
Encapsulating Lazy Behavioral Subtyping ?

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Dept. of Informatics, University of Oslo, Norway
{johand,einarj,olaf,msteffen}@ifi.uio.no

Abstract. Object-orientation supports incremental program development by grad-
ually extending the class hierarchy. Subclassing and late bound method calls al-
low very flexible reuse of code, thereby avoiding code duplication. Combined
with incremental program development, this flexibility poses a challenge for pro-
gram analysis. The dominant solution to this problem is behavioral subtyping,
which avoids re-verification of verified code but requires that all properties of a
method are preserved in subclasses. Program analysis becomes incremental, but
behavioral subtyping severely restricts code reuse. Lazy behavioral subtyping re-
laxes this restriction to the preservation of properties that are required by the call-
site usage of methods. Previous work developed corresponding inference systems
for languages with single- and multiple-inheritance hierarchies, but although in-
cremental the approach could make it necessary to revisit previously analyzed
classes in order to establish new properties. In this paper, we combine the proof
system for lazy behavioral subtyping with behavioral interfaces to support incre-
mental reasoning in a modular way. A class may be fully analyzed at development
time by relying on interface information for external method calls. Furthermore,
this separating classes and interfaces, which encapsulates the objects in a cleaner
way, leads to a simplification of the formal reasoning system. The approach is
presented using a simple object-oriented language (based on Featherweight Java)
with interfaces and illustrated by an example using a Hoare-style proof system.

1 Introduction

Object-orientation supports an incremental style of program development, as new classes
and subclasses may gradually be added to previously developed class hierarchies; these
new subclasses typically extend and specialize existing code from superclasses, poten-
tially overriding existing methods. In that way, the code of a late bound method call
depends on the run-time class of the callee object, and so its effects are not statically
decidable. Subclassing combined with late binding lead to a very flexible mechanism
for code reuse, as illustrated through a plethora of design patterns [14], but pose a chal-
lenge for program analysis. The intricacies of late-binding, inheritance, encapsulation
and other advanced features found in object-oriented languages spawned a lot of re-
search to clarify the semantical foundations, and especially to capture of such features
in a type-safe manner. This led to the development of quite expressive type systems and
calculi. One typical representative had been given by Qian and Krieg-Brückner [25],

? This research is partially funded by the EU project IST-33826 CREDO: Modeling and analysis
of evolutionary structures for distributed services (http://credo.cwi.nl).

who present a language combining features of object-oriented and functional languages
in a unified, typed calculus, where much of the expressive power is needed to capture
late-binding and overloading.

While the static, type-theoretic foundations of mainstream object-oriented languages
are largely understood, verification support still poses challenges. There are two main
approaches in the literature to the verification of class hierarchies with late bound
method calls. Behavioral subtyping was originally proposed by America [2] and Liskov
and Wing [19] and later used in, e.g., Spec] [18]. This is an open world approach: it
facilitates reasoning about programs in an incremental way which fits well with the
incremental development style of object-oriented programs. Roughly speaking, the ba-
sic idea of behavioral subtyping is that any property of a supertype should also hold
for all subtypes. The approach focuses on the declared properties of a type, and ap-
plied to the object-oriented setting, any property of a superclass should also hold for all
subclasses. The idea is appealing, as it provides substitutability not just for the static
signatures of objects, as in standard subtyping, but at the behavioral level. Behavioral
subtyping, however, imposes severe restrictions on subclassing, limiting how code may
be reused in a way which breaks with programming practice [26]. For example, the
class hierarchies of Java libraries do not obey the behavioral subtyping discipline. Al-
ternatively, one can accept the practice of unrestricted code reuse and overriding, and
capture that in a reasoning system. For instance, Pierik and de Boer [24] have proposed
a complete proof system for object-oriented programs which is able to address code
reuse in a much more flexible way. However, it is a closed world approach: it requires
the full class hierarchy to be available at analysis time to ensure that any binding meets
the requirements imposed by the usage of values of the type. This means that the ap-
proach focuses on the required properties of a type. Thus the approach overcomes the
limitations of behavioral subtyping, but breaks with incremental reasoning.

Recently, lazy behavioral subtyping has been proposed by the authors with the aim
to preserve the appealing features of behavioral subtyping, i.e., incremental reasoning,
but allow more flexible code reuse in a controlled way. Lazy behavioral subtyping bal-
ances the required properties reflecting the call-site use of a method with its provided
properties, and the basic insight is that the properties that need to be preserved depend
on the use of a method rather than on its declared contract. Previous use, therefore, im-
poses restrictions on future redefinitions in order to maintain the incremental reasoning
property. The approach is supported by an inference system which tracks declaration
site specifications and call site requirements for methods in an extensible class hier-
archy [12]. This inference system, which is independent from the underlying specific
program logic of a given reasoning system, ensures that proven properties are not vi-
olated due to method redefinition in new subclasses, and that required properties of a
method always hold for redefinitions. The approach has later been extended to deal with
multiple inheritance [13].

These previous papers present a slightly simplistic version of lazy behavioral sub-
typing, with the aim to concentrate on the core mechanisms for flexible code reuse
without breaking the principle of incremental reasoning. In particular, we considered
a language without interfaces, i.e., classes played the roles of types for objects and of
generators of objects instances at the same time. As a consequence, external method

2

P ::= K L {t} K ::= interface I extends I {MS}
MS ::= m (x) : (p,q) L ::= classC extendsC implements I { f M inv p}
M ::= m (x) : (p,q) {t} e ::= f | this | b | newC() | e.m(e) | m(e)

t ::= f := e | return e | skip | if b then t else t fi | t; t

Fig. 1. The language syntax, where I, C and, m are interface, class, and method names
(of types Iid, Cid, and Mid, respectively), and p and q are assertions. Vector notation
denotes lists, as in the expression list e.

calls could recursively lead to new proof obligations in previously analyzed classes. In
this paper, we aim to combine lazy behavioral subtyping with a notion of modularity
for external calls, so that lazy behavioral subtyping applies to internal code reuse and
additional proof obligations are avoided for classes which have already been analyzed.
For this purpose, the type hierarchy will be separated from the class hierarchy, and be-
havioral interfaces are introduced to type object variables and references. Thus, a class
which inherits a superclass need not inherit the type of the superclass, and may thereby
reuse code more freely. As this approach can be encoded in the general method of lazy
behavioral subtyping, soundness of the proof system of this paper follows directly from
the soundness of the pure lazy behavioral subtyping method (see [12]).

The remainder of the paper is structured as follows. Section 2 presents a variant of
Featherweight Java as the language we use for our development. In Section 3, we first
present the data structures needed to keep track of the different proof obligations, and
afterwards in Section 4 the inference system to analyse a class hierarchy. The method is
illustrated in Section 5 on an example, and Section 6 discusses the context of this work.

2 The Programming Language

Let us consider a programming language based on Featherweight Java [17], but ex-
tended with (behavioral) interfaces. A program P consists of a set K of interfaces, a
set L of classes, and an initial statement t. The syntax is given in Fig. 1 and explained
below.

2.1 Behavioral Interfaces

A behavioral interface consists of a set of method names with signatures and semantic
constraints on the use of these methods. In Fig. 1, an interface I may extend a list I of su-
perinterfaces, and declare a set MS of method signatures, where behavioral constraints
are given as specifications (pre,post) of pre- and postconditions to the signatures. An
interface may declare signatures of new methods not found in its superinterfaces, and
it may declare additional specifications of methods declared in the superinterfaces. The
relationship between interfaces is restricted to a form of behavioral subtyping. An in-
terface may extend several interfaces, adding to its superinterfaces new syntactic and

3

semantic constraints. We assume that the interface hierarchy conforms with these re-
quirements. The interfaces thus form a type hierarchy: if I′ extends I, then I′ is a subtype
of I and I is a supertype of I′. Let � denote the reflexive and transitive subtype relation,
which is given by the nominal extends-relation over interfaces. Thus, I′ � I if I′ equals
I or if I′ extends (directly or indirectly) I.

An object supports an interface I if the object provides the methods declared in I
and adheres to the specifications imposed by I on these methods. Fields are typed by
interfaces; if an object supports I then the object may be referenced by a field typed by I.
A class implements an interface if its code is such that all instances support the interface.
The analysis of the class must ensure that this requirement holds. Objects of different
classes may support the same interface, corresponding to different implementations of
the same behavior. Note that only the methods declared by I are available for external
invocations on references typed by I, but the class may implement additional auxiliary
methods.

The substitution principle for objects applies to the level of interfaces: an object
supporting an interface I may be replaced by another object supporting I or a subtype
of I. A subclass C′ of C need not satisfy the interface I of the superclass. If I is not
implemented by C′, the substitution principle ensures that an instance of C′ cannot be
used where an object of type I is expected. If a field x is declared with interface I,
the actual object referenced by x at run-time will satisfy the behavioral specification of
I. However, as object references are typed by interface, the run-time class of a called
object is hidden by the behavioral interface of that object. Consequently, all external
method calls are late bound.

2.2 The Imperative Language

The imperative part of the language consists of classes which may implement an in-
terface, inherit from one superclass, and define fields f and methods M (see Fig. 1).
The superclass is given by the extends clause in the class header, and the interface
supported by instances of the class is given by the implements clause. The syntactic
parts of a class are referred to by the functions inh, att, mtds, and impl, returning the
superclass name, attributes, methods, and interface, respectively. Let ≤ denote the re-
flexive and transitive subclass relation, such that C′ ≤ C if C′ equals C, or C′ extends
(directly or indirectly) C.

For analysis purposes, a class may specify an invariant inv p, where p is a pred-
icate over the fields of the class (implemented directly or inherited). As the interface
of a class C hides the implementation details of C, also the class invariant is hidden.
Thus, an external call x.m(), where x refers to an instance of class C, cannot assume
that the invariant of x holds when the method starts execution. The imperative language
constructs are standard. Expressions e include program variables f and Boolean ex-
pressions b, external calls e.m(e), and self calls are written m(e). If m does not return
a value, or if the returned value is of no concern, we may use directly e.m(e) and m(e)
as statements for simplicity (ignoring the assignment of the return value to a program
variable). Note that the list of actual parameter values may be empty and that the formal
parameters x and the reserved variable this (for self reference) are read-only variables.
Statements include assignment f := e, return e which returns an expression e to the

4

caller, conditionals, and sequential composition. For simplicity, all method calls in this
language are late bound. Method binding searches the class hierarchy from the actual
class of the called object in the usual way.

3 Class Analysis

An essential part of the verification of a class is to ensure that the methods defined
by the class supports the behavioral specification of the interface implemented by the
class. We assume that methods are defined in the classes in terms of proof outlines [22];
i.e., m(x) : (p,q){t} such that t is a method body decorated with pre/post requirements
on method calls and `PL {p} t {q} is derivable in the given program logic PL if the
requirements hold for the method calls in t. Let body(C,m) denote the decorated method
body of m in C. The body is either found by a definition of m in C, or inherited (without
redefinition) from a superclass of C.

Notation. Given assertions p and q, we let the type APair range over assertion pairs
(p,q). If p is the pre- and q the postcondition to some method, we call the pair (p,q) a
specification of that method. For an interface I, let public(I) denote the set of method
identifiers supported by I, so m ∈ public(I) if m is declared by I or by a supertype of
I. As a subtype cannot remove methods declared by a supertype, we have public(I) ⊆
public(I′) if I′ � I. If m ∈ public(I), we let the function spec(I,m) return a set of type
Set[APair] with the behavioral specifications supported by m in I, as declared in I or in
a supertype of I. The function returns a set since a subinterface may provide additional
specifications of methods inherited from superinterfaces; if m ∈ public(I) and I′ � I,
then spec(I,m) ⊆ spec(I′,m). Finally we define entailment (denoted _) between sets
of assertion pairs.

Definition 1 (Entailment). Assume assertion pairs (p,q) and (r,s), and sets U =
{(pi,qi) |1≤ i≤ n} and V = {(ri,si) |1≤ i≤m}, and let p′ be the assertion p with all
fields f substituted by f ′, avoiding name capture. Entailment is defined by

i) (p,q) _ (r,s) , (∀z1 . p⇒ q′)⇒ (∀z2 . r⇒ s′),
where z1 and z2 are the logical variables in (p,q) and (r,s), respectively

ii) U _ (r,s) , (
V

1≤i≤n(∀zi . pi⇒ q′i))⇒ (∀z . r⇒ s′) .

iii) U _ V ,
V

1≤i≤m U _ (ri,si) .

The relation U _ (r,s) corresponds to Hoare-style reasoning, proving {r} t {s} from
{pi} t {qi} for all 1 ≤ i ≤ n, by means of the adaptation and conjunction rules [3].
Entailment is reflexive and transitive, and V ⊆U implies U _ V .

Lazy behavioral subtyping is a method for reasoning about redefined methods and
late binding which may be explained as follows. Let m be a method defined in class
C. The declared behavior of this method definition is given by the specification set
S(C,m), where S is the specification mapping taking class and a method name. We
assume that for each (p,q) ∈ S(C,m) there is a proof outline for body(C,m) such
that `PL {p} body(C,m) {q}. For a self call {r} n(e) {s} in the proof outline, (r,s)

5

is a requirement imposed by C on possible implementations of n to which the call
can bind. (Requirements made by external calls are considered below.) Each such re-
quirement, collected during the analysis of C, is included in the set R(C,n), where R
is the requirement mapping. Lazy behavioral subtyping ensures that all requirements
in the set R(C,n) follow from the knowledge of the definition of method n in C; i.e.,
S(C,n) _ R(C,n). If n is later overridden by some subclass D of C, the same require-
ments apply to the new version of n; i.e., S(D,n) _ R(C,n) must be proved. This yields
an incremental reasoning strategy.

In general, we let S↑(C,m) return the accumulated specification set of m in C. If m is
defined in C, this is the set S(C,m). If m is inherited, the set is S(C,m)∪S↑(C.inh,m). In
this manner, a subclass may provide additional specifications of methods that are inher-
ited from superclasses. The requirements toward m that are recorded during the analy-
sis of superclasses are returned by the set R↑(C,m) such that R↑(C,m) = R(C,m)∪R↑
(C.inh,m).1 For each class C and method m defined in C, the lazy behavioral subtyping
calculus (see Sec. 4) maintains the relation S↑(C,m) _ R↑(C,m).

If C implements an interface I, the class defines (or inherits) an implementation of
each m ∈ public(I). For each such method, the behavioral specification declared by I
must follow from the method specification, i.e., S↑(C,m) _ spec(I,m). Now consider
the analysis of a requirement stemming from the analysis of an external call in some
proof outline. In the following, we denote by x : I.m the external call x.m where x is
declared with static type I. As the interface hides the actual class of the object referenced
by x, the call is analyzed based on the interface specification of m. For an external call
{r} x : I.m() {s}, the requirement (r,s) must follow from the specification of m given
by type I, expressed by spec(I,m) _ (r,s). Soundness in this setting is given by the
following argument. Assume that the call to x.m can bind to m on an instance of class
C, and let I′ = C.impl. Type analysis then ensures that I′ � I. During the analysis of C,
the relation S↑(C,m) _ spec(I′,m) is established. The desired S↑(C,m) _ spec(I,m)
then follows since spec(I,m)⊆ spec(I′,m) when I′ � I.

The invariant p of a class C is taken as a pre/post specification of each method
visible through the supported interface of C. Thus, the invariant is analyzed by proving
the specification (p, p) for each such method m. In this manner, the invariant analysis
is covered by the general approach of lazy behavioral subtyping as the declaration of
an invariant can be considered as an abbreviation of a pre/post specification of each
method. Note that this approach does not require that the invariant holds whenever m
starts execution; the specification expresses that if the invariant holds prior to method
execution, then it will also hold upon termination. This approach to invariants works
when analyzing extensible class hierarchies [26], even if the invariant of a subclass is
different from the superclass invariant. The superclass invariant need not hold in the
subclass, but methods defined in the superclass can be inherited by the subclass.

1 Note that for the language considered in this paper, the set of requirements could be made
more fine-grained by removing requirements stemming from redefined method definitions.
However, in a language with static calls, this simplification would no longer apply.

6

A ::= P | 〈C : O〉 ·P P ::= K | L | P ·P
O ::= ε | anMtd(M) | verify(m,R) | anOutln(t) | intSpec(m) | inv(p,m) | O ·O

Fig. 2. Syntax for analysis operations.

4 The Inference System

Classes and interfaces are analyzed with regard to a proof environment. The proof en-
vironment tracks the specifications and requirements for the different classes, and the
interface specifications that each class must adhere to. Let Cid, Iid, and Mid denote the
types of class, interface, and method names, respectively.

Definition 2 (Proof environments). A proof environment E of type Env is a tuple
〈L,K,S,R〉 where L : Cid→ Class, K : Iid→ Interface are partial mappings and S,R :
Cid×Mid→ Set[APair] are total mappings.

Subscript are used to refer to a specific environment; e.g., SE is the S-mapping
of E . Now, environment soundness is defined. The definition is adapted from [12] by
taking interfaces into account. Condition 3 in the definition captures interface imple-
mentations, requiring that each method satisfies the behavioral specification given by
the interface.

Definition 3 (Sound environments). A proof environment E is sound if it satisfies the
following conditions for each C : Cid and m : Mid.

1. ∀(p,q) ∈ SE (C,m) . ∃bodyE (C,m) . `PL {p} body(C,m) {q}
∧ ∀{r} n {s} ∈ bodyE (C,m) . RE (C,n) _ (r,s)
∧ ∀{r} x : I.n {s} ∈ bodyE (C,m) . spec(I,n) _ (r,s)

2. S↑E(C,m) _ R↑E(C,m)
3. ∀n ∈ public(I) . S↑E(C,n) _ spec(I,n), where I = C.impl.

There are four operations to update a proof environment; these load a new class L
or interface K, and extend the commitment and requirement mappings with a pair (p,q)
for a given method m and class C. We define an operator ⊕ : Env×Update→ Env,
where the first argument is the current proof environment and the second argument is
the environment update, as follows:

E ⊕ extL(C,D, I, f ,M) = 〈LE [C 7→ 〈D, I, f ,M〉],KE ,SE ,RE 〉
E ⊕ extK(I, I,MS) = 〈LE ,KE [I 7→ 〈I,MS〉],SE ,RE 〉

E ⊕ extS(C,m,(p,q)) = 〈KE ,KE ,SE [(C,m) 7→ SE (C,m)∪{(p,q)}],RE 〉
E ⊕ extR(C,m,(p,q)) = 〈LE ,KE SE ,RE [(C,m) 7→ RE (C,m)∪{(p,q)}]〉

In the calculus, judgments have the form E ` A , where E is the proof environment
and A is a sequence of analysis operations (see Fig. 2). The main inference rules are
given in Fig. 3. The operations and the calculus are discussed below. We emphasize on
the differences wrt. the calculus in [12], which correspond to the introduction of inter-
faces and class invariants. In the rules, I ∈E and C∈E denote that KE (I) and LE (C) are

7

I /∈ E I 6= nil⇒ I ∈ E E ⊕ extK(I, I,MS) ` P
E ` (interface I extends I {MS}) ·P

(NEWINT)

I ∈ E C /∈ E D 6= nil⇒ D ∈ E
E ⊕ extL(C,D, I, f ,M) ` 〈C : anMtd(M) · inv(p,publicE (I)) · intSpec(publicE (I))〉 ·P

E ` (classC extends D implements I { f M inv p}) ·P
(NEWCLASS)

E ` 〈C : verify(m,{(p,q)}∪R↑E(PE (C).inh,m)) ·O〉 ·P
E ` 〈C : anMtd(m(x) :(p,q){t}) ·O〉 ·P

(NEWMTD)

S↑E(C,m) _ (p,q) E ` 〈C : O〉 ·P
E ` 〈C : verify(m,(p,q)) ·O〉 ·P

(REQDER)

`PL {p} bodyE (C,m) {q}
E ⊕ extS(C,m,(p,q)) ` 〈C : anOutln(bodyE (C,m)) ·O〉 ·P

E ` 〈C : verify(m,(p,q)) ·O〉 ·P
(REQNOTDER)

E ⊕ extR(C,m,(p,q)) ` 〈C : verify(m,(p,q)) ·O〉 ·P
E ` 〈C : anOutln({p} m {q}) ·O〉 ·P

(LATECALL)

I ∈ E specE (I,m) _ (p,q) E ` 〈C : O〉 ·P
E ` 〈C : anOutln({p} x : I.m {q}) ·O〉 ·P

(EXTCALL)

S↑E(C,m) _ specE (C.impl,m) E ` 〈C : O〉 ·P
E ` 〈C : intSpec(m) ·O〉 ·P

(INTSPEC)

E ` 〈C : verify(m,(p, p)) ·O〉 ·P
E ` 〈C : inv(p,m) ·O〉 ·P

(INV)

E ` 〈C : inv(p,m1) · inv(p,m2) ·O〉 ·P
E ` 〈C : inv(p,m1∪m2) ·O〉 ·P

(DECOMPINV)

E ` 〈C : intSpec(m1) · intSpec(m2) ·O〉 ·P
E ` 〈C : intSpec(m1∪m2) ·O〉 ·P

(DECOMPINT)

E ` P
E ` 〈C : ε〉 ·P

(EMPCLASS)

Fig. 3. The inference system, where P is a (possibly empty) sequence of classes and
interfaces. To simplify the presentation, we let m denote a method call including actual
parameters. Let nil denote the empty list.

defined, respectively. For brevity, we elide a few straightforward rules which formalize
a lifting from single-elements to sets or sequences of elements. For example, the rule
for anMtd(M) (which occurs in the premise of (NEWCLASS)), generalizes the analysis of
a single method which is done in (NEWMTD). The omitted rules may be found in [12]

8

and are similar to the decomposition rules (DECOMPINT) and (DECOMPINV) for interface and
invariant requirements.

A program is analyzed as a sequence of interfaces and classes. For simplicity, we
require that superclasses appear before subclasses and that interfaces appear before they
are used. This ordering ensures that requirements imposed by superclasses are verified
in an incremental manner on subclass overridings. Rules (NEWINT) and (NEWCLASS) extend
the environment with new interfaces and classes; the introduction of a new class leads
to an analysis of the class. The specification and requirement mappings are extended
based on the internal analysis of each class. We assume that programs are well-typed.
Especially, if a field x is declared with type I and there is a call to a method m on x, then
m is assumed to be supported by I. Rule (NEWCLASS) generates an operation of the form
〈C : O〉, where O is a sequence of analysis operations to be performed for class C. Note
that (NEWINT) and (NEWCLASS) cannot be applied while a 〈C : O〉 operation is analyzed,
which ensures that 〈C : O〉 is analysed before a new class is analyzed. A successful
analysis of C yields an operation 〈C : ε〉 which is discarded by (EMPCLASS).

For a class C implementing an interface I, (NEWCLASS) generates three initial oper-
ations anMtd, inv, and intSpec. For each method m defined in C, anMtd collects the
inherited requirements toward m and any user given specification of the method, ana-
lyzed in (NEWMTD). Rule (INV) analyses the class invariant as a pre/post specification of
each externally visible method in C. Finally, (INTSPEC), ensures that the implementation
of C satisfies the behavioral specification of I.

Specifications are verified by (REQDER) or (REQNOTDER). If a method specification
follows from previously proven specifications of the method, the specification is dis-
carded by (REQDER). Otherwise, (REQNOTDER) leads to the analysis of a proof outline
for the method. In such proof outlines, external calls {r} x : I.m() {s} are handled by
(EXTCALL), which ensures that (p,q) follows from the specification spec(I,m) of m in I,
and internal calls by (LATECALL), which ensures that the method definitions to which the
call may be bound satisfy the requirement (p,q).

5 Example

In this section we illustrate our approach by a small account system implmented by
two classes: PosAccount and a subclass FeeAccount . The example illustrates how in-
terface encapsulation and the separation of class inheritance and subtyping facilitate
code reuse. Class FeeAccount reuses the implementation of PosAccount , but the type
of PosAccount is not supported by FeeAccount . Thus FeeAccount does not represent
a behavioral subtype of PosAccount .

A system of communication components can be specified in terms of the observ-
able interaction between the different components [7,16]. In the object-oriented setting
with interface encapsulation, the observable interaction of an object is described by the
communication history, which is a sequence of invocation and completion messages of
the methods declared by the interface. At any point in time, the communication history
abstractly captures the system state. Previous work [11] illustrates how the observable
interaction and the internal implementation of an object can be connected. Expressing
pre- and postconditions to methods declared by an interface in terms of the communi-

9

cation history allows abstract specifications of objects supporting the interface. For this
purpose, we assume an auxiliary variable h of type Seq[Msg], where Msg ranges over
invocation and completion (return) messages to the methods declared by the interface.
For the below example, however, it suffices to consider only completion messages. A
history h is constructed as a sequence of completion messages by the empty (ε) and
right append (`) constructor. We write completion messages on the form 〈o,m(x,r)〉
where m is a method completed on object o, x is the actual parameter values for this
method execution, and r is the return value. For reasoning purposes, such a comple-
tion message is implicitly appended to the history at each method termination, as a side
effect of the return statment.

5.1 Class PosAccount

Interface IPosAccount supports the three methods deposit , withdraw, and getBalance .
The current balance of the account is abstractly captured by the function Val(h) defined
below, and the three methods maintain Val(h)≥ 0. Method deposit deposits an amount
as specified by the parameter value and returns the current balance after the deposit,
and method getBalance returns the current balance. Method withdraw returns true if
the withdrawal succeeded, and false otherwise. A withdrawal succeeds only if it leads
to a non-negative balance. In postconditions we let return denote the returned value.

interface IPosAccount {
int deposit(nat x) : (Val(h)≥ 0, return= Val(h)∧return≥ 0)
bool withdraw(nat x) : (Val(h)≥ 0∧h = h0, return= Val(h0)≥ x∧Val(h)≥ 0)
int getBalance() : (Val(h)≥ 0, return= Val(h)∧return≥ 0)

}

where

Val(ε) , 0
Val(h ` 〈o,deposit(x,r)〉) , Val(h)+ x
Val(h ` 〈o,withdraw(x,r)〉) , if r then Val(h)− x else Val(h) fi
Val(h ` others) , Val(h)

This interface is implemented by class PosAccount given below. The balance is
maintained by a variable bal , and the corresponding invariant expresses that the balance
equals Val(h) and remains non-negative. Notice that the invariant bal = Val(h) connects
the state of PosAccount objects to their observable behavior, and is needed in order to
ensure the postconditions declared in the interface.

class PosAccount implements IPosAccount {
int bal = 0;
int deposit(nat x) : (true, return= bal) {update(x); return bal}
bool withdraw(nat x) : (bal = b0, return= b0 ≥ x) {
if (bal >= x) then update(-x); return true else return false fi}
int getBalance() : (true, return= bal) {return bal}
void update(int v) : (bal = b0 ∧h = h0, bal = b0 + v∧h = h0) {bal := bal + v}
inv bal = Val(h)∧bal≥ 0 }

Notice that the method update is hidden by the interface, which means that this
method is not available to the environment, it is used internally only. Also note that

10

the following simple definition of withdraw maintains the invariant of the class as it
preserves bal = Val(h):
bool withdraw(int x) {return false}

However, this implementation does not meet the interface specification which requires
that the method must return true if the withdrawal can be performed without resulting
in a non-negative balance. Next we consider the verification of class PosAccount .

Pre- and postconditions. The pre- and postconditions in the definition of PosAccount
lead to the following extensions of the S mapping:

(true, return= bal) ∈ S(PosAccount ,deposit) (1)
(bal = b0, return= b0 ≥ x) ∈ S(PosAccount ,withdraw) (2)

(true, return= bal) ∈ S(PosAccount ,getBalance) (3)
(bal = b0∧h = h0, bal = b0 + v∧h = h0) ∈ S(PosAccount ,update) (4)

These specifications are trivially verified over their respective method bodies.

Invariant analysis. Rule (INV) of Fig.3 initiates the analysis of the class invariant wrt.
the methods deposit , withdraw and getBalance . By (REQNOTDER), the invariant is remem-
bered as a specification of these methods:

(bal = Val(h)∧bal≥ 0, bal = Val(h)∧bal≥ 0) ∈ S(PosAccount ,m), (5)

for m ∈ {deposit ,withdraw,getBalance}. Methods deposit and withdraw perform self
calls to update , which result in the following two requirements:

R(PosAccount ,update) = {
(bal = Val(h)∧bal≥ 0∧ v≥ 0, bal = Val(h)+ v∧bal≥ 0),
(bal = Val(h)∧ v≤ 0∧bal+ v≥ 0, bal = Val(h)+ v∧bal≥ 0)}

(6)

These requirements are proved by entailment from equation (4).

Interface specifications. At last, we must verify that the implementation of each method
defined by interface IPosAccount satisfies the corresponding interface specification,
according to (INTSPEC). For getBalance , it can be proved that the method specification,
as given by (3) and (5), entails the interface specification

(Val(h)≥ 0, return= Val(h)∧return≥ 0)

Verification of the other two methods follows the same outline, and this concludes the
verification of class PosAccount .

5.2 Class FeeAccount

Interface IFeeAccount resembles IPosAccount , as the same methods are supported.
However, IFeeAccount takes an additional fee for each successful withdrawal, and the
balance is not guaranteed to be non-negative. For simplicity we take fee as a (read-only)
parameter of the interface and of the class (which means that it can be used directly in
the definition of Fval below).

11

interface IFeeAccount(nat fee) {
int deposit(nat x) : (N(h), return= Fval(h)∧N(h))
bool withdraw(nat x) : (N(h)∧h = h0, return= Fval(h0)≥ x∧N(h))
int getBalance() : (N(h), return= Fval(h)∧N(h)) }

where

N(h) , Fval(h)≥−fee
Fval(ε) , 0
Fval(h ` 〈o,deposit(x,r)〉) , Fval(h)+ x
Fval(h ` 〈o,withdraw(x,r)〉) , if r then Fval(h)− x− fee else Fval(h) fi
Fval(h ` others) , Fval(h)

Note that IFeeAccount is not a subtype of IPosAccount : a class that implements
IFeeAccount will not implement IPosAccount . Informally, this can be seen from the
postcondition of withdraw. For both interfaces, withdraw returns true if the parameter
value is less or equal to the current balance, but IFeeAccount takes an additional fee in
this case, which possibly decreases the balance to −fee.

Given that the implementation provided by class PosAccount is available, it might
be feasible to reuse the code of this class when implementing IFeeAccount . In fact, only
method withdraw needs reimplementation, which is illustrated by class FeeAccount be-
low. This class implements IFeeAccount and extends the implementation of PosAccount ,
which means that the interface supported by the superclass is not supported by the sub-
class. Typing restrictions will prohibit that methods on an instance of FeeAccount is
called through the superclass interface IPosAccount .
class FeeAccount(int fee) extends PosAccount implements IFeeAccount {
bool withdraw(nat x) : (bal = b0, return= b0 ≥ x) {
if (bal >= x) then update(-(x+fee)); return true else return false fi}
inv bal = Fval(h)∧bal≥−fee

}

Pre- and postconditions. As the methods deposit and getBalance are inherited without
redefinition, the specifications of these methods can be relied on also when reason-
ing about these methods. Especially, specifications (1), (3), and (4) are still valid. For
withdraw, the declared specification can be proved:

(bal = b0, return= b0 ≥ x) ∈ S(FeeAccount ,withdraw) (7)

Invariant verification. The subclass invariant can be proved over the inherited methods
deposit and getBalance in addition to the overridden method withdraw. For deposit ,
the following requirement on update is included in the requirement mapping:

(bal = Fval(h)∧bal≥−fee∧ v≥ 0, bal = Fval(h)+ v∧bal≥−fee) ∈
R(FeeAccount ,update)

This requirement is entailed by the already proven specification (4) of update . Analysis
of withdraw gives the following requirement, which is also entailed by (4):

(bal = Fval(h)∧bal≥ x∧ x≥ 0∧ v =−(x+ fee),
bal = Fval(h)− (x+ fee)∧bal≥−fee) ∈

R(FeeAccount ,update)

12

Interface specification. Consider again the method getBalance . After analysis of sub-
class invariant, the specification of getBalance , given by S↑(FeeAccount ,getBalance),
is as follows:

S↑(FeeAccount ,getBalance) =
{(bal = Val(h)∧bal≥ 0, bal = Val(h)∧bal≥ 0),
(true, return= bal),
(bal = Fval(h)∧bal≥−fee, bal = Fval(h)∧bal≥−fee)}

(8)

which is the specification set that can be assumed to prove the interface specification

(Fval(h)≥−fee, return= Fval(h)∧Fval(h)≥−fee) (9)

Specification (9) can be proved by entailment from (8) using (INTSPEC). Note that the
superclass invariant is not established by the precondition of (9), which means that the
inherited invariant cannot be assumed when establishing the postcondition of (9). The
other inherited specification is however needed, expressing that return equals bal.
Verification of the interface specifications for deposit and withdraw then follows the
same outline.

6 Discussion

The notion of behavioral subtyping, i.e., to require substitutability not just for static
object signatures but also for object behavior, goes back to America [2] and Liskov
and Wing [19]. It both has been adopted and developed futher and at the same time
criticised as being too restrictive to reflect the situation in actual class hierarchies. For
example, Wehrheim has studied variations of behavioral subtyping characterized by
diffent notions of testing in the context of CSP processes [28]. Recent advances in
program development platforms [5, 8] and in theorem proving technology for program
verification [6] make the development of more fine-grained systems for incremental
reasoning interesting, as a tool is able to collect and often automatically discharge proof
obligations during program development.

Related to the concept of behavioral subtyping is the notion of refinement. In an
object-oriented setting, Back, Mikhajlova, and von Wright propose class refinement
and use the refinement calculus to reason about substitutability for object-oriented pro-
grams [4]. Similarly, Utting [27] and Mikhajlova and Sekerinsky [21] deal with modular
reasoning for object-oriented programs using the refinement calculus.

Putting the emphasis not on how to avoid reverification on the client-side of a
method call, but for the designer of a derived class, Soundarajan and Fridella [26] sep-
arate two different specifications for each class, an abstract specification for the clients
of the class and a concrete specification for the derived subclasses. Like the current
work, they aim at relaxing behavioral subtyping and especially separating subclass-
ing/inheritance from behavioral subtyping to gain flexibility while maintaining proof
reuse. Lately, incremental reasoning, both for single and multiple inheritance, has been
considered in the setting of separation logic [20, 9, 23]. These approaches support a
distinction between static specifications, given for each method implementation, from

13

dynamic specifications that are used to verify late bound calls. The dynamic specifica-
tions are given at the declaration site, in contrast to our work where late bound calls
are verified based on call-site requirements. Ideas from behavioral subtyping have also
been used to support modular reasoning for aspect-oriented programming [10] and for
active objects [15].

We propose lazy behavioral subtyping to relax some of the restrictions for incremen-
tal development of classes imposed by behavioral subtyping, namely to require preser-
vation only for those properties actually needed for client-side verification of methods.
The system is syntax-driven and should be possible to integrate in program development
platforms. In this paper, lazy behavioral subtyping has been integrated with interface
encapsulation, allowing code reuse internally while relying on behavioral interfaces for
external method calls. This combination ensures not only that analysis is incremental
but also that analysis is modular; i.e., a class needs only be considered once during
the program analysis. Revisiting a class for further analysis, which was necessary in
previous work on lazy behavioral subtyping, is thereby avoided.

We have illustrated the approach by a simple bank example where the subclass
does not represent a behavioral subtype of the superclass. Reuse of code and reuse of
proofs are demonstrated. At the same time, client-side reasoning may fully exploit the
different properties of the two classes, due to the presence of behavioral interfaces. In
future work we plan to investigate the possibilities of letting interfaces also influence
the reasoning of self calls in a more fine-grained manner, with the aim of obtaining
even weaker requirements to redefinitions. The extension to multiple inheritance could
follow the approach of [13].

Acknowledgements. The authors are indepted to Bernd Krieg-Brückner, Ole-Johan
Dahl, and Neelam Soundarajan for cooperation and inspiration, the two latter for their
insight in object-orientation and formal methods, and Bernd Krieg-Brückner for his
insight on program specification and progam verification, and for championing the im-
portance of this field.

References

1. ACM. 37th Annual Symposium on Principles of Programming Languages (POPL), Jan.
2008.

2. P. America. Designing an object-oriented programming language with behavioural sub-
typing. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Foundations of
Object-Oriented Languages, pages 60–90. Springer, 1991.

3. K. R. Apt. Ten years of Hoare’s logic: A survey — Part I. ACM Transactions on Program-
ming Languages and Systems, 3(4):431–483, Oct. 1981.

4. R.-J. Back, A. Mikhajlova, and J. von Wright. Class refinement as semantics of correct object
substitutability. Formal Aspects of Computing, 12(1):18–40, 2000. Also as Turku Center of
Computer Science, TUCS Technical Report No. 333, March 2000.

5. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Intl. Workshop on
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS’04),
volume 3362 of LNCS, pages 49–69. Springer, 2005.

14

6. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software.
The KeY Approach, volume 4334 of LNAI. Springer, 2007.

7. M. Broy and K. Stølen. Specification and Development of Interactive Systems. Monographs
in Computer Science. Springer, 2001.

8. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer, 7(3):212–232, 2005.

9. W.-N. Chin, C. David, H.-H. Nguyen, and S. Qin. Enhancing modular OO verification with
separation logic. In POPL’08 [1], pages 87–99.

10. C. Clifton and G. T. Leavens. Obliviousness, modular reasoning, and the behavioral sub-
typing analogy. In SPLAT 2003: Software engineering Properties of Languages for Aspect
Technologies at AOSD 2003, Mar. 2003. Available as Computer Science Technical Report
TR03-01a from ftp//:ftp.cs.iastate.edu/pub/techreports/TR03-01/TR.pdf.

11. J. Dovland, E. B. Johnsen, and O. Owe. Observable Behavior of Dynamic Systems: Compo-
nent Reasoning for Concurrent Objects. Electronic Notes in Theoretical Computer Science,
203(3):19–34, 2008.

12. J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazy behavioral subtyping. In J. Cuellar
and T. Maibaum, editors, Proc. 15th International Symposium on Formal Methods (FM’08),
volume 5014 of LNCS, pages 52–67. Springer, May 2008.

13. J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Incremental reasoning for multiple
inheritance. In M. Leuschel and H. Wehrheim, editors, Proc. 7th International Conference
on Integrated Formal Methods (iFM’09), LNCS. Springer, Feb. 2009. To appear.

14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

15. N. Hameurlain. Behavioural subtyping and property preservation for active objects. In
B. Jacobs and A. Rensink, editors, Proceedings of the Fifth International Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS 2002), volume 209,
pages 95–110. Kluwer, 2002.

16. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice Hall, 1985.

17. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for
Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450,
2001.

18. G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and
modular reasoning. Technical Report 06-20a, Department of Computer Science, Iowa State
University, Ames, Iowa, 2006.

19. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

20. C. Luo and S. Qin. Separation logic for multiple inheritance. ENTCS, 212:27–40, 2008.
21. A. Mikhajlova and E. Sekerinski. Class refinement and interface refinement in object-

oriented programs. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, FME’97. Industrial
Benefits of Formal Methods, volume 1313 of LNCS, pages 82–101. Springer, 1997.

22. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Infor-
matica, 6(4):319–340, 1976.

23. M. J. Parkinson and G. M. Biermann. Separation logic, abstraction, and inheritance. In
POPL’08 [1].

24. C. Pierik and F. S. de Boer. A proof outline logic for object-oriented programming. Theo-
retical Computer Science, 343(3):413–442, 2005.

25. Z. Qian and B. Krieg-Brückner. Typed object-oriented functional programming with late
binding. In P. Cointe, editor, Proc. 10th European Conference on Object-Oriented Program-
ming (ECOOP’96), volume 1098 of LNCS, pages 48–72. Springer, 1996.

15

26. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In
P. Devanbu and J. Poulin, editors, Proc. Fifth International Conference on Software Reuse
(ICSR5), pages 206–215. IEEE Computer Society Press, 1998.

27. M. Utting. An Object-oriented Refinement Calculus with Modular Reasoning. PhD thesis,
University of New South Wales, Australia, 1992.

28. H. Wehrheim. Behavioral subtyping relations for active objects. Form. Methods Syst. Des.,
23(2):143–170, 2003.

16

	Encapsulating Lazy Behavioral Subtyping
	Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

