(r γ ?) = {}. (19)

For �� and D�, the definitions are applied dually.

The definition states that, from the perspective of the component, arguments of an
outgoing communication must either be generated previously by the component, or
must have entered the component from the outside. The complexity of the technical
definition is explained as follows. First of all, we calculate the dependence in (19)
only for object references occurring free in the output label; those that occur under a
ν-binder are generated by the component itself, and do not constitute a data depen-
dence. For the same reason we consider only those free object references, which orig-
inally have been passed to the component during the history; we denote all ν-bound
environment objects in r by �(r) (dually for component objects). Finally, each such
object in γ ! may be potentially data dependent on more than one incoming label in the
history r . It suffices to add one data dependence edge, which is non-deterministically
chosen.

Definition 3.16 (Control dependence) Given a trace ra, where n = thread(a), we
write � r : a′

�
c a, if r ↓n= r ′a′ for some label a′. We write C(ra) for {a′

� a | �
r : a′

�
c a}.

Note that the set C(r a) contains one element, i.e., one edge, or is empty.

Definition 3.17 (Mutual exclusion) Given a trace ra and a component object o, the
label a gives rise to the precedence edges wrt. component locks given by:

M�(rγc?, o) = ♦́ �=n(r, o) � γc?
M�(rγr?, o) = {}
M�(rγ !, o) = γ ! � �̀�=n(r, o), ♦́ �=n(r, o) � �̀n(rγ !, o)

(20)

For environment locks, the definition is dual.

Incoming calls can introduce a dependence with other threads n′ competing for
the concerned lock of the callee. Interactions of a thread n′ occurring in the history r

after n′ has applied for the lock (but before γc?) makes evident that n′ succeeded in

350 Theory Comput Syst (2008) 43: 322–361

entering the monitor. Hence the corresponding monitor interactions of n′ must have
happened before the current incoming call succeeds in entering the monitor. Incoming
returns do not introduce new dependencies wrt. �-locks (short for component locks),
since the return releases the corresponding lock or keeps it, but does not acquire a
lock nor competes for it.

Outgoing communication, however, does introduce dependencies, as they in many
cases indicate that a lock definitely is taken or transiently has been taken since the
last interaction of that thread. This introduces two types of dependencies. First, if
there are other definite lock owners, then the current action γ ! must precede the mon-
itor interactions of those successful competitors since the outgoing label is a definite
sign that the thread of γ has held the lock of o before that step. This explains the
edges γ ! � �̀�=n(r, o) in the definition. Secondly, γ ! does not only indicate that the
thread in question had the lock prior to the step (at least transiently), but can also
introduce definite lock ownership after the step (in particular, an outgoing call can
introduce must-ownership). Hence, the monitor interactions of all competitors ob-
served in the trace must precede the point, where the current thread n acquires the
lock. This explains the dependence ♦́ �=n(r, o) � �̀n(rγc!, o).9 See also the trace of
(24) in Example 3.18. The case of an outgoing return is illustrated by the trace of (22).

3.2.3 Examples

Let us illustrate the system on a few examples.

Example 3.18 (Mutex) We assume that the labels in the examples are not dependent
on each other wrt. transmitted data. With such dependencies, the diagrams shown
below would simply contain additional data dependence edges.

We start with the following trace

t = γc1?γc2?γr1 !γr2 !, (21)

where γc1? and γr1 ! are interactions of thread n1 and γc2? and γr2 ! belong to thread n2.

After the two incoming calls, no dependence between the two actions is yet visible.
Neither does the third step γr1 !, apart from the “intra-thread” dependence stipulating

9In case the lock has been owned by thread n already prior to the outgoing communication, these edges are
not actually needed; the condition only adds edges expressing dependencies which are already covered.
Especially for outgoing returns, this means, one could formulate the corresponding clause of M�(r γr !, o)

without that edge.

Theory Comput Syst (2008) 43: 322–361 351

that the corresponding call must precede the return, of course. After the fourth step,
which adds the precedence γc2? � γr2 !, there are still no dependencies between n1
and n2. In particular, the outgoing return γr2 ! does not introduce such a dependence.
This outgoing reaction makes evident that n2 must have had the lock previously,
indeed at some point between γc2? and the reaction γr2 ! now. Since, however, the
return action of n2 may come any time after the actual release of the lock and the
same holds for the return action of thread n1, the observation of the trace from (21)
does not allow to derive any order in which the monitor is actually entered. Note that
the same absence of precedence would hold for the alternative trace where the two
incoming calls occur in reversed order at the interface (and/or the two returns occur
in reversed order).

Now we replace the first outgoing return by an outgoing call:

t = γc1?γc2?γ ′
c1

!γr2 !. (22)

The evolution of the dependencies now looks as follows:

From the first to the second diagram, the outgoing call γ ′
c1

! still does not introduce a
dependence between n1 and n2, even if now the outgoing call of n1 shows that this
thread must actually own the lock at that point. Intuitively, the reason again is that
thread n2 currently has shown only an incoming call: it may be that the call of n2 did
not succeed in entering, or alternatively that it had successfully entered the monitor
and has left it again already, only that the return has not been visible at the interface.
The reaction of n2 in the fourth step shows that the first alternative cannot be true:
Since n1 at that point definitely (“�”) holds the lock, and since the return-reaction of
n2 makes clear that n2 must have held the lock at some point between n2’s call-return
pair, it follows that γr2 ! must precede γc1?.

What happens if the reactions of n1 and n2 are seen in reverse order:

t = γc1?γc2?γr2 !γ ′
c1

!. (23)

The dependencies now evolve as follows:

352 Theory Comput Syst (2008) 43: 322–361

After the return in the third step, we cannot order n1 and n2, since we do not know
whether n1 has successfully entered the monitor and perhaps has left it already. Apart
from the fact that the order of incoming calls is different, the situation is identical to
the one after three steps of (21). The outgoing call in the last step shows, that n1 has
the lock and that therefore n2, which transiently had the lock, must have executed
its monitor actions before n1. The diagrams after having seen (22) and (23) coincide.
This is what one would expect considering the fact that each component showing (22)
as interface behavior must necessarily also show (23) and vice versa. In other words:
seeing one trace or the other must not lead to different conclusions wrt. the order in
which the actions are actually executed on the monitor.

Finally, we have a look at the trace where both threads react by a call:

t = γc1?γc2?γ ′
c1

!γ ′
c2

!, (24)

where the corresponding dependencies look as follows:

The sequence differs from the one for (22) only in the last diagram, where in addition
to γ ′

c2
! � γc1?, also the dependence γ ′

c1
! � γc2? is added. This yields a cycle in

the precedence graph, showing that the forth step is not possible. Indeed, this cycle
directly corresponds to the knowledge that both n1 and n2 must own the lock after
the four interactions, which violates the mutual exclusion requirement.

Example 3.19 (Data dependence) Consider the following trace

t = γc1? γc2? γr1 ! γr2 !
= ν(o′:c).n1〈call o.l(o′)〉? ν(o′′:c).n2〈call o.l(o′′)〉?

n1〈return(o′′)〉! n2〈return(o′)〉!, (25)

from Fig. 1, consisting of two consecutive (synchronized) incoming calls of the same
object o via different threads followed by their corresponding outgoing returns.

Concerning our legal trace system, trace t represents a legal trace. However, there
exists no component which is able to perform t . The reason lies in the data depen-
dence between the two consecutive calls. Consider the case that the thread of the first
call, n1, obtains the lock of object o. Then, obviously, the second call is blocked until
the first call relinquishes the lock and subsequently returns (giving back the lock and
performing the return at the interface, however, are not atomic). But in this case the
return value of thread n1 cannot be o′′, since o′′ is introduced to the component by
the second call which cannot be processed, as mentioned before.

Starting with the second call leads to the similar problem, as the return value to
the second call is introduced by the (blocked) first call.

Theory Comput Syst (2008) 43: 322–361 353

Fig. 1 Data dependence

Fig. 2 Data dependence

Based on the control flow information alone, the trace of Example 3.19 is ac-
ceptable. One way to understand the problem is that, e.g., the first outgoing return
of thread n1 does not only reveal the definite information that the thread n1 must
have entered the monitor at some point,10 but that also the other thread n2 must have
owned the lock before. The currently “pending” call γc2? of that trace is the only
source of the value o′′ sent in the return, and obviously the mentioned call of n2
cannot hand over its argument without entering the monitor.

Example 3.20 Consider the trace t = γc1? γc2? γ ′
c1

! γr2 !, in expanded form

t = ν(o′:c).n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call o′.l()〉! n2〈return(o′)〉! (26)

The trace considered now differs from the one of (25) in two points. The incoming
call from thread n1 is now answered by an outgoing call in the third interaction, not a

10Being an outgoing return in response to the call means that after the return we have definite information
that n1 does no longer hold the lock, as formalized by the previous derivation systems. But informally,
i.e., without having a formal characterization yet, we know that n1 in between the incoming call and the
outgoing return must have held the lock.

354 Theory Comput Syst (2008) 43: 322–361

return. Secondly, the data dependence from the second incoming call (by thread n2)
to the outgoing communication by thread n1 in the third step is removed by omitting
o′′ from (25). The trace is schematically shown in Fig. 2. Is it easy to see that the
trace is impossible. Unlike in Example 3.19, where the impossibility was basically
caused by an inconsistent, cyclic data dependence (and the fact that the methods are
synchronized), now the data dependence alone is acyclic—thread n1 must enter the
monitor before n2 to hand-over the o′ needed by n2, but not vice versa. This trace
is impossible because if n1 were to enter the monitor before n2, which is required
by the data dependency, it implied that n1 kept the lock and n2 could not enter the
monitor. This consequence is independent of the scheduling.

Let us consider step by step, which knowledge about the order of events one can
conclude from the information seen in the trace.

The left-most figure describes the information after the first two incoming calls. At
that point, the order in which the two threads actually enter the monitor of o. After
seeing n1’s reaction, the outgoing call γ ′

c1
!, the picture changes as follows (see the

diagram in the middle). First it is clear that γc1? must precede the reaction γ ′
c1

!, hence
the corresponding arrow. We additionally know that after the three interactions, thread
n1 necessarily owns the lock. Looking at n2 in isolation we can derive that n2 may
own the lock at that point. Of course, globally, it is clear that it cannot have the lock
now, since n1 owns it.

Does this may- and must knowledge about the locks tells us something about the
order in which n1 and n2 enter the monitor? At first sight, the following “argument”
seems plausible: since n1 now is definitely inside the monitor, thread n2 has lost in
the race between γc1? and γc2?. Consequently γc2? can be executed, as it would seem,
on the monitor, only after thread n1 has left it again (if ever), which would justify a
precedence arrow from γc1? and also from γ ′

c1
! to γc2?:

This reasoning is flawed. It is true that, after the three interactions, thread n2 definitely
does not have the lock since n1 owns it (or judged locally, it may have the lock, but
not necessarily so), but it is perfectly possible that n2 has taken the lock before n1,
and has relinquished it again already, only that the return label, which makes this fact
visible, has not yet appeared in the trace! Therefore, the trace at this stage contains

Theory Comput Syst (2008) 43: 322–361 355

not enough information to derive a definite order between the visits of n1 and n2 to
the monitor.

Now, what changes when seeing the 4th label, the outgoing return of n2? The
return carries the reference o′, which introduces a causal dependency between the
first label γc1? and the return now. Furthermore, this implies that not only the return
γr2 ! must be after γc1?, but the same ordering is “inherited” for γc1? and γc2?. This
latter fact is a consequence of mutal exclusion. Whereas the precedence of γc1? over
γr2 ! holds also if the methods in question are not synchronized or if the two threads
do not compete for the same monitor, the precedence of γc1? over also the call γc2?
means that data can be handed over from thread n1 to n2 by actually entering the
monitor. So n1 must enter the monitor first to deliver the data, and n2 must enter the
monitor afterwards to actually read the data.

One piece of information is still missing. The fact that thread n2 now shows an
outgoing communication—a return in this example—gives a further new bit of infor-
mation. After three steps, as we argued, γc1? and γc2? are unordered, since in par-
ticular γc2? may have happened before γc1? and has already left the monitor again,
without advertising this by the corresponding return. This uncertainty is resolved now
in the 4th label. The return now rules out the possibility, that n2 only tried to enter by
was locked out by n1, and thus makes clear that n2 indeed had entered the monitor
(which has been unclear so far). Since we know that n2 must have the lock now, n1

must have entered (and again left) the monitor before. This justifies the arrows from
γc2? and γr2 ! to γc1? in the right-most diagram.

At this stage, we hence have derived a contradiction: the causal dependence graph
contains a cycle.

3.3 Legal Traces System

Table 12 specifies legality of traces; the rules combine all mentioned conditions, type
checking, balance, and in particular restrictions due to monitor behavior. We use the
same conventions and notations as for the operational semantics (cf. Notation 2.3).
The judgments in the derivation system are of the form

G�;�,� � r � s : trace�,�;G� resp. G;� � r � s : trace . (27)

In comparison to the judgments used in the operational semantics, the judgment from
(27) contains a graph G� as representation of control, data, and mutex-edges wrt.
component locks (cf. Sect. 3.2.2), and dually G� for environment locks. We adapt
Notation 2.3 appropriately, writing G for the pair (G�,G�).

Before we turn to the derivation system, we need to adopt the definitions for type
checking to the new setting of (27). The next definition determines the type expected
for the transmitted values in a label. In the case of return labels, it needs to look up the
matching call from the history (for calls, all information is already contained locally
in the call label). For type checking in the operational semantics, Definition 3.21
was not needed, since the expected return type is stored as part of the block-syntax
letx : T = blocks in t .

356 Theory Comput Syst (2008) 43: 322–361

Definition 3.21 (Expected typing) Assume a weakly balanced trace r and a label a.
The expected type for the transmitted values of a after r , asserted by � � r � a :
	T → T is given as follows:

In the rules, �(r a) refers to the name context consisting of all the bindings men-
tioned in trace r a. Note that or in the first rule is the receiver of the call label a,
whereas in the second rule, it is the sender of the return label a.

In general, we do not need the type 	T of the arguments and the return type T at
the same time. I.e., we use the definition in most cases in the form of

� � r � γc? : 	T → _ for calls and � � r � γr? : _ → T

for returns. The definition is applied analogously for outgoing calls and returns.

Cf. also Definition 2.4, and in particular (7), checking well-typedness when given
the expected type. We finally combine the enabledness check (Definition 3.4), the
calculation of the sender and receiver from Definition 3.3, and the determination of
the expected type as follows:

Notation 3.22 (Enabledness, communication partners, expected type) We write

� � r � os
a→ or : 	T → T (28)

(reading “after r , the next label a is enabled, has sender os and receiver or , and the
transmitted value is expected to be of type 	T for a call, resp., of type T for a return”) if
the following three conditions hold: (1) � � r � a (enabledness), (2) sender(r a) =
os and receiver(r a) = or (communication partners), and (3) � � r � a : 	T → T

(typing).

Now to Table 12. We write � � t : trace, if there exists a derivation of G∅;� � ε �
t : trace according to Table 12, where G∅ is the empty dependence graph. We write
� �� t : trace, if there exists a derivation of G∅;� � ε � t : trace, where only the as-
sumption contexts are checked in the rules but not the commitments, i.e., the premises
�́ � a : wt and � Ǵ :ok remain in the rules for incoming communication L-CALLI
and L-RETI, but for the outgoing communication, the corresponding premises are
omitted. The situation is dual for � �� t : trace, which checks legality from the per-
spective of the component.

As base case, the empty future is always legal L-EMPTY, and distinguishing ac-
cording to the first action a of the trace, the rules check whether a is possible. This

Theory Comput Syst (2008) 43: 322–361 357

Table 12 Legal traces (dual rules omitted)

check is represented by checking whether the dependencies collected in the pair G

are consistent, i.e., that the two graphs are acyclic. This is asserted by � G : ok. Fur-
thermore, the contexts are updated appropriately, and the rules recur checking the tail
of the trace. The update for the dependence graph G� given by the union the graph
G� before the step with

G�(ra, o) = M�(ra, o) ∪ C(ra) ∪ D�(ra), (29)

where the argument o refers to the monitor relevant in that step, i.e., the monitor
introduction potential inconsistencies. The definition for G� is dually.

The rules are completely symmetric wrt. incoming and outgoing communication
(and the dual rules are omitted). L-CALLI for incoming calls works similar to the
CALLI-rules in the semantics. The premise � � r � os

a→ or checks whether the
incoming call a is enabled and determines the sender and receiver at the same time
(cf. (12) for the definition). The receiver or , of course, is mentioned directly, but os

is calculated from the history r . In case of incoming communication, the relevant
monitor for G� is the receiver, and for G�, the sender of the step.

Remember from Sect. 3.1 that the sender given by, e.g., sender(r γc?) is not nec-
essarily the “real” sending object which remains anonymous, but the last environ-
ment object the corresponding thread has entered in the past via an interface action.
The sender in this sense is exactly the object, whose lock is relevant when updat-
ing/checking the dependencies in G�. A consequence of the clean decoupling of
component and environment in the assumption/commitment formulation of the le-
gal traces is, that for incoming communication, the update of the graph G� cannot
introduce a cycle: incoming communications are checked for legality using the as-
sumptions, not the commitments.

3.4 Soundness of the Abstractions

The section contains the basic soundness results of the abstractions. The first one in
concerned is one basic invariant, namely the preservation of well-typedness under
reduction, called subject reduction.

358 Theory Comput Syst (2008) 43: 322–361

Lemma 3.23 (Subject reduction) �0 � C
s�⇒ �́ � Ć, then �́ � Ć.

Proof By induction on the number of reduction steps. That each internal step, struc-
tural congruence, and the external steps preserve well-typedness is shown by straight-
forward inspection of the rules, resp. induction. �

The following lemma expresses that the ♦- and �-assertions about the lock own-
ership appropriately catch the actual situation in a component.

Lemma 3.24 (Soundness of lock ownership) (1) � � C
t�⇒ �́ � Ć and � � t : �no,

then thread n has the lock of o in Ć.

(2) If � � C
t�⇒ and � � t : ♦no and there does not exist an n′ �= n such that the

lock is owned by n′, then � � C
t�⇒ �́ � Ć for some �́ � Ć s.t. the thread n has the

lock of o in Ć.

Proof For part 3.24 observe that for � � t : �no to hold, the number of outgoing calls
with object o as sender must be strictly larger than the number of incoming returns
with o as receiver. This implies that the lock must have been taken and not yet been
released.

Concerning part 3.24 for ♦-information: Assume � � t : ♦no for some thread n.
Let s be the projection of t to n, i.e., s = t ↓n, and we have � � s : ♦o by the rules of
Table 10. If s = s′ a for some label and � � s′ : ♦o.

Case: M-I♦1
In this case, the component object o is the receiver of the call. Since not other thread
owns the lock of the object, thread n can proceed by an internal

τ→-step and take the
lock by rule CALLs

i1
.

Case: M-I♦2
In this case of n in s′ is an outgoing communication. Note that s′ cannot be empty, as
the premise of M-I♦2 requires � � s′ : ♦o, which is not the case for s′ = ε. Thus by
Lemma 3.12(4) � � s′ : �o, which implies by part 3.24 of the lemma, that the tread
n actually possesses the lock after s′, and this does not change by an incoming call.

The remaining two rules work similarly, observing that a strongly balanced inter-
action of a thread (for rule M-O♦) does not affect whether a thread owns a lock or
not. �

Lemma 3.25 (Soundness of abstractions) Assume �0 � C and �0 � C
t�⇒. Then

1. �0 �� t : trace and
2. �0 �� t : trace implies �0 � t : trace.

Proof For part 1: The assertion �0 �� t : trace can be split into three orthogonal
parts (cf. the rules from Table 12): Well-typedness, weak balance, and acyclicity of
the graph of dependencies. The operational rules of Table 8 assure that, for each
thread and for all prefixes of t , the number of outgoing calls is always larger or equal
the number of incoming returns, and dually, the number of incoming calls is larger

Theory Comput Syst (2008) 43: 322–361 359

or equal the number of outgoing returns. This implies that each thread in t is weakly
balanced (see [26]). That the typing conditions of �o � t : trace are met follows from
subject reduction (Lemma 3.23). As for the acyclicity check: the control-dependence
and the data-dependency edges are straightforward. The precedence expressed by the
mutex-edges is justified by the soundness of lock-ownership (Lemma 3.24).

Part 2 follows from part 1 by definition of �0 � t : trace, which combines ��

and ��. �

4 Conclusion

In this paper we characterized the external observable behaviour of multi-threaded
object-oriented components with re-entrant monitors. We defined an abstract seman-
tics in form of an object calculus, and showed soundness of the abstraction.

There is much work done in the field of abstract and fully abstract semantics for
different languages, but less for object-orientation and for concurrency. The thesis
[24] presents a fully abstract model for Object-Z, an object-oriented extension of the
Z [23, 25] specification language. It is based on a refinement of the simple trace se-
mantics called the complete-readiness model, which is related to the readiness model
of Olderog and Hoare [20]. Viswanathan [28] investigates full abstraction in an ob-
ject calculus with subtyping. The setting is slightly different from the one here, as
the paper does not compare a contextual semantics with a denotational one, but a
semantics by translation with a direct one. The paper considers neither concurrency
nor aliasing.

Recently, Jeffrey and Rathke [14] extended their work [13] on trace-based seman-
tics from an object-based setting to a core of Java, called JavaJr, including classes
and subtyping. Another recent work by Poetzsch-Heffter and Schäfer [22] investi-
gates a representation-independent behavioral semantics, as they call it, for object-
oriented components. This semantics corresponds to a formalization of the interface
behavior of open programs. The language features subclassing and inheritance, and
especially the notion of an ownership-structured heap.

Koutsavas and Wand [17] present a sound and complete method for reasoning
about contextual equivalence for a Java-like, class-based language, including inheri-
tance, and based on bisimulation. The work is an extension of earlier, similar results
for various λ-calculi with a store [16] and for imperative objects [15].

As future work, in a second part of this paper we will show completeness of the
semantics, i.e., its full abstractness. Furthermore, we plan to extend the language with
further features to make it more resembling Java or C#. Concerning the concurrency
model, one should add thread-coordination using wait- and notify methods. Another
interesting direction for extension concerns the type system, in particular to include
subtyping and inheritance. For a first step in this direction we will concentrate on sub-
typing alone, i.e., relax the type discipline of the calculus to subtype polymorphism,
but without inheritance. Concentrating on synchronized methods, this paper relied
on an interleaving abstraction of the concurrent semantics. More complex interface
behavior is expected when considering more general memory models.

Recently, we also started to characterize observability for the object concurrency
model of the Creol language [7, 27], based on asynchronous method calls (futures

360 Theory Comput Syst (2008) 43: 322–361

and promises). Another direction is to extend the semantics to a compositional one;
currently, the semantics is open in that it is defined in the context of an environment.
However, general composition of open program fragments is not defined.

Acknowledgements This work has been supported by the NWO/DFG project Mobi-J (RO 1122/9-4), by
the DFG as part of the Transregional collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS), and by the EU FP6 project Credo (IST-33826).

We thank the members of the PMA group in Oslo for many stimulating discussions.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science. Springer, New York
(1996)

2. Ábrahám, E., Bonsangue, M.M., de Boer, F.S., Steffen, M.: Object connectivity and full abstraction
for a concurrent calculus of classes. In: Li, Z., Araki, K. (eds.) ICTAC’04. Lecture Notes in Computer
Science, vol. 3407, pp. 37–51. Springer, New York (2004)

3. Ábrahám, E., de Boer, F.S., Bonsangue, M.M., Grüner, A., Steffen, M.: Observability, connectivity,
and replay in a sequential calculus of classes. In: Bonsangue, M., de Boer, F.S., de Roever, W.-P., Graf,
S. (eds.) Proceedings of the Third International Symposium on Formal Methods for Components and
Objects (FMCO 2004). Lecture Notes in Computer Science, vol. 3657, pp. 296–316. Springer, New
York (2005)

4. Ábrahám, E., Grüner, A., Steffen, M.: Dynamic heap-abstraction for open, object-oriented systems
with thread classes. SoSYM J. (2007, accepted). This is a reworked version of the Institut für Infor-
matik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel technical report nr. 0601
and an extended version of the CiE’06 extended abstract

5. America, P.: Issues in the design of a parallel object-oriented language. Formal Aspects Comput. 1(4),
366–411 (1989)

6. Brinch Hansen, P.: Operating System Principles. Prentice-Hall, Englewood Cliffs (1973)
7. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: de Nicola, R. (ed.)

Proceedings of Programming Languages and Systems, 16th European Symposium on Programming,
ESOP 2007, Vienna, Austria. Lecture Notes in Computer Science, vol. 4421, pp. 316–330 (2007)

8. de Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput. Sci. 34, 83–133
(1984)

9. ECMA International Standardizing Information and Communication Systems: C# Language Specifi-
cation, 2nd edn. (Dec. 2002). Standard ECMA-334

10. Gordon, A.D., Hankin, P.D.: A concurrent object calculus: reduction and typing. In: Nestmann, U.,
Pierce, B.C. (eds.) Proceedings of HLCL ’98. Electronic Notes in Theoretical Computer Science, vol.
16.3. Elsevier, Amsterdam (1998)

11. Gosling, J., Joy, B., Steele, G.L., Bracha, G.: The Java Language Specification, 2nd edn. Addison-
Wesley, Reading (2000)

12. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun. ACM 17(10), 549–557
(1974)

13. Jeffrey, A., Rathke, J.: A fully abstract may testing semantics for concurrent objects. In: Proceedings
of LICS ’02. IEEE Computer Society Press (July 2002)

14. Jeffrey, A., Rathke, J.: Java Jr.: a fully abstract trace semantics for a core Java language. In: Sagiv,
M. (ed.) Proceedings of ESOP 2005. Lecture Notes in Computer Science, vol. 3444, pp. 423–438.
Springer, New York (2005)

15. Koutavas, V., Wand, M.: Bisimulations for untyped imperative objects. In: Sestoft, P. (ed.) Proceedings
of Programming Languages and Systems, 15th European Symposium on Programming, ESOP 2005,
Vienna, Austria. Lecture Notes in Computer Science, vol. 3924, pp. 146–161. Springer (2005)

16. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order imperative programs.
In: Proceedings of POPL ’06, pp. 141–152. ACM (Jan. 2006)

17. Koutavas, V., Wand, M.: Reasoning about class behavior. In: Informal Workshop Record of FOOL
2007 (Jan. 2007)

18. Milner, R.: Fully abstract models of typed λ-calculi. Theor. Comput. Sci. 4, 1–22 (1977)

Theory Comput Syst (2008) 43: 322–361 361

19. Morris, J.H.: Lambda calculus models of programming languages. Ph.D. thesis, MIT (1968)
20. Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics of communicating processes. Acta

Inf. 23(1), 9–66 (1986). A preliminary version appeared under the same title in the proceedings of the
10th ICALP 1983, volume 154 of LNCS

21. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci. 5, 223–255 (1977)
22. Poetzsch-Heffter, A., Schäfer, J.: A representation-independent behavioral semantics for object-

oriented components. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS ’07. Lecture Notes in
Computer Science, vol. 4468. Springer, New York (2007)

23. Potter, B.F., Sinclair, J.E., Till, D.: An Introduction to Formal Specification and Z. Series in Computer
Science. Prentice-Hall, Englewood Cliffs (1990)

24. Smith, G.P.: An object-oriented approach to formal specification. Ph.D. thesis, Department of Com-
puter Science, University of Queensland (Oct. 1992)

25. Spivey, J.M.: The Z Notation: A Reference Manual. International Series in Computer Science.
Prentice-Hall, Englewood Cliffs (1989)

26. Steffen, M.: Object-connectivity and observability for class-based, object-oriented languages. Habil-
itation thesis, Technische Faktultät der Christian-Albrechts-Universität zu Kiel (2006), submitted 4th
July, accepted 7 February 2007

27. The Creol language. http:www.ifi.uio.no/~creol (2007)
28. Viswanathan, R.: Full abstraction for first-order objects with recursive types and subtyping. In: Pro-

ceedings of LICS ’98. IEEE Computer Society Press (July 1998)

http://http:www.ifi.uio.no/~creol

	Abstract Interface Behavior of Object-Oriented Languages with Monitors
	Abstract
	Introduction
	Motivation
	Approach and Contribution
	Capturing Open System Behavior
	Multi-Threading Concurrency and Re-entrant Monitors
	Observational Equivalence and Full Abstraction
	Overview

	A Multi-Threaded Calculus with Monitors
	Syntax
	Type System
	Operational Semantics
	Internal Steps
	External Steps

	Interface Behavior
	Balance Conditions
	Side Conditions for Monitors
	Lock Ownership
	Mutual Exclusion
	Examples

	Legal Traces System
	Soundness of the Abstractions

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

