Fundamenta Informaticae 82 (2008) 1-73 1
10S Press

A Deductive Proof System for Multithreaded Java with Exceptons'

Erika Abrahamt Frank S. de Boer
Albert-Ludwigs-University Freiburg, Germany CWI, Amsterdam, The Netherlands
eab@informatik.uni-freiburg.de F.S.de.Boer@cwi.nl

Willem-Paul de Roever Martin Steffen
Christian-Albrechts-University, Kiel, Germany University of Oslo, Norway
wpr@informatik.uni-kiel.de msteffen@ifi.uio.no

Abstract. Besides the features of a class-based object-orienteddgegjavaintegrates concur-
rency via its thread-classes, allowing for a multithreaffiea of control. Besides that, the language
offers a flexible exception mechanism for handling errorexaeptional program conditions.

To reason about safety-propertiestaivaprograms and extending previous work on the proof the-
ory for monitor synchronization, we introduce in this papeassertional proof methofbr Java,r
(“Multi-Threaded Javg, a small concurrent sublanguage {dva covering concurrency and espe-
cially exception handlingWe show soundness and relative completeness of the probbrhet

1. Introduction

Since theJavalanguage is increasingly used also in safety-critical iapfibns, the development of
verification techniques falavaprograms becomes more and more importdatahas several interesting
and challenging features likes object-orientation, iitaece, and exception handling. Furthermaiava
integrates concurrency via ithread-class, allowing for a multithreaded flow of control.

To reason abousafety properties of multithreadedava programs, this work introduces a tool-
supportedassertional proof methotbr a concurrent sublanguage @dfiva The language includes dy-
namic object creation, method invocation, object refeesnwith aliasingconcurrency Javas monitor
discipling and exception handlingbut excludesnheritanceand subtyping The concurrency model

*Part of this work has been financially supported by the E{egtdST-33826Credo: Modeling and analysis of evolutionary
structures for distributed serviceand the NWO/DFG project Mobi-J (RO 1122{9;2,4}).
TAddress for correspondence: Albert-Ludwigs-UniversitgiBurg, Fahnenbergplatz 79085 Freiburg, Germany

2 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

includes shared-variable concurrency via instance asalcoordination via reentrant synchronization
monitors, synchronous message passing, and dynamic ttresgbn.

To support a clean interface between internal and extebjatbbehavior, we exclude qualified ref-
erences to instance variables. l.e., the values of instaadables of an object can be accessed and
modified only within the object. As a consequence, share@iua concurrency is caused by simultane-
ous execution within a single object, only, but not acrogeaitbhoundaries.

In order to capture program behavior in a modular way, theréiegal logic and the proof system
are formulated at two levels, a local and a global one. Thal lagsertion language describes the internal
object behavior. The global behavior, including the comitation topology of objects, is expressed in
the global language. As in the Object Constraint LanguadelL((57], properties of object-structures
are described in terms of a navigation or dereferencingabper

The assertional proof system is formulated in termgmif outlines[43], i.e., of programs aug-
mented by auxiliary variables and annotated with Hoarkegstgsertions [22, 23]. The satisfaction of the
program properties specified by the assertions is guamigéehe verification conditions of the proof
system. Thénitial correctnessconditions cover satisfaction of the properties in thaahjprogram con-
figuration. The execution of a single method body in isolai®captured by standatdcal correctness
conditions, using the local assertion language. Intemfa¥ebetween concurrent method executions is
covered by thénterference freedom tept3, 32], formulated also in the local language. It has esigc
to accommodate for reentrant code and the specific syndatiom mechanism. Possibly affecting more
than one instance, communication and object creationasagen thecooperation testusing the global
language. The communication can take place within a sinjeco or between different objects. As
these cases cannot be distinguished syntactically, oyrecation test combines elements from similar
rules in [12] and in [32] for CSP.

Our proof method isnodularin the sense that it allows for separate interference frmealod coop-
eration tests. This modularity, which in practice simptifeorrectness proofs considerably, is obtained
by disallowing the assignment of the result of communicatiad object creation to instance variables.
Clearly, such assignments can be avoided by additionajrasgints to fresh local variables and thus at
the expense of new interleaving points. This restrictionldde released, without loosing the mentioned
modularity, but it would increase the complexity of the drepstem. Computer-support is given by the
tool Verger(VERIfication condition GEneratgRtaking a proof outline as input and generating the ver-
ification conditions as output. We use the interactive theoprover PVS [44] to verify the conditions,
for which we only need to encode the semantics of the asedeimguage. The proof system here deals
with partial correctnessproperties only, i.e., we do not address termination prtagser

To transparently describe the proof system, we presentrigimentally in four stages: We start with
a proof method for &equentialsublanguage ofava allowing for dynamic object creation and method
invocation. This first stage shows how to handle activitiea singlethread of execution. In the second
stage we additionally allow dynamic thread creation, legdio multithreadedexecution. The corre-
sponding proof system extends the one for the sequentialveifls conditions handling dynamic thread
creation and the new interleaving aspects. We integfaigs monitor synchronizatioomechanism in
the third stage. Finally, we includ#avas exception handlingn the last stage. The proof system is sound
and complete.

This incremental development shows how the proof systenmbeagxtended stepwise to deal with
additional features of the programming language. FurtRtansions by, for example, the concepts of
inheritance and subtyping are topics for future work.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 3

In this paper we concentrate on the theoretical backgrobodapplication examples demonstrating
how to use the proof system, see [1, 3].

1.1. Related work

This work extends earlier results. In [6] we develop a proaftem for a concurrent sublanguage of
Javg but without reentrant monitors. Reentrant synchroniratvas incorporated in [8]; the work [2]
integrates als@avas monitor methodsvait, notify, andnotifyAll. An incremental description of the
proof system, starting with a sequential language and ssepadding additional language features, but
excluding exception handling, is given in [7]. In [7] we alstroduce proof conditions for deadlock
freedom. The work is summarized Abraham’s PhD thesis [1] and the theoretical aspects in\[§
formalize the semantics of our programming language in apositional manner in [4]. This work
extends the above ones by including exception handling.

The semantical foundations davahave been thoroughly studied ever since the language gained
widespread popularity (see e.g. [9, 54, 21]). The reseavokarningJavas proof theory mainly con-
centrated on various aspects sgfquentialsub-languages. See [31] for a recent and extensive survey
over different approaches towards the specification anification of object-oriented programs (and
concentrating on sequential languages). To the best ofmawlkedge, our work defines the first sound
and complete assertional proof method for a multithreadddbaguage oflavaincluding its monitor
discipline and exception handling.

De Boer [17] presents a sound and complete proof system ina&ese precondition formulation
for a parallel object-based language, i.e., without inhade and subtyping, and also without reentrant
method calls. Later work [47, 19, 18] and especially the Rt of Pierik [46] includes more features,
especially catering for a Hoare logic for inheritance ariobygoing.

The aim of the work in the bop project (Logic of Object-Oriented Programming) [33] is pesify
and verify properties of classes in object-oriented laggga The project research concentrates on a se-
quential subpart ofavg the main focus of application igavaCardA compiler [15] translates programs
and their specifications intBVS[28] andisabelle/HOL[14]. The translation is based on the embedding
of a denotational semantics of the sequenfimlasubset into Higher Order Logic (HOL). Soundness
of the representation is shown in [24]obPp specifications formalized idML are represented in HOL
by a set of proof rules [30]. Jacobs presents also a coalgelieav of exceptions in [27]. Modeling
inheritance in higher order logic is the topic of [25]. Thedaprtool and methodology has been applied
to several case studies; see e.g. [53, 52, 16, 26, 29].

Instead of the denotational semantics, our work is basecharparational semantics. Though re-
search within the bop project deals with many of the complexities ddva they don’t handle concur-
rency, and don't investigate completeness.

The project Bali [13] is concerned with the formalizationvafrious aspects afavain the theorem
prover Isabelle/HOL[45]. Nipkow and von Oheimb [36, 41] prove type soundnesshefrtjava;,,
subset, a large sequential sublanguagéaeh They formalize its abstract syntax, type system, and well-
formedness conditions. Instead of the denotational seasantworks of the loop project, they develop
an operational semantics. Based on this formalization; éxpress and prove type soundness within
the theorem provelsabelle/HOL To complement the operational semanticsJavg,,,;, von Oheimb
presents an axiomatic semantics [38, 39], and proves sesadand completeness of the latter with
respect to the operational semantics. Withava Nipkow et al. [37] offer anlsabelle/HOLembedding

4 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

of Javas imperative core with classes. They present a static anghardic semantics of the language
both at theJavalevel and thelVM level.

Based on [37], von Oheimb [40] presents a Hoare-style aadcidr aJavaCardsubset and proves
soundness and completenesgsiabelle/HOL Nipkow [35] selects some of the technically difficult lan-
guage features and deals with their Hoare logic in isolatibhe combination of [40] and [35] in one
language (NanoJava) is formulated in [42].

In contrast to our approach, the Bali project aims to covdy saquential subsets dlva Further-
more, they use a semantic representation of assertiorggonoexecution is specified by state transfor-
mations. Our proof system uses a syntactic representadimh substitution operators instead of state
transformations.

Similarly to our proof system, also Poetzsch-Heffter andllt use a syntactical representation of
assertions [48, 49, 50, 51]. They develop a Hoare-stylerproming logic for a sequential kernel ddva
featuring interfaces, subtyping, and inheritance. Titirgy the operational and the axiomatic semantics
into the HOL theorem prover allows a computer-assisted dioess proof. Neither this group deals with
concurrent sublanguages Jdva

1.2. Overview

The work is organized as follows: Section 2 describes syataksemantics of a sequential sublanguage
of Java After introducing the assertional logic, we present a peystem for the sequential case. Sec-
tion 3 extends the results to a concurrent sublanguage. aflgrihge introduced in Section 4 includes
Javés monitor synchronization mechanism. Section 5 covers ekseption handling. The verification
conditions in the above sections are formulated as startdeade-triples. Section 6 defines the formal
semantics of Hoare-triples, given by means of a weakesbpdiion calculus, and reformulates the ver-
ification conditions. Soundness and completeness aresdisdun Section 7. Section 8 contains some
concluding remarks.

2. The sequential language

In this section we introduce a sequential sublangukaye., of Java We define its syntax in Section 2.1,
and its semantics in Section 2.2. After defining the assettiaguage in Section 2.3, we introduce a
proof system for verifying safety properties of the langaiagSection 2.4.

Programs, as idava are given by a collection of classes containing instanceabi® and method
declarationsInstancef the classes, i.eobjects,are dynamically created, and communicatermaigthod
invocation,i.e., synchronous message passing.

We ignore inJava,, the issues ofoncurrencyinheritance and consequently subtyping, overriding,
and late-binding. For simplicity, we neither allow methmgerloading i.e., we require that each method
name is assigned a unique list of formal parameter types eetdra type. In short, being concerned with
the verification of the run-time behavior, we assume a simmaomorphidype discipline forJava,, .

2.1. Syntax

Java,, is a strongly typed language; besides class typéssupports booleanBool and integersnt as
primitive types, and pairs x ¢t and listslistt as composite types. The type of methods without return

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 5

exp == x| u|this|null|f(exp,..., exp)
eTP,y = €] exp
stm = x:=exp|u:= exp | u:=new
| w:=exp.m(exp,..., exp) | exp.m(exp,..., exp)
| €| stm; stm | if exp then stm else stm fi | while exp do stmod . ..
meth = m(u,...,u){ stm;return exp, ..}
methwyn == run(){ stm;return }
class = class ¢c{meth...meth}
classmain = c{meth...meth methpn}
prog = {class...class classSmain)

Table 1. Java., abstract syntax

value isVoid. SinceJava,, is strongly typed, all program constructs of the abstraotasyare silently
assumed to be well-typed. In other words, we work with a tgpretated abstract syntax where we omit
the explicit mentioning of types when this causes no coofusi

For each type, the corresponding value domain is equipp#d avstandard set of operators with
typical elementf. Each operatof has a unique typé; x --- x t, — t and a fixed interpretation
f, where constants are operators of zero arity. Apart fromsthadard repertoire of arithmetical and
boolean operations, the set of operators also containsiiges on tuples and sequences like projection,
concatenation, etc.

We notationally distinguish betweénstance variables: € IVar andlocal (temporary) variables
u € TVar. Instance variables hold the state of an object and existigiirout the object’s lifetime. Local
variables are stack-allocated; they play the role of forpamhmeters and variables of method definitions
and only exist during the execution of the method to whicly thelong. We usé/ar = [Var U TVar
for the set of program variables with typical elemgntvhereU is the disjoint union operator.

The abstract syntax is summarized in Table 1. It slightlfed#f from Javasyntax. Though we use
the abstract syntax for the theoretical part of this work,tool supportsjavasyntax.

Besides using instance and local variablqressionszp € Ezp are built from the self-reference
this, the empty referenceull, and from subexpressions using the given operators. We aseypical
element for expressions. To support a clean interface lestirgernal and external object behavior,
Java,, does not allow qualified references to instance variablese Nhat all expressions of the language
are side-effect free, i.e., their evaluation does not nyotlie program state. Only the execution of
statements may have such an effect.

As statementstm € Stm, we allow assignments, object creation, method invocatod standard
control constructs like sequential composition, condaiostatements, and iteration. We writéor the
empty statement.

A methoddefinitionm (uy, . .., u,){stm;return e,.; } specifies the method’s name, a list of formal
parameters.y, ..., u,, and a method body of the forstm;return e, i.€., we require that method
bodies are terminated by a single return statement, givarog the control and possibly a return value.
The setMeth. contains the methods of classWe denote the body of methaed of classe by body,,, ..

6 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Sometimes we explicitly mention the types of formal pararsetind of the return value ifavastyle
tm(ty ut, ...ty un){body,, .}

A classis defined by its nameand its methods, whose names are assumed to be distipabgfam,
finally, is a collection of class definitions having diffet@fass names, whergass i, defines by itsun-
method the entry point of the program execution. We call ieytof therun-method of the main class
the main statemendf the progranmt. The run-method cannot be called.

The set/Var, of instance variables of a clagss given implicitly by the instance variables occurring
in the class; the set of local variables of method declanatis given similarly. In the examples we
explicitly define variables iavastyle.

Besides the mentioned simplifications on the type systenimpese for technical reasons the fol-
lowing restrictions: We require that method invocatiortestaents contain only local variables, i.e., that
none of the expressions, . . ., e, in @ method invocatiory.m(ey, ..., e,) contains instance variables.
Furthermore, formal parameters must not occur on the kefdhside of assignments. These restric-
tions imply that during the execution of a method the valuethe actual and formal parameters are
not changed. Finally, the result of object creation and waihvocation may not be stored in instance
variables. This restriction allows for a proof system wigparated verification conditions for interfer-
ence freedom and cooperation. It should be clear that it $sipte to transform a program to adhere
to this restrictions at the expense of additional localalzlgs and thus new interleaving points. The
above restrictions could be released, without loosing teetioned modularity, but it would increase the
complexity of the proof system.

2.2. Semantics

In this section, we define theperational semanticef Javg.,. After introducing the semantic domains,
we describe states and configurations. The operationalrgmsias presented by transitions between
program configurations.

2.2.1. States and configurations

Let Val® be the disjoint domains of the various typesFor class names the disjunct setd/al¢ with
typical elementsy, (3, . .. denote infinite sets afbject identifiers.The value ofnull of type c is null® ¢
Val®. [This is the semantic analogue to monomorphisin.pgeneral we will just writenull, whenc is
clear from the context. We defineulS, ;, as Val® U {null}, and correspondingly for compound types.
The set of all possible non-null valugg, Val' is written asVal, and Val,,,,, denoted J, Val’,,. Let
Init : Var — Val,,,; be afunction assigning an initial value to each variapte Var, i.e., null, false,
and0 for class, boolean, and integer types, respectively, aatbgausly for compound types, where
sequences are initially empty. We defiés ¢ Var, such that the self-reference is not in the domain of

Init.?

In Javg the entry point of a program is given by the statisin-method of the main class. Relating the abstract syntaxato th
of Javg we assume that the main class iStaread-class whosenain-method just creates an instance of the main class and
starts its thread. The reason to make this restriction & Jéwvas main-method is static, but our proof system does not support
static methods and variables.

2In Java this is a “final” instance variable, which for instance impligszannot be assigned to.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 7

The configuration of a program consists of the set of existinigcts and the values of their instance
variables, and the configuration of the executing threado®dormalizing the global configurations of
a program, we define local states and local configurationthdisequel we identify the occurrence of a
statement in a program with the statement itself.

A local stater € X,;,. of a method execution holds the values of the method'’s loaahliles and
is modeled as a partial function of tyggVar — Val,,,;. We refer to local states of method of
classc by 7™¢. The initial local stater;',;fict assigns to each local variablefrom its domain the value
Init(u). A local configuration(a, 7, stm) of a method of an objeat # null specifies, in addition
to its local stater, its point of execution represented by the statemwent. A thread configuration
¢ = (o, 10, stmo) (1,11, stm1) . .. (a, T, Stmy,) 1S @ stack of local configurations, representing the
chain of method invocations of the given thread. We wgite (o, 7, stm) for pushing a new local
configuration onto the stack.

Objects are characterized by theistance states,,,, € X, Of type IVar U {this} — Val,
we require thathis is in the domaindom(o,,,,) of o,,.,. We writec§, ., to denote states of instances
of classc. The semantics will maintaiag, ., (this) € Val® as invariant. The initial instance stat%@“
assigns a value froniral® to this, and to each of its remaining instance variabtebe valuelnit(z).

A global statec € ¥ of type (U, Val®) — X, stores for each currentigxistingobject, i.e., an
object belonging to the domain eof, its instance state. The set of existing objects of tyje a state
o is given by Val(c), and Val (o) = Val®(s) U {null°}. For the remaining typesVal’(s) and
Valt (o) are defined correspondingly. We refer to thelgetVal’(o) by Val(o); Val,,,; (o) denotes
U, Val’,,;;,(c). The instance state of an objecte Val (o) is given byo () with the invariant property
o(ar)(this) = o. We require that, given a global state, no instance variadey of the existing objects
refers to a non-existing object, i.er(a)(x) € Val,,; (o) for all classes:, objectsa € Val(s), and
instance variables € I'Var,. This will be an invariant of the operational semantics @f tiext section.

A global configuration(T', o) describes the currently existing objects by the globakstatwhere
the setT’ contains the configuration of the executing thread. For tregrrent languages of the later
sections,I" will be the set of configurations of all currently executifgeads. Analogously to the re-
striction on global states, we require that local configaret(«, 7, stm) in (T, o) refer only to existing
object identities, i.eq € Val(o) andr(u) € Val,,,; (o) for all variablesu from the domain of-; again
this will be an invariant of the operational semantics. k& fibllowing, we write(a, 7, stm) € T if there
exists a local configuratiofw, 7, stm) within one of the execution stacks ot

The semantic functiof.]z™ : (Xine X Xioc) — (Eap — Val,,,;) evaluates in the context of am-
stance locaktate(c,,,, 7) expressions containing variables fraiwn (o,,,,,) U dom(7): Instance vari-
ablesr and local variables are evaluated to,,,, (x) andr(u), respectivelythis evaluates to,,, ., (this),
andnull has thenull-reference as value, where compound expressions are &dloya homomorphic
lifting (see Table 2).

We denote by-[u — v] the local state which assigns the vatu® « and agrees with on the values
of all other variablesy,, ., [« — v] is defined analogously, whesga.z — v] results fromo by assigning
v to the instance variable of objecta. We use these operators analogously for vectors of vasakie
user [/ o] also for arbitrary variable sequences, where instancablas are untouched;,, [/ +—]
ando[a.y+— v] are analogous. Finally for global stategn— o,,.,] equalsc except onw; note that
in casex ¢ Val(o), the operation extends the set of existing objectspwhich has its instance state
initialized too

inst*

8 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

[[‘T]] ?nsz ’ = Oinst (‘T)
Hu]]gznsth —_ T(U)
[this]g™ ™ = 0,5 (this)
[null]g=" = null
[[f(e1, ceey en) ZW“T = f([[el]]g’"“’T, s [[en]]gmsm)

Table 2. Semantics of program expressions

2.2.2. Operational semantics

The operational semantics dava,, is given inductively by the rules of Table 3 as transitionsaaen
global configurations. The rules are formulated such a way e can re-use them also for the con-
current languages of the later sections. Note that for thaesgial language, the séfsin the rules are
empty, since there is only one single thread in global cordifons. The remaining sequential constructs
—sequential composition, conditional statement, andifiten— are standard and elided.

Before having a closer look at the semantical rules for thesition relation—, let us start by defin-
ing the starting point of a program. The initial configuratid@y, o) of a program satisfiegom (og) =
{a}, oo(a) = o [thisa), and Ty = {(a, 7%, body,,,)}, Wherec is the main class, and
a € Val®.

We call a configuratiodT, o) of a progranreachableiff there is a computatiod7y, o¢)—*(T', o)
such that(Ty, o) is the initial configuration of the program ard-* the reflexive transitive closure of
—. Alocal configuration(«, 7, stm) € T is enabledin (T, o), if it can be executed, i.e., if there is a
computation stepT’, o) — (1", ¢’) executingstm in the local state- and objectv.

Assignments to instance or local variables update the sjporaling state component, i.e., either the
instance state or the local state (rulessf,; and Ass,.). Object creation by: := new®, as shown
in rule NEw, creates a new object of typewith a fresh identity stored in the local variable and
initializes the instance variables of the new object. limgka method extends the call chain by a new
local configuration (rule &LL). After initializing the local state and passing the partere the thread
begins to execute the method body. When returning from a adetlall (rule RETURN), the callee
evaluates its return expression and passes it to the caliehwsubsequently updates its local state. The
method body terminates its execution and the caller carireant We have similar rules not shown in
the table for the invocation of methods without return valliee executing thread ends its lifespan by
returning from theun-method of the initial object (rule RTURN,.,,,).

2.3. The assertion language

In this section we introducassertiongo specify program properties. The assertion logic consitt
local and aglobal sublanguagel ocal assertions describe instance local states, and are useddtate
methods in terms of their local variables and of the instaraz@bles of the class to which they belong.
Global assertions describe the global state, i.e., a whole systembjects and their communication
structure.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 9

Assinst
(T U{&o (a,7,m:=¢;5tm)},0) — (T U {0 (a, T, stm)}, ol Hﬂe]]g(a)’T])

, _) ASSie
(T U {0 (a,7,ui=e;stm)},0) — (T U {0 (o, T[u—[e]z 7], stm)}, o)

B € Val®\ Val(o) Cimar = O [this i] o' = 0B 0]

inst

(T U {&o (o, 7, ur=new; stm)}, o) — (T'U {0 (o, T[ur B], stm)},0")

NEwW

m(@){ body } € Meth.3 = [[eo]]g(a)"T € Val(o) 7! = rinit [EH[[é]]g(a)’T]

m,c

CALL

(T'U{€o (a,7,u:= e.m(€);stm)}, o) — (T U {0 (a,T,receiveu; stm) o (8,7, body)}, o)

7 = Tltger —erea] 877

RETURN

(T U {€o (a,T,receive ure; stm) o (B, 7/, return eqet) },0) — (T U {0 (a, 7", stm)}, o)

- - RETURNqp,
(T'U {(ov, 7, return)},0) — (T U {(ax,7,€)}, 0)

Table 3. Java., operational semantics

To be able to argue about communication histories, reptedexs lists of objects, we add the type
Object as the supertype of all classes into the assertion langudgte that we allow this type solely
in the assertion language, but not in the programming laggughus preserving the assumption of
monomorphism.

2.3.1. Syntax

In the language of assertions, we introduce a countablyitefsetVar of well-typedlogical variables
with typical element, where we assume that instance variables, local varicdeshis are not inL Var.
We useLVar! for the set of logical variables of type Logical variables are used for quantification in
both the local and the global language. Besides that, theysed as free variables to represent local
variables in the global assertion language: To expressa fwoperty on the global level, each local
variable in a given local assertion will be replaced by atfregjical variable.

Table 4 defines the syntax of the assertion language. Foaléity] we use the standard syntax of
first order logic in the theoretical part; théergertool supports an adaptation &#IL.

Local expressionszp, € LEzp are expressions of the programming language possibly icamga
logical variables. The set of local expressions of tyje denoted byL Ezp’. In abuse of notation, we
usee, € ... not only for program expressions of Table 1, but also fordgpelements of local expres-
sions. Local assertionsuss; € LAss, with typical element®, p’, ¢, ..., are standard logical formulas
over boolean local expressions. We allow three forms of fifigation over logical variables: Unre-
stricted quantificatiorz. p is solely allowed for domains without object referencess, t.is required to
be of typelnt, Bool, or compound types built from them. For reference tygehis form of quantifica-

10 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

exp, == z|x|wu]|this|null|f(ezp,,...,exp;) e € LEzp
ass; = exp; | —ass; | ass; A ass;

| 3z.ass;| 3z € exp;. ass; | Iz C exp,. ass; p € LAss

exp, == z|null|f(ezp,,..., exp,) | exp,.x E € GExp

assg n= exp, | massy | assy A assy | 3z. assgy P e GAss

Table 4. Syntax of assertions

tion is not allowed, as for those types the existence of aevditnamically depends on tighobal state,
something one cannot speak about on the local level, or nooneally: Disallowing unrestricted quan-
tification for object types ensures that the value of a losakgion indeed only depends on the values of
the instance and local variables, but not on the global.skggertheless, one can assert the existence of
objects on the local level satisfying a predicate, provided is explicit about the set of objects to range
over. Thus, the restricted quantificatiofis € e. p anddz C e. p assert the existence of an element,
respectively, the existence of a subsequence of a givereseeg for which a property holds.

Global expressiongzp, € GEzp, with typical elements”, £/, ..., are constructed from logical
variables,null, operator expressions, and qualified referen€esto instance variables of objectsE.
We write GEzp' for the set of global expressions of typeGlobal assertionsiss, € GAss, with typical
elementsP, () . . ., are logical formulas over boolean global expressionsikdrihe local language, the
meaning of the global one is defined in the context of a glotaks Thus unrestricted quantification
is allowed for all types and is interpreted to range over #teofexistingvalues, i.e., the set of values
Val,,.. (o) in a global configuratiodT’, o).

We sometimes write quantification ovetyped values in the formi(z :). p to make the domain of
the quantification explicit; we use the same notation algbérglobal language.

2.3.2. Semantics

Next, we define the interpretation of the assertion langu@be semantics is fairly standard, except that
we have to cater for dynamic object creation when intenpgetjuantification.

Logical variables are interpreted relative to a logicaliemmentw € (Q, a partial function of type
LVar — Val,,;, assigning values to logical variables. We denotevby— v] the logical environment
that assigns the valuedo the variableg, and agrees witly on all other variables. Similarly to local and
instance state updates, the occurrence of instance and/iéocbles inz is without effect. For a logical
environmentv and a global state we say that refers only to values existing i, if w(z) € Val,,,;(0)
for all z € dom(w). This property matches with the definition of quantificatighich ranges only over
existing values andull, and with the fact that in reachable configurations localkides may refer only
to existing values or taull.

The semantic functiofi_] 77~ of type (2 x Xjne X Xjoe) — (LExp U LAss — Val,,,;) evaluates
local expressions and assertions in the context of a logicakonmentw and an instance local state
(0,051, T) (€€ Table 5). The evaluation function is defined for exjpoassand assertions that contain
only variables fromdom(w) U dom(o,,,,) U dom(r). The instance local state provides the context for
giving meaning to programming language expressions asetefiy the semantic functiop]¢; the

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 11

[[Z]]Zv%mf = w(2)

[[x]]z)-,dmsw"' = Onst (w)
" = rlw)
[E7 = ot
[[null]]?"zmvf = null
[[f(el, Ceey en)]](z’a'mszﬂ— = f([[el]]‘z.’gms“‘ra o [[en]]‘z.’a‘ms”‘r)

(P17 =true) it ([pI" " —false)
([pr A pol 7" =true) it ([palz """ =true and[pa] """ =true)
([Bz. p] 2 7m0 " =true) iff [[p]]z)[sz]’o”"‘t’T:true for somev € Val,,.;;)
)
)

([Bz€e. p] 77" iff wlz—l,

=true [zeenp] . 7T =trye for someve Val,,,;;)
([FzCe.p] 2 7mt " =true) iff

Wz V] T

[zEenp], =true for someve Val,,,,;;)

(
(
(
(
Table 5. Local evaluation

logical environment evaluates logical variables. An utrieted quantificatiordz. p with z € LVart is
evaluated to true in the logical environmenand instance local state,,,.,, 7) if and only if there exists
avaluev € Val' such thap holds in the logical environment[z — v] and instance local state;,;, 7),
where for the type of z only Int, Bool, or compound types built from them are allowed. The evabuati
of a restricted quantificatioz € e. p with z € LVart ande € LEzp"t! is defined analogously, where
the existence of an element in the sequence is required. gamtam 3z C e. p with z € LVar'stt and

e € LExp"™* states the existence of a subsequencefof which p holds. In the following we also write
W, s, T Ec pfor [p]; 70" = true. By =z p we express thav, o,,.,, 7 ¢ p holds for arbitrary
logical environments, instance states, and local states.

Sinceglobal assertions do not contain local variables and non-qualiéztences to instance vari-
ables, the global assertional semantics does not refeistarice local states but to global states. The
semantic functiorf_[5 of type (2 x ¥) — (GEzp U GAss — Val,,,;;), shown in Table 6, gives mean-
ing to global expressions and assertions in the context dédl@abstates and a logical environmens.

To be well-definedw is required to refer only to values existing én and the expression respectively
assertion may only contain free variaiégom the domain ofu. Logical variablespull, and operator
expressions are evaluated analogously to local asserfidrsvalue of a global expressidiz is given

by the value of the instance variahteof the object referred to by the expressiBnThe evaluation of an
expressiont.x is defined only ifE refers to an object existing in. Note that whery and E’ refer to the
same object, that iy and £’ arealiases then E.x and E’.z denote the same variable. The semantics
of negation and conjunction is standard. A quantificafion P with z € LVar! evaluates to true in the
context ofw ando if and only if P evaluates to true in the context ©fz — v] ando, for some value

v € Valt,, (o). Note that quantification over objects ranges over the sekistingobjects andnuil,
only.

For a global stater and a logical environment referring only to values existing i we write
w,o0 =g P whenP is true in the context o ando. We write | =g P if P holds for arbitrary global
statess and logical environments referring only to values existing in.

nst?

3In global expressiong.« we treatz as a bound variable.

12 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

F27 = w()
[nulllg® = null
[[f(Ela"'aEn)]]g’a = f([[El]]g’aa""[[En]];’a)
[Ealy” = ollElE"))
([-P]g° = true) iff ([P]g7 = false)
([PL AN P]g7 = true) iff ([Pi]g” = true and[Pa] 57 = true)
([3z. P]g7 = true) iff ([[P]]“[ZH”] = true for somev € Val,,,;;(0))

Table 6. Global evaluation

To express a local propergyin the global assertion language, we define the substitpfiofthis] by
simultaneously replacing ip all occurrences of the self-referentdds by the logical variable:, which
is assumed not to occur im and transforming all occurrences of instance variablésto qualified
references.x. For notational convenience we view the local variablesio@ng in the global assertion
p[z/this] as logical variables. Formally, these local variables aptaced by fresh logical variables. We
write P(z) for p[z/this], and similarly for expressions. For unrestricted quarifans(3z’. p)[z/this]|
the substitution applies to the assertimnLocal restricted quantifications are transformed intdglo
unrestricted ones where the relationandC are expressed at the global level as operators. The main
cases of the substitution are defined as follows:

this[z/this] = =z
x[z/this] = z.x
ul[z/this] = wu
(3. p)[z/this] = 32’ p[z/this]
(32 € e. p)z/this] = 3T (2 € e[z/this] A p[z/this])
(32 Ce. p)z/this] = 3. (2 C e[z/this] A p[z/this]) ,

wherez is fresh.

This substitution will be used to combine properties ofanse local states on the global level. The
substitution preserves the meaning of local assertiorsjiged the meaning of the local variables is
matchingly represented by the logical environment:

Lemma 2.1. (Lifting substitution)

Let o be a global statey andr a logical environment and local state, both referring onlywalues
existing ino. Let furthermorep be a local assertion containing local variabiedf 7(7) = w(@) andz
a fresh logical variable, then

w, o =g plz/this| iff w,o0(w(z)), 7 Ecp.

2.4. The proof system

The proof system has to accommodate for dynamic objecticreatliasing, method invocation, and
recursion. The following section defines how to augment amtbtate programs resulting in proof
outlines, before Section 2.4.2 describes the proof method.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 13

For technical convenience, we formulate verification cbads as standard Hoare-triples. The state-
ments of these Hoare-triples may also contain assignmaribring qualified references as given by the
global assertion language. For the formal semantics anagfformulated verification conditions using
substitutions see [1].

2.4.1. Proof outlines

For a complete proof system it is necessary that the transsiémantics oflava., can be encoded in
the assertion language. As the assertion language reasousthe local and global states, we have to
augmentthe program with freskauxiliary variablesto represent information about the control points
and stack structures within the local and global statesariamat program properties are specified by the
annotation An augmented and annotated program is callpdbaf outlineor anasserted program.

Note that augmentation is not optional but necessary fativel completeness when reasoning about
computations. For example, without auxiliary variablesgéneral it would not be possible to describe
the input-output behaviour of a method by an assertion.esihe input-output relation relates pairs of
states, while assertions are evaluated in a single statexpress such dependencies, one can introduce
new auxiliary variables to store the input (i.e., parametatues, and state the property by an assertion
evaluated in the output state. Other proof methods may baattymentation differently: JML for ex-
ample introduces for this special case of input-outputtieiaof methods a special auxiliary variable
“\return” for the return value.

Augmentation An augmentation extends a program by atomically executdtipleuassignmentg :=

€ to distinct auxiliary variables, which we cadbservations Furthermore, the observations have, in
general, to be “attached” to statements they observe in@niatmanner. For object creation this is
syntactically represented by the augmentatiop- new® (7 := €)"®" which attaches the observation to
the object creation statement. Observatigns= €; of a method call and observatiogs := €, of the
corresponding reception of a return value are denoted by ey.m(€) (7, := &)@ (g, := &),
The augmentatiofii, := &) stm; return e,; (/3 :=)" of method bodies specifigs := &, as
the observation of the reception of the method call gnd= €; as the observation attached to the return
statement. Assignments can be observed uging € (y := €')3S. A stand-alone observation not
attached to any statement is written(gs= ¢€) . It can be inserted at any point in the program.

Note that we could also use the same syntax for all kinds oérebtions. However, such a no-
tation would be disadvantageous for partial augmentatinas for the specification of augmentations
where not all statements are observed. For example, usingatation introduced above, the augmen-
tation eg.m(€) (stm) uniquely specifiestm as an alone-standing observation following an unobserved
method call; using the same augmentation syrta) for all kinds of observations, we would have
to write eg.m(€) () () (stm) to specify the same setting. The same remark can be madeoaltef
annotation syntax, introduced below.

The augmentation does not influence the control flow of theynara but enforces a particular
scheduling policy. An assignment statement and its obServare executed simultaneously. Object
creation and its observation are executed in a single catipntstep, in this order. For method call,
communication, sender, and receiver observations araidn a single computation step, in this or-
der. Points between a statement and its observation acemtml points since they are executed in a
single computation step; we call theauaxiliary points

14 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

As stated above, in the case of method calls the caller andalee both may make observa-
tions. Consequently, in case of self-calls, when caller @ie execute in the same object, we would
have to show interference freedom under assignment-pahrish would increase the complexity of
the proof system. To overcome this complication, we reqthia the caller observation in a self-
communication may not change the values of instance vasabFormally, in each observation of a
method invocation statemesgf.m(€), assignments to instance variables must have the formif ey =
thisthen x else e fi.

In the following we call assignment statements with theiseations, unobserved assignments,
alone-standing observations, or observations of commatioit or object creation general as multiple
assignments, since they are executed simultaneously.

For completeness, it is necessary to be abligleatify objects and instances of method executions,
i.e., local configurations. We identify a local configuratiby the object in which it executes together
with the value of its built-in auxiliary local variableonf storing a unigue object-internal identifier. Its
uniqueness is assured by the auxiliary instance variahleter, incremented for each new local con-
figuration in that object. The callee receives the “returdrads” as auxiliary formal parametexller
of type Object x Int, storing the identities of the caller object and the calliogcal configuration. The
run-method of the initial object is executed with the paramesdier having the valugnull, 0).

Syntactically, each method declaratiori){ stm; return e, } gets extended by the built-in augmen-
tation tom(i, caller){(conf, counter := counter, counter + 1)7@ stm; return e,.;}. Correspondingly
for method callsu := ey.m(€), the actual parameter lists get extended:te= ey.m(€, (this, conf)).
The values of the built-in auxiliary variables must not barmded by the user-defined augmentation but
may be used in the augmentation and annotation.

Annotation To specify invariant properties of the system, the augnteptegrams arannotatedby
attaching local assertions to each control and auxiliaigtp@Ve use the triple notatiofp} stm {¢} and
write pre(stm) andpost(stm) to refer to the pre- and the post-condition of a statement.asertions
at auxiliary points we use the following notation: The aratian

{po} w:=new’ {p1}"*" (7 := &)"" {p}

of an object creation statement specifigsandp, as pre- and postconditions, whergat the auxiliary
point should hold directly after object creation but befiiseobservation. The annotation

{po}u:=eg.m(e) {p1}' ™ (i ==& {po}" {ps}?® (g =€) {pa}

assignspy andp, as pre- and postconditions to the method invocatjgnis assumed to hold directly
after method call, but prior to its observatign; describes the control point of the caller after method
call and before return; finallyy; specifies the state directly after return but before its nlag®n. The
annotation of method bodiesm; return e,.; is as follows:

{po}” (i := &) {p1} stm; {pa} return e {3} (73 = &)™ {pa}

The callee postcondition of the method calpis the callee pre- and postconditions of return grend
p4. The assertiong respectivelyps specify the states of the callee between method call ragphct
return and its observation.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 15

Besides pre- and postconditions, for each cladhe annotation defines a local assertigrealled
class invariant specifying invariant properties of instancescdh terms of its instance variablésWe
require that for each method of a class, the class invaatei precondition of the method body.

Finally, a global assertio:/ called theglobal invariantspecifies properties of communication be-
tween objects. As such, it should be invariant under ohjgernal computation. For that reason, we
require that for all qualified referencésx in GI with E of type ¢, all assignments t@ in classc occur
in the observations of communication or object creation. rédgiire furthermore that in the annotation
no free logical variables occur.

2.4.2. \Verification conditions

The proof system formalizes a numbenefification conditionsvhich inductively ensure that for each
reachable configuration the local assertions attachedetautrent control points in the thread config-
uration as well as the global and the class invariants holie donditions are grouped, as usual, into
initial conditions, and for the inductive step into locah@xtness and tests for interference freedom and
cooperation.

Before specifying the verification conditions, we first ligime notation. Lelnit be a syntactical
operator with interpretatiodnit (see page 6). GivehVar, as the set of instance variables of class
without the self-reference, anda logical variable of type:, let InitState(z) be the global assertion
z # null A A\ ey, 2-@ = Init(z), expressing that the object denotedzbig in its initial instance state.

Finally, arguing about two different local configurationskes it necessary to distinguish between
their local variables, since they may have the same namesicim cases we will rename the local vari-
ables in one of the local states. We use primed asserpiolasdenote the given assertignwith every
local variableu replaced by a fresh on€, and correspondingly for expressions.

Initial correctness A proof outline isinitially correct, if the precondition of the main statement, the
class invariant of the initial object, and the global inaati are satisfied initially, i.e., in the initial global
configuration after the execution of the callee observagibie beginning of the main statement. Fur-
thermore, the precondition of the observation should hisfeat prior to its execution.

Definition 2.1. (Initial correctness)

Let the body of theun-method of the main clagsbe {ps } " (77, := &7 {p3} stm; return with local
variables’ without the formal parameters,c LVar®, andz’ € LVar©Piect, A proof outline isinitially
correct, if

Eg {InitState(z) AVZ. 2 =null vz =2} 4, caller := Init(v), (null,0) {P(2)} (1)
=5 {InitState(z) AVZ'". 2/ = null vV z = 2/} (2)
7, caller := Init(7), (null, 0); 2.4 := Eb(2)
{GI N P3(2) Ne(2)}

“The notion of class invariant commonly used for sequentigai-oriented languages differs from our notion: In a setjial
setting, it would be sufficient that the class invariant kdkdtially and is preserved by whole method calls, but naessarily
in between.

16 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

The assertiomnitState(z) AVz'. 2/ = null vV z = 2/ states that the initial global state defines exactly one
existing object: being in its initial instance state. Initialization of thechl configuration is represented
by the assignment, caller := Init(%), (null,0). The observationy, := & at the beginning of theun-
method of the initial object is represented by the assignmerif, := Eg(z).

Local correctness A proof outline islocally correct if the properties of method instances as specified
by the annotation are invariant under their own executi@n, if the usual verification conditions [11]
for standard sequential constructs hold. For example, teeopdition of an assignment must imply
its postcondition after its execution. The following camnsth should hold for all multiple assignments
being an assignment statement with its observation, ansemefd assignment, or an alone-standing
observation:

Definition 2.2. (Local correctness: Assignment)
A proof outline islocally correct if for all multiple assignmentgp, } 77 := €{p=2} in classc, which is
not the observation of object creation or communication,

Fo {pi} y:=¢ {p2}. 3)

The conditions for loops and conditional statements ardainNote that we have no local verification
conditions for observations of communication and objeeation. The postconditions of such state-
ments expresassumptiongbout the communicated values. These assumptions will tifgedein the
cooperation test

The interference freedom test Invariance of local assertions under computation stepshiciwthey
are not involved is assured by the proof obligations ofitierference freedom tedts definition covers
also invariance of the class invariants. Sinkewg., does not support qualified references to instance
variables, we only have to deal with invariance under executithin the sameobject. Affecting only
local variables, communication and object creation do hainge the instance states of the executing
objects. Thus we only have to cover invariance of assertbnentrol points over assignments, including
observations of communication and object creation. Targjsish local variables of the different local
configurations, we rename those of the assertion.

Let ¢ be an assertion at a control point afid= € a multiple assignment in the same classin
which cases doeg have to be invariant under the execution of the assignmeint@e $he language is
sequential, i.e.qg andy := € belong to thesamethread, the only assertions endangered are those at
control points waiting for return earlier in the current ention stack. Invariance of a local configuration
under its own execution, however, need not be consideredsaextluded by requiringonf # conf’.
Interference with thanatchingreturn statement in a self-communication need also not hsidered,
because communicating partners execute simultaneoustyaller obj be the first andaller_conf the
second component ahller. We definewaits_for_ret(q, i := €) by

e conf’ # conf, for assertiong ¢q}"a" attached to control points waiting for returngif.= € is not
the observation of return;

e conf’ # conf A (this # caller_objV conf’ # caller_conf), for assertiongq}"at, if 7 := € observes
return;

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 17

e false, otherwise.

The interference freedom test can now be formulated asafsilo

Definition 2.3. (Interference freedom)
A proof outline isinterference freeif for all classes: and multiple assignmenig:= € with precondi-
tionpin ¢,

|:ll {p A Ic} g:: € {Ic} . (4)

Furthermore, for all assertionsat control points irr,
E=r {pAd Awaitsforret(q,7:=€)} 7:=¢ {d}. (5)

Note that if we would allow qualified references in progranpressions, we would have to show
interference freedom of all assertions under all assigsriarprograms, not only for those occurring in
the same class. For a program witltlasses where each class contdirassignments andassertions at
control points, the number of interference freedom coaddiis inO(c- k- 1), instead of0((c-k) - (c-1))
with qualified references.

The cooperation test Whereas the interference freedom test assures invarignagsertions under
steps in which they are not involved, tlteoperation testdeals with inductivity for communicating
partners, assuring that the global invariant and the paitons of the involved statements imply their
postconditions after the joint step. Additionally, the graditions of the corresponding observations
must hold immediately after communication.

The global invariant refers to auxiliary instance variabléhich are allowed to be changed by ob-
servations of communication, only. Consequently, the glatvariant is automatically invariant under
the execution of hon-communicating statements. For conigation and object creation, however, the
invariance must be shown as part of the cooperation test.

We start with the cooperation test for method invocatione $&mantics of method call and returning
from a method is as follows: After communication, i.e., afteeating and initializing the callee local
configuration and passing on the actual parameters, firseitex, and then the callee execute their corre-
sponding observations, all in a single computation stepreSpondingly for return, after communicating
the result value, first the callee and then the caller obsiervgets executed. Since different objects may
be involved, the cooperation test is formulated in the dlalsaertion language. Local properties are ex-
pressed in the global language using the lifting substitutAs already mentioned, we use the shortcuts
P(z) for p[z/this|, Q'(2") for ¢'[2’ /this], and similarly for expressions. To avoid name clashes b&twe
local variables of the partners, we rename those of theecalle

Let z and 2’ be logical variables representing the caller, respegtitted callee object in a method
call. We assume the global invariant and the preconditidrie communicating statements to hold
prior to communication. For method invocation, the predtod of the callee is its class invariant. That
the two statements indeed represent communicating parseaptured in the assertiaamm, which
depends on the type of communication: For method invocatjon(¢€), the assertiort)y(z) = 2’ states,
thatz’ is indeed the callee object. Remember that method invatatmds over the return address, and
that the values of formal parameters remain unchangedhé&mnbre, actual parameters may not contain

18 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

instance variables, i.e., their interpretation does naingle during method execution. Therefore, the
formal and actual parameters can be used at returning froetloah to identify partners being in caller-
callee relationship, using the built-in auxiliary variabl Thus for the return casegmm additionally
statesu’ = E(z), where and € are the formal and the actual parameters. Returning fromuhe
method terminates the executing thread, which does notd@mwenunication effects.

As in the previous conditions, state changes are repraséytassignments. For the example of
method invocation, communication is represented by thigmsenti’ := E(z), where initialization
of the remaining local variableg is covered by’ := Init(7). The assignments.j; := E1(z) and
2 = Eg(z') stand for the caller and callee observatighs:= ¢, andy, := &, executed in the
objectsz and>’, respectively. Note that we rename all local variables efdéllee to avoid name clashes.

Definition 2.4. (Cooperation test: Communication)
A proof outline satisfies theooperation test for communicatioif

Fg¢ {GI AP (2) NQ)(2') ANcomm A z # null A 2 # null}

fCOmm
{P2(2) A @5(2)} (6)
Eg {GI NP (2) NQ)(2') ANcomm A z # null A 2’ # null}

fcomm§ fobsl ; fosz
{GI A Ps(2) A Q5(2)} ()

holds for distinct fresh logical variablese LVarc andz’ € LVar, in the following cases:

1. CaLL: For all statement$p; } w,e; := eg.m(€) {p2}' (71 := &) {pz}Walt (or such without
receiving a value) in classwith ¢ of type ¢/, where methodn of ¢/ has body{ gy} (77, :=
&y)7¢ 43} stm; return e, formal parameterg, and local variables except the formal parame-
ters. The callee class invariantgs = I... The assertioromm is given byF(z) = 2. Further-
MOre, feomm I8 @, 7 = E(2), Init(D), fopss 1S 2.1 := E1(2), and fopsz is 2.7 := E}(2).

2. RETURN: For all e := eg.m(&) (stm)' {p, }Wait {p17ret (7, .= &,)?Upsl (or such without
receiving a value) occurring in with ey of type ¢/, such that methodn of ¢’ has the return
statement{q; } return e, {g2}"® (33 = &)™ {q3}, and formal parameter list, the above
equations must hold withomm given by Ey(2) = 2/ A @ = E(z), and Wheref comm 1S Ut 1=

El . (2'), fobs1 182 .5 == Eé(z’), and fops IS 2.7y == E4(z).

3. RETURN,,: For{q:} return {g2}""® (i3 := €3)"™ {¢3} occurring in therun-method of the main
class,p1 = p» = ps = true, comm = true, and furthermoref ;... and f,s2 are the empty
statement, and,;s;is 2’.75 1= E4(2').

Besides method calls and returns, the cooperation tessneéddndle object creation, taking care of
the preservation of the global invariant, the postconditshthenew statement and its observation, and
the new object’s class invariant. We can assume that the@pdion of the object creation statement
and the global invariant hold in the configuration prior tetantiation. The extension of the global state
with a freshly created object is formulated irstongest postconditiostyle, i.e., it is required to hold
immediatelyafter the instantiation. We use existential quantification tered the old valuez’ of type

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 19

LVar'stObiect represents the existing objects prior to the extension.elhar, that the created object’s
identity stored inu is fresh and that the new instance is properly initializedxpressed by the global
assertiorFresh(z’, u) defined adnitState(u) Au & 2/ AVv. v € 2/ Vv = u (see page 15 for the definition
of InitState). To express that an assertion refers to the set of existijgctsprior to the extension of
the global state, we need testrict any existential quantification in the assertion to range obgects
from 2/, only. So letP be a global assertion ant € LVar!stObiect g |ogical variable not occurring iR.
ThenP | 2 is the global assertiof® with all quantifications3z. P’ replaced byiz. obj(z) C 2/ A P,
whereobj(v) denotes the set of objects occurring in the valuéhe following lemma formulates the
basic property of the projection operator:
Lemma 2.2. Assume a global state an extension’ = oo +— a%ﬁ“] for somex € Val¢, o ¢ Val (o),
and a logical environment referring only to values existing ia. Letv be the sequence consisting of
all elements ot J, Val¢,,; (o). Then for all global assertion8 and logical variables’ € LVar'istObiect
not occurring inP,

w,o0 =g P iff w[Z—v],0 =g P | 7.

Thus a predicatéiu. P) | 2/, evaluated immediately after the instantiation, expresisatP holds prior
to the creation of the new object. This leads to the followdedjnition of the cooperation test for object
creation:

Definition 2.5. (Cooperation test: Instantiation)
A proof outline satisfies theooperation test for object creatiprif for all classesc’ and statements

{p1}u = new® {pa}"N(yj := &)™ {ps} in ¢:

g z#null A z£u A 32 (Fresh(2/,u) A (GI A Ju. Pi(2)) | 2')

— Py(2) A L(w) ®)
g {z#null A z£u A 32" (Fresh(2/,u) A (GI A Ju. Py(2)) | 2')}

2. = E(2)

{GI A P3(2)} 9)

with z € LVar< andz’ € LVar'istObiect fragh,

3. The concurrent language

In this section we extend the languagava., to aconcurrentlanguageJava,,. by allowing dynamic
thread creation Again, we define syntax and semantics of the language, éoédomalizing the proof
system for the concurrent language.

3.1. Syntax

Expressions and statements can be constructed &s/&,. The abstract syntax of the remaining con-
structs is summarized in Table 7.

As we focus on concurrency aspects, all classeglaread classes in the sense dd@iva Each class
contains a pre-definestart-method that can be invoked only once for each object, lieguih a new

20 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

meth = m(u,...,u){ stm;return exp, .}
methyn == run(){ stm;return }
class = class ¢{meth...meth meth,n methsarn
clasSmain = class
prog == {class...class classmain)

Table 7. Java,,. abstract syntax

8= [[e]]g(a)’T € Val(o) —started(T U {€ o (o, 7, e.start(); stm) }, B)
(T'U{€o (a,T, estart(); stm)},0) — (T U {0 (a, T, stm), (3, 7m0t body i)} 0)

M5 Trun,es

CALL start

8= [[e]]gw)’T € Val(o) started(T U {& o («, T, e.start(); stm) }, B)
(T U{¢o(a,,estart(); stm)},0) — (T U {0 (a,T,stm)},0)

CALL

start

Table 8. Java,,. operational semantics

thread of execution. The new thread starts to execute thedefi@eedrun-method of the given object
while the initiating thread continues its own executionefim-methods cannot be invoked directly. The
parameterlesstart-method without return value is not implemented syntatilicgee the next section
for its semantics. Note, that the syntax does not allow fjadlireferences to instance variables. As a
conseguence, shared-variable concurrency is caused bijtaimous execution within a single object,
only, but not across object boundaries.

3.2. Semantics

The operational semantics dava,,. extends the semantics davg., by dynamic thread creation.
The additional rules are shown in Table 8. The invocation sffasc-method brings a new thread into
being (rule Q\LL 44+). Only the first invocation of thetart-method has this effect (ruIe/A(El_zfjf;t).5
This is captured by the predicatearted (T, 3) which holds iff there exists a stadky, 7o, stmy) . ..
(an, T, Stmy,) € T such that = ag. A thread ends its lifespan by returning fromea-method (rule

RETURN,, of Table 3)°

3.3. The proof system

In contrast to the sequential language, the proof systerii@ully has to accommodate for dynamic
thread creation and shared-variable concurrency. Befeseribing the proof method, we show how to
extend the built-in augmentation of the sequential languag

5In Javaan exception is thrown if the thread is already started buyabterminated.
The worked-off local configuratiof, 7, €) is kept in the global configuration to ensure that the thréad cannot be started
twice.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 21

3.3.1. Proof outlines

To get a complete proof system, for the concurrent languagadditionally have to be able to identify
threads We identify a thread by the object in which it has begun itscexion. We use the typehread
thus as abbreviation for the tyggbject. This identification is unique, since an object’s thread ban
started only once. During a method call, the callee threegives its own identity as an auxiliary formal
parametetthread. Additionally, we extend the auxiliary formal parametetler by the caller thread
identity, i.e., letcaller be of typeObject x Int x Thread, storing the identities of the caller object, the
calling local configuration, and the caller thread. Note tha thread identities of caller and callee are the
same in all cases but the invocation oftart-method. Theun-method of the initial object is executed
with the parameter&hread, caller) having the valueéwy, (null, 0, null)), whereqy is the initial object.
The boolean instance variabderted, finally, remembers whether the objecttart-method has already
been invoked.

Syntactically, each formal parameter ligin the original program gets extended {0 thread, caller).
Correspondingly for the caller, each actual parameterelist statements invoking a method different
from start gets extended tQé, thread, (this, conf, thread)). The invocation of the parameterlesart-
method of an object, gets the actual parameter ligy, (this, conf, thread)). Finally, the callee obser-
vation at the beginning of thein-method executestarted := true. The variablegsonf andcounter are
updated as in the previous section.

Remember that the caller observation of self-calls may rudifyp the instance state, as required in
Section 2.4.1. Invoking thetart-method by a self-call is specific in that, when the threadrisaay
started, the caller is the only active entity. In this casdab to be the caller that updates the instance
state; the corresponding observation has the ferm if ey = this A —started then z else e fi.

Since a thread calling a start method does not wait for rdiutrtontinues execution, the augmenta-
tion and annotation of such method invocations have the figrmh eq.start(2) {po}'¢" (stm)'e {p3} .

3.3.2. Verification conditions

Initial correctness changes only, in that the formal pataersehread andcaller get the initial values
and(null, 0, null). Local correctness is not influenced by the new issue of cosecy. Note that local
correctness applies now to all concurrently executingaitise

The interference freedom test Interference of aingle thread under its own execution remains the
same as for the sequential language. However, we addiiydmale to deal with invariance of properties
of a thread under the execution ofifferentthread. Note that assertions at auxiliary points do not kave
be shown invariant. Again, to distinguish local variabléthe different local configurations, we rename
those of the assertion which we show to be invariant.

An assertiory at a control point has to be invariant under an assignrjest € in the same class
only if the local configuration described by the assertionasactive in the computation step executing
the assignment. if andy/ := € belong to thesamethread, i.e.thread = thread’, then we have the same
antecedent as for the sequential language. If the assarithe assignment belongdiferentthreads,
interference freedom must be shown in any case except faelfiinvocation of thatart-method: The
precondition of such a method invocation cannot interfeith whe corresponding observation of the
callee. To describe this setting, we defiréf start(q, 7 := €) by caller = (this, conf’, thread’) iff ¢ is

22 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

the precondition of a method invocatieg.start(¢) and the assignment is the callee observation at the
beginning of theun-method, and byalse otherwise.

Definition 3.1. (Interference freedom)
A proof outline isinterference freeif the conditions of Definition 2.3 hold wittvaits_for_ret(q, i := €)
replaced by def
interleavable(q, 77 := €) = thread = thread’ — waits_for_ret(q, 7 := &) A

thread # thread’ — —self start(q, 7 := €).

The cooperation test The cooperation test for object creation is not influenceddying concurrency,
but we have to extend the cooperation test for communicdiionlefining additional conditions for
thread creation. Invoking thetart-method of an object whose thread is already started doekavet
communication effects. The same holds for returning fronaremethod, which is already included
in the conditions for the sequential language as for theitertion of the only thread. Note that this
condition applies now to all threads.

Definition 3.2. (Cooperation test: Communication)
A proof outline satisfies theooperation test for communicatioif the conditions of Definition 2.4
hold for the statements listed there with# start, and additionally in the following cases:

1. CALL 444 For all statementgp; } eg.start(2) {p2}'¢ (7, := €)' {p3} in classc with ey of
typec’, comm is given byFEy(z) = 2/ A—2'.started, where{gs } " (75 := &,)7@ {43} stm; return
is the body of therun-method ofc¢’ having formal parameterg, and local variables’ except
the formal parameters. The callee class invariant is= I,. Furthermore,f.omm is @', v =
E(2), Init(), foss I8 2.1 := E1(2), andfopss is 2.7 := E)(2)).

2. CALL®FP - For the above statements, the equations must additiomaitiwith the assertionromm

given by Ey(z) = 2’ A 2 .started, g = g3 = true, g1 and f,s; as above, and.o,, andf,s2 are
the empty statement.

4. Reentrant monitors

In this section we extend the concurrent language mitimitor synchronizationAgain, we define syntax
and semantics of the languagava,,,.;, , before formalizing the proof system.

As a mechanism of concurrency control, methods can be égectsynchronizedEach object has a
lock which can be owned by at most one thread. Synchronized nmetifath object can be invoked only
by a thread which owns the lock of that object. If the threadsdoot own the lock, it has to wait until
the lock gets free. A thread owning the lock of an object canungively invoke several synchronized
methods of that object, which corresponds to the notion@ftrant monitors.

Besides mutual exclusion, using the lock-mechanism foclssonized methods, objects offer the
methodswait, notify, and notifyAll as means to facilitate efficient thread coordination at thgect
boundary. A thread owning the lock of an object can blockfitaad free the lock by invokingvait
on the given object. The blocked thread can be reactivateghbyher thread owning the lock via the
object’s notify method; the reactivated thread must re-apply for the lod&rbdt may continue its ex-
ecution. The methodotifyAll, finally, generalizesiotify in that it notifies all threads blocked on the
object.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 23

modif = nsync|sync
meth = modifm(u,...,u){ stm;return exp, ..}
methyn = nsync run(){ stm;return }
methwaie := nsyncwait(){ ?signal; returngesocr }
methnotify ::= nsyncnotify(){ Isignal ; return }
methnotitgal := nsync notifyAll(){ Isignal_all; return }
methpredef = Methstart Methyait Methnoticy MethnotifyAll
class = class c{meth...meth methwn methpreqer}
clasSmain := class
prog == {class...class clasSmain)

Table 9. Javg,,., abstract syntax

4.1. Syntax

Expressions and statements can be constructed as in theysréanguages. The abstract syntax of the
remaining constructs is summarized in Table 9.

Methods get decorated by a modifiendif distinguishing betweenon-synchronizedndsynchro-
nizedmethods’. In the sequel we also refer to statements in the body of a sgnized method as being
synchronized. Furthermore, we consider the additionadgfieed methodsait, notify, andnotifyAll,
whose definitions use the auxiliary statemésiggnal, !signal_all, ?signal, andreturngetlock.S

4.2. Semantics

The operational semantics extends the semantidawd,,,. by the rules of Table 10, where theaQ_
rule is replaced. For synchronized method calls, the lodk@fcallee object has to be free or owned by
the executing thread, as expressed by the predicats, defined below.

The remaining rules handle the semantics of the monitor oglsthait, notify, andnotifyAll. In all
three cases the caller must own the lock of the callee oljalet CALL ,,,0nit0r-). A thread can block itself
on an object whose lock it owns by invoking the objeetist-method, thereby relinquishing the lock and
placing itself into the object’s wait set. Formally, the weetwait(T', o) of an object is given as the set
of all stacks inT" with a top element of the forrfw, 7, ?signal; stm). After having put itself on ice, the
thread awaits notification by another thread which invokembtify-method of the object. Thiignal
statement in theotify-method thus reactivates a non-deterministically chogeglesthread waiting for
notification on the given object (rula&NAL). Analogously to the wait set, the notified settified (T', o)
of a is the set of all stacks ifi with top element of the forn, 7, return geyocr), i.€., threads which have
been notified and are trying to get hold of the lock again. Adity to rule RETURN,;:, the receiver
can continue after notification in executimgturn ;.40 Only if the lock is free. Note that the notifier
does not hand over the lock to the one being notified but coe¢irio own it. This behavior is known
assignal-and-continuenonitor discipline [10]. If no threads are waiting on theexij thelsignal of the

" Javadoes not have the “non-synchronized” modifier: methods anesynchronized by default.
8Javas Thread class additionally support methods for suspending, resgyand stopping a thread, but they are deprecated
and thus not considered here.

24 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

m ¢ {start, run, wait, notify, notifyAll} modif m(@){ body } € Meth.

B=leolg™ € Val'lo) 7/ =mipela - [EE] (modif=sync) — ~ouns(T5)
- ALL
(T'U{€o (a,7,u = e.m(€);stm)},a) — (T U {£ o (a, T, receive u; stm) o (8,7, body)}, o)
m € {wait, notify, notifyAll}
8= [[e}]g(a)'T € Val®(o) owns(§ o (a, 7, e.m(); stm), 3)
. . L CALL monitor
(T'U{&o (a,7,e.m(); stm)}, o) — (T U {0 (a, 7, receive; stm) o (3, T,,IYTZ’, body,,)}, o)
—owns(T, 3)
RETURNqit

(T U {¢ o (a, 7, receive; stm) o (B, 7, returngeioer) }, 0) — (T U {E o (e, 7, stm)}, o)

SIGNAL

(T U {¢o (a,,!signal; stm)} U {& o (a, 7, Tsignal; stm’) }, o) —
(T U {0 (a,,stm)} U{E o (a, 7, stm')},0)

wait(T, o) = ()

- - SIGNAL gip
(T U {€0 (o, signal; stm)}, 7) — (T'0{£ 0 (a7, stm)})
T’ = signal(T,
signal(T’, o) SIGNALALL

(T U {&o (a,,lsignalall; stm)}, o) — (T" U {0 (a, T, stm)}, o)

Table 10. Javay,., Operational semantics

notifier is without effect (rule &NAL 4,). ThenotifyAll-method generalizes notify in that all waiting
threads are notified via tHeignal_all-broadcast (rule &NALALL). The effect of this statement is given
by definingsignal (T, o) as(T' \ wait(T,«)) U{E o (B, T, stm) | o (B, T, Isignal; stm) € wait(T,)}

Using the wait and notified sets, we can now formalizedtas predicate: A thread owns the lock
of 3 iff £ executes some synchronized methodipbut not itswait-method. Formallypwns(T, 3) is
true iff there exists a threagle T and a(g3, , stm) € & with stm synchronized and ¢ wait(T, 5) U
notified (T,). The definition is used analogously for single threads. Amriant of the semantics is
that at most one thread can own the lock of an object at a time.

4.3. The proof system

The proof system has additionally to accommodate for symghation, reentrant monitors, and thread
coordination. First we define how to extend the augmentaifafava,,., before we describe the proof
method.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 25

4.3.1. Proof outlines

To capture mutual exclusion and the monitor discipline,itis¢éance variabléock of type Thread x Int
stores the identity of the thread who owns the lock, if angetber with the number of synchronized
calls in its call chain. The initial lock valugee = (null,0) indicates that the lock is free. The instance
variableswait andnotified of type list(Thread x Int) are the analogues of theuit- and notified-sets

of the semantics and store the threads waiting at the mpméspectively those having been notified.
Besides the thread identity, the number of synchronizeld tabktored. In other words, these variables
remember the old lock-value prior to suspension which iwred when the thread becomes active again.
All auxiliary variables are initialized as usual. For vatu&read of type Thread and wait of type
list(Thread x Int), we will also writethread € wait instead of(thread,n) € wait for somen. If the
order of the elements of a sequence is not relevant, we afga\sat theoretical operations to them.

Syntactically, besides the augmentation of the previouticse the callee observation at the be-
ginning and at the end of each synchronized method body @itk := inc(lock) andlock :=
dec(lock), respectively. The semantics of incrementing the Ifiek(lock)[2" is (7 (thread), n+1) for
0 st (l0ck) = (v, n). Decrementinglec(lock) is inverse:[dec(lock)] ¢ with o, , (lock) = (a, n) is
(a,n — 1) if n > 1, andfree otherwise.

Instead of the auxiliary statements of the semantics, oatifin is represented in the proof sys-
tem by auxiliary assignments operating on thet and notified variables. That means, the auxiliary
?signal, !signal, and !signal_all statements get replaced by auxiliary assignnieistering thewait-
method gets the observationit, lock := wait U {lock}, free; returning from thewait-method observes
lock, notified := get(notified, thread), notified\ {get (notified, thread)}. For a threadv € Val"""®3 and
a list notified € Val"t(Threadxint) oot (notified, o) retrieves the valuéw, n) from the list. The seman-
tics assures uniqueness of the association. !digeal statement of thaotify-method is represented by
the auxiliary assignmentait, notified := notify(wait, notified), where the valuewotify (wait, notified)
is the pair of the given sets with one element, chosen nordatistically, moved from the wait into the
notified set; if the wait set is empty, it is the identity fuioct. Finally, the!signal_all statement of the
notifyAll-method is represented by the auxiliary assignmenified, wait := notified U wait, ().

4.3.2. \Verification conditions

Initial and local correctness agree with those fJava,,.. In case of notification, local correctness
covers also invariance for the notifying thread, as theceféé notification is captured by an auxiliary
assignment.

The interference freedom test Synchronized methods of a single object can be executedioently
only if one of the corresponding local configurations is wajtfor return: If the executing threads are
different, then one of the threads is in the wait or notifiedcdehe object; otherwise, both executing
local configurations are in the same call chain. Thus we asghat either not both the assignment and
the assertion occur in a synchronized method, or the asséstat a control point waiting for retur.

%In Java the implementation of the monitor methods are syntadyicait included in class definitions. Their augmentation and
annotation can be specified by special comments.
19T his condition is not necessary for a minimal proof systeut reéduces the number of verification conditions.

26 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Definition 4.1. (Interference freedom)
A proof outline isinterference freeif Definition 3.1 holds in all cases, such that either not hotnd
g occur in a synchronized method, @rs at a control point waiting for return.

For natification, we require also invariance of the assestifor the notified thread. We do so, as notifi-
cation is described by an auxiliary assignment executetidonotifier. That means, both the waiting and
the notified status of the suspended thread are representedibgle control point in theait-method.
The two statuses can be distinguished by the values afdhteandnotified variables. The invariance of
the precondition of the return statement in tiet-method under the assignment in thetify-method
represents the notification process, whereas invariantieabfssertion over assignments changing the
lock represents the synchronization mechanism. Infoonatbout the lock value will be imported from
the cooperation test as this information depends on theaghshavior.

The cooperation test We extend the cooperation test fdava,,. with synchronization and the invo-
cation of the monitor methods. In the previous languagesasisertioromm expressed, that the given
statements indeed represent communicating partnerse leutiient language with monitor synchroniza-
tion, communication is not always enabled. Thus the assardimm has additionally to capture enabled-
ness of the communication: In case of a synchronized methadtation, the lock of the callee object
has to be free or owned by the caller. This is expressed.lyck = free \ thread(z’.lock) = thread,
wherethread is the caller thread;’ is the callee object, and wheiieread(z’.lock) is the first component
of the lock value, i.e., the thread owning the lockzGf For the invocation of the monitor methods we
require that the executing thread is holding the lock. Retigr from thewait-method assumes that the
thread has been notified and that the callee’s lock is fre¢e tthat the global invariant is not affected by
the object-internal monitor signaling mechanism, whictejgresented by auxiliary assignments.

Definition 4.2. (Cooperation test: Communication)

A proof outline satisfies theooperation test for communicatipiiithe conditions of Definition 3.2 hold
for the statements listed there with the exception of the1Ccase, and additionally in the following
cases:

1. CaLL: For all statement$p; } u,e; := eg.m(€) {p2}' (71 := &) {p3}Walt (or such without
receiving a value) in classwith e, of type ¢/, where methodn ¢ {start, wait, notify, notifyAll}
of ¢ is synchronized with bodyg, }7%@ (7, :=)7 {3} stm; return e,.;, formal parameters
i, and local variables’ except the formal parameters. The callee class invariagt is 1.
The assertiorcomm is given by Ey(z) = 2z’ A (2'.lock = free V thread(z’.lock) = thread).
Furthermore,f.omm is @', v := E(z),lnit(ﬁ), fobs1 1S given by z.g; = El(z), and f,ps2 IS
2.ifh == E5(2'). If m is not synchronized;’.lock = free V thread(z’.lock) = thread in comm is
dropped.

2. CALL ponitor: FOrm € {wait, notify, notifyAll}, comm is Ey(z) = 2’ Athread(z’.lock) = thread.

3. RETURNyqit: For {qi} returngemoer {g2}" (75 = &)™ {g3} in a wait-method, comm is
Eo(z) = 2 A’ = E(2) A 2’ .lock = free A thread’ € 2/ .notified.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 27

5. Exception handling

In this section we extend the previous language witbeption handling Again, we define syntax and
semantics of the languagiava,.., before formalizing the proof system.

Note that concurrency and exception handling are quitegdhal features. From the proof-theoretic
point of view, the only relation between them is that exaaptiandling occurs in a concurrent setting,
i.e., interleaved. However, this kind of interleaving does have to be distinguished from interleaving
in other statements, that is mirrored in the absence of dalpeterference freedom test for exception
handling.

Of course, from the programming side, a thread can causéemibiread to throw an exception, or
it can communicate with other threads during exception lagdbut in the proof theory these are no
special exception-handling cases, but are covered by #wopis rules.

5.1. Syntax

We introduce additional statements for exception throvang handling, as shown in Table 9. The
abstract syntax of the remaining constructs is as for theéique language.

stm = x:=e|u:=-e|u:=new"
| wu:=-emle...,e)|em(e,...e)
| throw e | try stm catch (cu) stm .. .catch (cu) stm finally stm yrt
| €] stm; stm | if ethen st else stm fi | whilee do stmod. ..

Table 11. Java,. abstract syntax

5.2. Semantics

Exceptions allow a special form of error handling: If soneghunexpected or unallowed happens, the
executing thread may throw an exception, which is an objeah@rbitrary? type. The empty reference
cannot be throwA? If an exception has been thrown by a thread, then the normaldfaontrol gets
interrupted, and control tries to find the “nearest” exaapthandler handling exceptions of the given
type, as explained below.

The operational semantics extends the semanticaed,,.;, by the rules of the Tables 12 and
13, covering exception handling. In the semantics we useyibeObject, as already introduced for
augmentation and annotation, being the supertype of ateta Note that no objects of tybject can
be created, thus preserving monomorphism.

Throwing and catching exceptions are syntactically rewes] bythrow statements and by try-
catch-finally blocks. During the execution of a try-catatmafly block try stmg catch (¢y uy) stmy .. .;
catch (¢, uy,) stmy, finally stm,, 11 yrt, the corresponding local configuration contains an “opeg” t
construct like e.g.stmy; catch (¢1 u1) stmy .. .;catch (¢, uy,) stmy, finally stm,, 41 yrt (rule TRY). We

in Javaonly objects extendinhrowable may be thrown.
2In Javg aNullPointerException is thrown in this case.

28 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

7/ = T[exc— 7(exc) o null]
TRY

(T U {€o (a,T,try stmg; catch (¢ u1) stmy ... ;catch (¢, uy,) stmy, finally stm,, 41 yrt; stm’)}, o) —

(T'U{€o(a,7', stmo;catch (c1u1) stmy ...;catch (¢, un) stmy, finally stmy, 41 yrt; stm/)}, o)

0<n
FINALLY
(T'U {€o (a,,catch (c; u1) stmy . .. ;catch (¢, uy) stmy, finally stmy, 1 yrt; stm)}, o) —
(T U {€o (a,T, stmpt1yrt; stm)}, o)
T(exc) =foo...0ofkofBry1 T =Tlexco Boo... o fi][top Bri1]

if 7/(top) = null then stm’ = stm else stm’ = throw top; stm fi

(T U {0 (a,7,yrt; stm)}, 0) — (T U {0 (a, 7, stm’)}, o)

YRT

Table 12. Java,. Operational semantics (1)

call such blocks also statements, even if they are no statsnire a strong syntactical sen'se State-
ments in which no such open try blocks occur are cditedlosed

The semantics uses the local variabte of typeslist Object with initial valuee, to store thrown but
not yet caught exceptions. In nested try-catch-finallyesteents, each try-catch-finally statement has its
own element in the sequeneec which is used to remember if there is an exception throw i bhack
which is not yet caught; a null-reference means the absdrsreb an exception. The additional variable
top of type Object is used to store the value of an exception which should beawth

Entering a try-catch-finally block appends a null-refeeeiw the value oéxc, expressing that there
is no thrown but not yet caught exception in that block (ruker Y.

The execution of a try-catch-finally block consists of the@xion of the try statement until an
exception is thrown or the try statement terminates. If atepton is thrown, and if there is a corre-
sponding catch-clause handling exceptions of the givee, tifigen this catch-clause (ruleiRow;) and
the finally clause (rule INALLY with n = 0) get executed. Otherwise, if no exceptions have been thrown
(rules BNALLY) or if there is no corresponding catch clause (rukr®Ws), then the finally clause gets
executed. Also throwing an exception in a catch-clause (fulRows with n = 0) causes the control to
move to the finally block. Throwing an exception in the finatlause overwrites exceptions thrown in
the try- or catch-clauses (ruleHROWs).

Exiting a try-catch-finally block removes the last elemeindx@ and stores it in the variabtep (rule
YRT). If the value oftop is different from the null reference, i.e., if there was aotkin but not caught
exception in the block, then the exception gets rethrown.

Throwing an exception outside try-catch-finally blocks saithe control to return to the caller, and
to rethrow the exception there (ruleiRowy). Forrun-methods, throwing such an exception terminates
the executing thread (ruleHROWs).

BNote that for exampleatch (cz uz2) stm is not a statement.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 29

stm is try-closed stm’ = catch (¢1 u1) stmy .. .; catch (¢, uy) stmy, finally stmp, 1 yrt
1<i<n [[e]]g(a)'T € Val® V1<j<i. [[e}]g(a)’T ¢ Val™

7 = 7lui =[] 7]

THROW,
(T U {€o (v, 7, throw e; stm; stm'; stm”)}, 0) —
(T U{€o (a, 7', stmy;finally stm,, 41 yrt; stm”)}, o)
. , .
- = - [n Un n n+
stm is try-closed stm’ = catch (¢q u1) stmy .. .;catch (¢, uy,) stmy, finally stm, 1 yrt
[[e]g<a)’T # null 0<n V1i<i<n. [[e]]g(a)’r ¢ Val®
T(exc) = By o...0 B o Prr1 7' =rTlexc—fpo...0 B0 [[e}]g(a)"T]
THROW,
(T U {€o (v, 7, throw e; stm; stm’; stm”)}, o) —
(T U{€o(a, 7, stmpi1yrt; stm”)}, o)
stm is try-closed
]2 £ pull T(exc) = Bpo...0 B o Bri1 7' =rTlexc— Bpo...ofoe A
& + &
THROW;

(T U {& o (v, 7, throw e; stmyrt; stm/) }, o) — (T U {€ o (o, 7/, yrt; stm’) }, o)

stm’ is try-closed [[e]]?ﬂ)’T/ # null T = T[topH[[e}]g(ﬂ)’T/}

THROW,
(T'U{€o (a, T, receive uset; stm) o (3,7, throw e; stm’)}, o) —
(T U {€o (a, 7", throw top; stm)}, o)
stmis try-closed [e]2)7 % nuil
THROW;

(T U {(a, 1, throw e; stm;return)}, o) — (T U {(«, 7, return)}, o)

Table 13. Java,. Operational semantics (2)

If, due to a thrown exception, control returns to the cabiexd if the callee local configuration is the
only one in the stack which executes a synchronized methaldeofallee object, then its termination
gives the lock free like normal termination. This happengragvaluating the corresponding finally
clause within the method, if any. Note that returning frometimod due to exception handling does not
hand over the return value as specified in the return statemen

5.3. The proof system

The proof system has to accommodate additionally for ei@mepandling. First we define how to extend
the augmentation alava,,, before we describe the proof method.

5.3.1. Proof outlines

We extend the local and the global assertion language wéartéens of the formhastype(e, ¢) and
hastype(E, c), respectively, which state that the valueeafespectivelyFE is of typec; we need this con-

30 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

struct to be able to express which type of expression hasthemmun. Remember that the programming
language is monomorph, and thus the association is unique.

Augmentation and annotation of the previous section getneldd as follows: Exception throwing
gets augmented and annotated in the form

{po} throw u {p; }"" (7 := &)™ W {p,} .

Exception throwing and its observation are executed in glesinomputation step, in this order. The
assertionpg is the precondition of thehrow statement. Note that the control point annotated by the
postconditionps is not reachable. The assertipndescribes the auxiliary point directly after exception
throwing and before its observatigh.= €.

Furthermore, we extend the augmentation and annotationetiiod call statements, in order to
logically capture the control flow if control returns to thadler due to an exception, which gets rethrown:

o} ui=eg.m(€) {3 (=)
{pz}walt {pg}?ret <g4 = —»4>’?ret
{p4}exc {pB}rethrow <—»thr — —»thr>rethrow
{pe} -

Again, after control returns but before the correspondibgeovation the assertigiy should hold. If
control returns due to an exception, the assertipshould hold after the observation. In this case the
exception has to be rethrowm; describes the state directly after rethrowing the excaptiaop prior to

its observatiory,, := €. NoOte that this observation does not have a postconditiecadse the control
point after the observation is not reachable. Note furtteeenhat onlypg, po, p4, andpg annotate a
control points. If control returns due to normal method tiesation, the assertiopg should hold after
the observation, := éj.

The augmentation and annotation of try-catch-finally stetets is as shown in Definition 5.1. The
assertiorp is the precondition of the try-catch-finally block. The asise p.,, should hold after entering
the try-block and before the corresponding observafign := ¢, Where the assertiop, describes
the control point after observation, apf is the postcondition of the whole try-block. The pre- and
postconditions of the first and of the last catch blockszarandp) respectivelyp,, andp),. The finally
block has the pre- and postconditiong, andps, . After exiting the finally blockpy,: should hold prior
to the observation,; := €, of exiting. If there is an exception to be rethrown, the ass@mpe,. iS
required to hold after the observationyet, p.,, should hold after rethrowing and prior to its observation
e := €wmr- Again, this observation does not have a postconditionatmee the control point after
the observation is not reachable. Note thgf, pyrt, andps,, annotate auxiliary points. If there is no
exception to be rethrown, the assertigrshould hold after exiting the finally-block and executing th
corresponding observation.

Remember that the local variakdec of typelist Object with initial value e stores the thrown but not
yet caught exceptions in nested try-catch-finally blockse Variabletop stores the value of an exception
to be rethrown. We use the assertibnown as a shortcut forail(exc) # null, where the functiortail (v)
gives the last element of the sequencaNe use also the functiohead (v) which returns the sequence
v without its last element. Note that the variablescc andtop arelocal. In the concurrent setting, all
threads have their own exception mechanism, which are ardbgnt of each other.

1These functions are applied to non-empty sequences only.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 31

The augmentation for the built-in auxiliary variableck gets extended to capture the case when a
thread terminates the execution of a synchronized methedodaithrown exception: We additionally ob-
serve eachhrow statement outside try-catch-finally blocks in a synchredimethod by the assignment
lock := dec(lock).

Since the global invariant should describe object-extdoehavior, we required that instance vari-
ables occurring in the global invariant may be changed byemiasions of communication or object
creation only. Since the executionibfrow statements outside try-catch-finally blocks cause therabnt
to move to the caller, i.e., its effect is also object-extrthe observations of suchrow statements may
also change the values of instance variables referred teeiglobal invariant.

5.3.2. Verification conditions

Initial correctness and interference freedom agree withéHorJava,,.;,. Note that exception throwing
and handling do not modify instance states. Invariance wtidgr observations, which are multiple
assignments, is already included in the interference fneeiibst conditions of the previous section.

Local correctness Additionally to the local correctness conditions of thevimes section, we intro-
duce new conditions to cover the control flow of exceptiondiiag.

Entering a try block pushes an empty reference on the exceptack (rule Ry); thus the precon-
dition of a try-catch-finally statement should imply the gwadition of the try block after entering the
block and executing the observation of ti¢ keyword as stated in Condition (11). Furthermore, the
precondition of the observation should hold directly aétetering the block, prior to the observation, as
formalized in Condition (10).

If no exceptions has been thrown in a try or in a catch bloci&nthfter termination of the block
execution continues in the finally block (ruleNALLY); the postcondition of each try and catch block
should imply the precondition of the finally block, as regditby Condition (12).

Exiting the finally block (rule YRT) is covered by the Conditions (13)-(15). Condition (13)uass
that p,. holds after exiting the finally block but before its obseimat Remember that in case of a
thrown but not yet caught exception the exception is stonethé variabletop, and becomes rethrown
after the block; in this case the assertja. is required to hold after the observationyef and prior to
rethrowing, as stated in Condition (15). If no exceptionsstrhe rethrown, Condition (14) assures that
the assertion’ is satisfied after the termination of the try-catch-finallgdi.

If an exception has been thrown in a try block (rulesRDw; and THROW,), then the precondition of
thethrow statement must imply the precondition of the correspondatgh block, if any, after throwing
and its observation, and the precondition of the finally blotherwise; these cases are covered by the
Conditions (17) and (19). Satisfaction of the precondgiofithe corresponding observations is covered
by the Conditions (16) and (18). The conditions for exceptiorowing in a catch block, in a finally
block, or outside try-catch-finally blocks in run methods arodifications of the above conditions.

Remember that if an exception is thrown but not yet caugbtettecution will not continue after the
try-catch-finally block, but move to the next outer try-datmally block or to the caller configuration.
The latter (rule HROWy) is covered by the conditions of the cooperation test foepkon handling.

32 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Definition 5.1. (Local correctness: Exception handling)
A proof outline islocally correctunder exception handling, if for all statements: of the form

{p} try {p}™ (y =)™ {po} stmay; (PO}
catch(ey uq) {;m} stmi; {p|}
catch(cp un) {pn} stmn; {PL}
finally {pin} stmein {Phn}
yrt {pyn P (Fyrt = Ere)"
{pexc}exc {pthr}rethrow <gthr — é»thr>rethrow
{r'}
and for all0 < i <n,
Er {p} exc:=exconull {pyy}, (10)
Er {p} exc:=exconull; iy := €y {P0}, (12)
Fc Di = Dfin, (12)
Er {Pfin} exc, top := head(exc), tail(exc) {pyr} (13)
Er {psin A tail(exc) = null} exc, top := head(exc), tail(exc); Gyt := €yt {p'}, (14)
Er {Pfin A tail(exc) # null} exc, top := head(exc), tail(exc); Gyt := Eyrt {Pexc} (15)

and for all statement$go} throw e {q; }'"W (7 := &)W in stmy,, which do not occur in an inner
try-catch-finally block insidetm:,, and for alll <i < n,

= {qo A e # null A hastype(e, ¢;) AV1 < j < i.—hastype(e,cj)} uw;:=e {q} (16)
= {qo A e # null A hastype(e, ¢;) AV1 < j < i.—hastype(e,cj)} u; :=e; ¥ := € {p;} (17)
Er {go N e#null AV1 < j <n.—hastype(e,c;)} exc:=head(exc)oe {q1} (18)
Er {go N e#null AV1 < j < n.—hastype(e, c;)} exc := head(exc) o e; ¥ := € {pfin} - (19)

For statementgqo} throw e {q; }"W (77 := &)W in catch blocks, (18) and (19) are required to hold
without the antecedentl < j < n.—hastype(e, ¢;). Forthrow statements in finally blocks, (18) and
(19) should hold without the above antecedent and wijfireplaced by, . The above conditions (16)-
(19) should hold also for statements of the fofgg } &% {q; }"eoW (7 .= &)W where the expression
e in the conditions is replaced hgp. Finally, for statements of the forfyy} throw e {g; }"% (i :=
g)throw outside try-catch-finally blocks in eun-method with bodystm’; return, (18) and (19) should
hold without the above antecedent, wjif, replaced bypre(return), and without the update ekc. The
above conditions must hold also for all statemefais} {g; }"®"°Y (7 := €)™MW where the expression
e in the conditions is replaced hgp.

The cooperation test To cover exception handling, we extend the cooperation destitions for
Javg,,., with additional conditions, collected in tlewoperation test for exception handlinghe co-
operation test for exception handling covers exceptioovtig if it is not in the scope of any try-catch-
finally block, i.e., if it causes the control to return to thedler configuration.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 33

Assume a method call and a throw statement outside any tci+€mally block in the invoked
method:

caller: ;== eg.m(8) ... {pi}"at {p2}7 (Ga:=a)™® {p3}™°
callee: oo Aa} throwe {g}OW (g3 := &;)throw

We assume that the global invariant, the preconditipof the throw statement, and the assertiqrof
the caller at the control point waiting for return hold priorexception throwing. Exception throwing
communicates the identity of the thrown exception. Digeafter exception throwing, the preconditions
p2 andgs of the corresponding observations must hold, as require@dndition (20) of the coopera-
tion test below. After the throw statement, its observatiamd the observation of the caller have been
executed, the global invariant and the postcondifigrof the caller observation is required to hold, as
formalized in Condition (21). Note that the control pointeafthe callee observation is not reachable,
thus the assertion at this point is not required to hold.

Let the fresh logical variables and 2z’ denote the caller respectively the callee object. Sincsethe
objects are in general different, the cooperation testiafitated in the global language. Local assertions
are expressed in the global language using the lifting gubieh. For example, the assertigh of the
caller is expressed on the global level By(z) = p;[z/this]. To distinguish local variables of caller
and callee, we rename those of the callee; the result we eldnyoprimed variables, expressions, and
assertions. For example, to reason ahgun the cooperation test we rename all local variableg;in
resulting inqg}, whereQ’ (2') = q}[%'/this] is ¢] expressed in the global language.

That the identity of the thrown exception is stored in thelo@riabletop of the caller is represented
by the assignmertbp := E’(z’). The callee and the caller observations are representeuelgssign-
mentsz’.i% := E4(2') andz.gy := Eq4(z), respectively. Note that if the invoked method is synchzedi
than the observatior .7, := Ej4(2') decrements the value of the lock gfby the built-in augmentation.

We use the assertiammm to express that the local configurations describegibgndq, are indeed
communication partners: B¥,(z) = 2’ we require that the value af is indeed the callee object of
the invocationey.m(€). Remember that method call statements must not contaenicestvariables, and
that formal parameters must not be assigned to. That mdamsatues ofey, and the values of the
formal and actual parameters do not change during methdda¢iem. The assertion’ = E(z) states
that the values of the formal and of the actual parameteseagvhich implies that the primed built-in
auxiliary formal parametetaller’ of the callee storegz, conf, thread) identifying the caller. l.e., the
assertionFy(z) = 2/ A @ = E(z) assures that the local configurations are in caller-caééstionship.
Furthermore E’(2") # null expresses that the exception to be thrown is not the nulieede, i.e., that
exception throwing is enabled.

Definition 5.2. (Cooperation test: Exception handling)

A proof outline satisfies theooperation test for exception handling for all statementsu,.; :=
eg.m (&) (stm)'c@l {p walt rp17ret () — g,) 1318 (or such without receiving a value) occurring
in classc with m # start and ey of typec’, and for all{q; } throw e {gz YW (775 := &3)1"W in (@) of
¢ which are not inside any try-catch-finally statement,

E¢ {GIAP(2) NQ\(2') Acomm} top := E'(2) {Py(2) AQY(2))} and (20)
=g {GIAP(2) AQy(Z) Acomm} top:= E'(2'); 2.4 := E4(2'); 2.4 := Es(2) (21)
{GI N Ps(2)}

34 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

must hold with distinct fresh logical variablese LVar¢ andz’ € LVar, and withcomm given by
Eo(z2) =2 N = E(z) ANE'(2) # null A z # null A 2/ # null.

Furthermore, the same conditions must hold also for statened the form{q; }8%¢{ g, } W (775 .=
&)W ynder the same requirements, wheiia the conditions is replaced hp.

6. Weakest precondition calculus

The verification conditions of the previous sections wemenidated as standard Hoare-triples. In this
section we define their formal semantics, given by means oéakest precondition calculus. To do
so, first we introduce substitutions in Section 6.1, beferéormulating the verification conditions for

Java,. in Section 6.2 to logical implications, using the subsitins.

6.1. Substitution operations

The verification conditions defined in the next section imedhree substitution operations: the local, the
global, and the lifting substitution. The lifting substitin is already defined in Section 2.3. The local
substitution will be used to express the effect of assignmieniocal assertions. The global substitution
is used similarly for global assertions.

The local substitutionp[é/7] is the standard capture-avoiding substitution, replaégnthe local
assertionp all occurrences of the given distinct variablgdy the local expressions. We apply the
substitution also to local expressions. The following lesrempresses the standard property of the above
substitution, relating it to state-update. The relatiotwleen substitution and update formulated in the
lemma asserts thafé/y] is theweakest preconditioof p wrt. to the assignmenf := €. The lemma is
formulated for assertions, but the same property holdsxXpressions.

Lemma 6.1. (Local substitution)
For arbitrary logical environments and instance local statés,, ., 7) we have

W, Oipty T |:£ p[é’/g’] Zﬁ W, Ot [gH[[é]]?UmS“T], T[gH[[é»]]Z7Ji'rLstaT] |:£ p.

The effect of assignments is expressed on the global levehéglobal substitutionP[E/z.f],
which replaces in the global assertiéhthe instance variableg of the object referred to by by the
global expressionﬁ?. To accommodate properly for the effect of assignmentsjghpwe must not only
syntactically replace the occurrences; of the instance variables, but also all thaiiasesE’.z;, when
z and the result of the substitution appliedHb6refer to the same object. As the aliasing condition cannot
be checked syntactically, we define the main case of theisutiust by a conditional expressiof?]f

(E'.x)[E/2.7] = (if E'[E/2.7] = z then E; else (E'[E/2.7]).z; i) .

The substitution is extended to global assertions homohicafly. We will also use the substitution
P[E /z.g) for arbitrary variable sequencegspossibly containing logical variables, whose semantics is
defined by the simultaneous substitutidits, /z.z] and [E,, /i, whereZ and @ are the sequences of
the instance and logical variablésof 7, and E, and E,, the corresponding subsequencesﬁ)fand

5 ocal variables are viewed as logical ones in the globalrtiesdanguage.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 35

[Eu /u] is the usual capture-avoiding substitution like in the leegstitution; if only logical variables
are substituted, we simply write[E'/]. That the substitution accurately catches the semantizite,
and thus represents the weakest precondition relatiorpiessed by the following lemma:

Lemma 6.2. (Global substitution)
For arbitrary global states and logical environments referring only to values existing in we have

w,0 =g P[E/z.] iff W'io' =g P,

" w,a]

wherew' = w[g—[E]S7] ando’ = o[[2]5 .5 —[E]4

6.2. Verification conditions

In the local verification conditions, the effect of an assigmty := €is expressed by substitutigfor i/
in the assertions. In the global conditions of the coopenatiést, the effect of communication, changing
local states only, is expressed by simultaneously subistitihe variables, which will store the result,
by the communicated values. l.e., for the case of methodtballformal parameters get replaced by the
actual ones expressed in the global language. The effeloéafller observatioty/ := &)@ to a global
assertionP is expressed by the substitutid £ (z)/z.7j], wherez represents the caller. The effect of
the callee-observation is handled similarly. Note the prflest communication takes place, followed by
the sender, and then the receiver observation. To destibeommon effect, we first have to substitute
for the receiver, then for the sender observation, and fifaH communication. For method call, we
additionally have to substitute for the initialization bktlocal variables.

For readability, in the following definitions we will use tmetationp o f with f = [¢/y] for the
substitutionp[é/y]; we use a similar notation for global assertions. Note thatdubstitution binds
stronger than logical operators.

Definition 6.1. (Initial correctness)
A proof outline isinitially correct, if

g InitState(2) A (V2. 2 = nullv z = 2') — (22)
PQ(Z) o finit A (GI A P3(Z) A Ic(z)) o fobs o fim't)

wherec is the main class{p,}** (ij, := &)?° {ps} stm; return is the body and’ the local variables
of therun-method ofc, z € LVar¢, andz’ € LVar®bect, Furthermore,

finie = [z, (null,0, null) /thread, caller|[Init(¥) /7] , and
Jobs = [EQ(Z)/Z'g2]'

Definition 6.2. (Local correctness: Assignment)
A proof outline islocally correct if for all multiple assignment$p,} 4 := € {p2} in classc, being an
unobserved assignment, an alone-standing observatiam, @vserved assignment,

|:ll b1 —p2° fass s (23)

with fuss = [€/7].

36 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Definition 6.3. (Local correctness: Exception handling)
A proof outline islocally correctunder exception handling, if for all statements: of the form

{r} try Py} (Gary =)™ {po} stmuy; {pp}
catch(cy ug) {;} stmy; {p}}
catch(cy, uy,) {pn} stmn; {0}
finally {pfin} stman {Ph,}
yrt {pyrt}yrt <gyrt = gyrt>yrt
{pexc}exc {pthr}rethrow <gthrow — é»throw>rethrow
'}
and for allo <i <n,
Er P — puylexconull/exc] A po[€iry/Uiry][exc o null fexc] (24)
Fc pi— Dhin, (25)
£ Phin — Pyre|head(exc), tail(exc) /exc, top] (26)
Er (phin A tail(exc) = null) — p'[€/Pyrt)[head (exc), tail (exc) /exc, top] , (27)
Er (phin A tail(exc) # null) — pexc[€rt/Tyrt][head (exc), tail(exc) /exc, top] , (28)

and for all statement$go} throw e {g1 }"W (57 := &)W in stm,, which does not occur in an inner
try-catch-finally block insidetmy,, and for alll <i < n,

=z (qo A e # null Ahastype(e, ¢;) AV1 < j < i.—hastype(e,c;)) — (29)
a[e/ui] A pi[€/gle/ui]
Er (g AN e#null AV1 < j < n.—hastype(e,c;)) — (30)

g1[head(exc) o e/exc] A psin[€/7][head(exc) o e/exc] .

For statementgqy} throw e {q; }"W (77 := &)W in catch blocks, (30) is required to hold without
the antecedentl < j < n.—hastype(e,c;). Forthrow statements in finally blocks, (30) should hold
without the above antecedent and wiify replaced byp; . The above conditions (29) and (30) should
hold also for statements of the forfgy} {g; }""W (37 := &)W 'where the expressionin the condi-
tions is replaced byop. Finally, for statements of the fordyg} throw e {q; }"W (7 := &)W outside
try-catch-finally blocks in aun-method with bodystm/; return, Condition (30) should hold without the
above antecedent, without the update=xf, and with the assertiopy, replaced bypre(return). For

statementg qg} {q; } €W (i := &)"¢W the same conditions must hold where we additionally replace
e by top.

Definition 6.4. (Interference freedom)

A proof outline isinterference freeif for all classese, and for all multiple assignmengg := € with
preconditionp in ¢,

’:E p/\[c_>lcofassv (31)

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 37

with f,ss = [€/7]. Furthermore, for all assertiogsat control points ire, such that either not bothand
g occur in a synchronized method, s at a control point waiting for return,

- pAd Ainterleavable(q, i := €) — ¢/ o fass - (32)

Definition 6.5. (Cooperation test: Communication)
A proof outline satisfies theooperation test for communicatioif

g GIAPi(2) AQY(2)) Acomm A z#null A 2/ #null —
(Pa(2) AQ5(2)) © feomm A
(GI A P3(2) AQ5(2")) © fobsz © fobst © feomm (33)
holds for distinct fresh logical variablese LVarc andz’ € LVar<', in the following cases:

1(a) CALL: For all calls{p; } e := eo.m(&){pa}' A (77, := &)'@ {ps}Wal (or such without receiv-
ing a value) in clasg with ¢, of type ¢/, where methodn ¢ {start,wait, notify, notifyAll} of
¢ is synchronized with bodyqs} 7" (77, := &)7%@ {43} stm; return e,;, formal parameters,
and local variables’ except the formal parameters. The callee class invariagt is I.. The
assertiorcomm is given by Eg(z) = 2’ A (z'.lock = free V thread(z".lock) = thread) Further-
MOre, feomm = [E(2), Init(3) /@, 7], fors: = [E1(2)/2.01), forsz = [E4(2')/2). If m is not
synchronized;z’.lock = free \ thread(z’.lock) = thread in comm is dropped.

(b) CALL ponitor: Form € {wait, notify, notifyAll}, comm is given byE(z) = 2/ Athread(z.lock) =
thread.

(€) CALL stqrt: FOrm = start, comm is Fy(z) = 2’ A -2’ .started, where
{q2}7 (i := &)@ {43} stm; return is the body of theun-method ofc’.

(d) CALL®"P . Form = start, additionally, (33) must hold witkomm given by Ey(z) = 2/ A

start

2/ .started, g9 = q3 = true, and f.o.mm and f,;s0 are the identity functions.
2 (a) ReTURN: For all method call statements

e = eo-m(€) (G = &) {p " {p2} " (74 := €)™ {ps} (or such without receiv-
ing a value) occurring ir: with ¢ of type ¢/, such that method: (@) of ¢ has the return state-
ment{q: } return e {g2}"" (3 := &)"* {3}, Equation (33) must hold withomm given by
E(]() :_? T E() and wherefcomm = [E;"et()/uret] Jobst = [E3()/Z] and
fovsz = [Ea(2)/2.44][null/top].

(b) RETURNyqit: FOr{q1 } return sesioer {q2}"™® (4 := &) {g5} in await-methodcomm is Ey(z) =
2 AN = E(2) A 2 lock = free A thread’ € 2'.notified.

(C) RETURN,,: For {q:} return {g2}""® (i3 := €3)"™ {¢3} occurring in arun-method,p; = ps =
p3 = true, comm = true, and furthermoref ..., andf ;52 the identity function.

Definition 6.6. (Cooperation test: Instantiation)
A proof outline satisfies theooperation test for object creatiornif for all classesc’ and statements

{p1}u:=new® {p2} V(7 := &)"W{ps} in ¢
g z#null A zu A 32, (Fresh(2,u) A (GI A Ju. Pi(2)) | 2') —
Py(z) AMe(u) A (GI A P3(2)) © fops (34)
with z € LVar¢ andz’ € LVar'stObiect fresh , and wherg,,, = [E(2)/2.7].

38 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Definition 6.7. (Cooperation test: Exception handling)

A proof outline satisfies theooperation test for exception handling for all statementsu,.; :=
eg.m (&) (stm)'c@l {p ywait rp17ret (. — 2,)?®ps} (or such without receiving a value) occurring in
classc with m, # start andey of type, and for all{q;} throw e {go }!"W (73 := &)W in m(a) of ¢
which is not in the try-block of any try-catch-finally statem,

Eg GIAP(2) ANQ(Z') A comm
- (P2(Z) A Qé(z/)) o fthrow A (GI A P3(Z)) © fob32 o fobsl o fthrow

must hold with distinct fresh logical variablese LVar¢ andz’ € LVar®, and withcomm given by
Eo(z) = 2 ANl = E(z) ANE'(2) # null A z # null A 2/ # null. Furthermore fis,o. is [E'(2')/top],
fobs 1S [E4(2))/2 5], and fopss is [E4(2)/2.94]. Rethrowing outside try-catch-finally blocks in run
methods is similar.

7. Soundness and completeness

This section explains the corner points of soundness angletemess of the proof method. For the
formal proofs see [1, 3].

Given a program together with its annotation, the proofewysstipulates a number of induction
conditions for the various types of assertions and progranstcucts. Soundnessf the proof system
means that for a proof outline satisfying the verificatiomditons, all configurations reachable in the
operational semantics satisfy the given asserti@unpletenessonversely means that if a program does
satisfy an annotation, this fact is provable. For convergertet us introduce the following notations:
Given a progranprog, we will write ¢, Or justy for its annotation, and writgrog = ¢, if prog
satisfies all requirements stated in the assertionspand - ¢/, if prog’ with annotationy’ satisfies the
verification conditions of the proof system:

Definition 7.1. Given a progranprog with annotationp, thenprog |= ¢ iff for all reachable configura-
tions (T, o) of prog, for all (a, 7, stm) € T, and for all logical environments referring only to values
existing ino:

1. w,o(), T =r pre(stm), and
2. w,0 =g GI .

Furthermore, for all classes objects € Val(o), and local states’:
3. w,0(8),7 e I .

For proof outlines, we writerog’ = ' iff prog’ with annotationy’ satisfies the verification conditions
of the proof system.

In the following sections we discuss the basic ideas of thimdess and completeness proofs.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 39

7.1. Soundness

Soundness, as mentioned, means that all reachable cotifigardo satisfy their assertions for an an-
notated program that has been verified using the proof dondit The following theorem states the
soundness of the proof method.

Theorem 7.1. (Soundness)
Let prog’ be a proof outline with annotatiop,,.

If prog’ b @pogr then prog’ = ©prgr -

The soundness proof is basically an induction on the lenfitomputation, simultaneously on all
three parts from Definition 7.1. For the inductive step, wsuase that the verification conditions are
satisfied and assume a reachable configuration satisfyigrthotation. We make case distinction on
the kind of the next computation step: If the computatiorp ssgecutes an assignment, then we use
the local correctness conditions for inductivity of the @xting local configuration’s properties, and the
interference freedom test for all other local configuratiamd the class invariants. For communication,
invariance for the executing partners and the global iaveiris shown using the cooperation test for
communication. Exception handling and communicatiorifitkees not affect the global state; invariance
of the remaining properties under the corresponding obtiens is shown again with the help of the
interference freedom test. Finally for object creatiomaiiance for the global invariant, the creator local
configuration, the created object’s class invariant ismskhy the conditions of the cooperation test for
object creation; all other properties are shown to be iavarnising the interference freedom test.

7.2. Completeness

Next we conversely show that if a program satisfies the requents asserted in its proof outline, then
this is indeed provable, i.e., then there exists a proofirmutivhich can be shown to hold and which
implies the given one:

Vprog. prog = Oprog = Hprog'. prog' F ©progr N = Pprog’ — Pprog -

Given a program satisfying an annotatiprog = ¢4, the consequent can be uniformly shown, i.e.,
independently of the given assertional pajt.,, by instantiatingp,,..,’ to the strongest annotation still

provable, thereby discharging the last claéisep,,,,v — ¢prg. Since the strongest annotation still
satisfied by the program corresponds to reachability, tggdkeompleteness is to

1. augment each program with enough information (see Dieiinit.2 below), to be able to

2. express reachability in the annotation, i.e., annotagtogram such that a configuration satisfies
its local and global assertions exactly if reachable (sd@nien 7.3 below), and finally

3. to show that this augmentation indeed satisfies the vatiifit conditions.

We begin with the augmentation, using the transformatiomfGection 5.3 as starting point, where
the programs are augmented with the specific auxiliary bbega To facilitate reasoning, we introduce
an additional auxiliary local variablec, which stores the current control point of the execution lotal

40 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

configuration. Given a function which assigns to all conraints unique location labels, we extend each
assignment with the updatec := [, wherel is the label of the control point after the given occurrence
of the assignment. Also unobserved statements are extenitiedthe update. We writé = stm if |
represents the control point in front efin.

The standard way for completeness augmentation is to addmation into the states about the
way how it has been reached, i.e., thistory of the computation leading to the configuration. This
information is recorded using history variables.

The assertional language is split into a local and a globadlleand likewise the proof system is
tailored to separate local proof obligations from globaé®iio obtain a modular proof system. The
history will be recorded in instance variables, and thusédastance can keep track only of its own
past. To mirror the split into a local and a global level in greof system, the history per instance is
recorded separately famternal andexternalbehavior. The sequence of internal state changes local to
that instance is recorded in thexal history and the external behavior in tbemmunicatiorhistory.

The local history keeps track of the state updates. We stdieeilocal history the updated local and
instance states of the executing local configuration andHject in which the execution takes place.
Note that the local history stores also the values of the-buduxiliary variables, and thus the identities
of the executing thread and the executing local configunatio

The communication history keeps information about the kificcommunication, the communi-
cated values, and the identity of the communication pastivarolved. For the kind of communica-
tion, we distinguish as cases object creation, ingoing angaing method calls, and likewise ingoing
and outgoing communication for the return value. We use éieJs_. {new’} U [J,,c v({!m, ?m} U
{Ireturn, ?return, ! throw, ? throw} of constants for this purpose, whet@nd. M are the sets of all class
and method names, respectively. Notification does not epifet communication history, since it is
object-internal computation. For the same reason, we deodrd self-communication ih.,,,,,. Note
in passing that the information stored in the communicatigtory matches exactly the information
needed to decorate the transitions in order to obtain a cetiqpwal variant of the operational semantics
of Section 4.2. See [4] for such a compositional semantics.

Definition 7.2. (Augmentation with histories)
Every class is further extended by two auxiliary instanceabdesh;,;; andh ..., both initialized to
the empty sequence. They are updated as follows:

1. Each multiple assignmegt:= € in each clasg that is not the observation of a method call or of
the reception of a return value is extended with

hinst := hinst © ((fa ’D‘)[é‘/m))

whereZ are the instance variables of classontaining alst .., but withouth,,.;, andv are the
local variables. Observationg:= € of u..; := ey.m(€’) and of the corresponding reception of
the return value get extended with the assignment

hinst := if (eg = this) then hj,q else hys o ((Z,0)[E/7]) fi,

instead, ifm # start. For eg.start(¢'); (77 := €)' we use the same update with the condition
ep = this replaced byey = this A —started.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 41

2. Every observation of communication, object creationpfoa throw statement outside try-catch-
finally blocks in a method different fromun gets extended by

heomm := if (partner = this) then h o, €lse homm © (sender, receiver, values) fi ,

where the expressiomartner, sender, receiver, andvalues depend on the kind of communication

as follows:
communication H partner | sender receiver ‘ values
U = new® null this null new® u, thread
Uret := €9.m(€) || €o this €o Im(€)
receive return e €o this if top = null then
? return U, thread
else 7 throw top, thread fi
receive callm(@) || caller_obj | caller_obj | this m()
return €,e¢ caller_obj | this caller_obj | !return e, thread
throw e caller_obj | this caller_obj | !'throw e, thread

with caller_obj given by the first component of the variakigler.

—

In the update of the history variable,;, the expressioriZ, @)[€/y] identifies the active thread and
local configuration by the local variablesread andconf, and specifies its instance local state after the
execution of the assignment. Note that especially the satiiehe auxiliary variables introduced in
the augmentation are recorded in the local history. In thieviing we will also write (o, 7) when
referring to elements df;,,;;. Note furthermore that the communication history recotsis the identities
of the communicating threads walues.

Next we introduce the annotation for the augmented program.

Definition 7.3. (Reachability annotation)
We define the following annotation for the augmented program

1. w,0 ¢ GI iff there exists a reachablel’, o’) such thatVal(c) = Val(o'), and for alla €
Val(a), o(a)(heomm) = o’ (@) (hcomm,)-

2. For each class letw, 0,,,, 7 = 1. iff there is a reachabléT’, o) such thav («) = o,,,,,, Where
a = 0,,,(this). For each class and methodn of ¢, the pre- and postconditions of are given
by I..

3. For assertions at control points, o,,.,,7 . pre(stm) iff there is a reachablé€T, o) with
o(a) = 0,,, fora = o, (this), and(«, 7, stm; stm’) € T

4. For preconditiong of observations observing a statement: which is not an assignment, let
w,0,,4,T Ec piff there is a reachabléTl’, o) with (o) = 0,,,, for a = o, (this), and with

(o, 7', stm; stm’) € T enabled to execute resulting in the local statdirectly after the execution
of the statement but before its observation.

42 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

For the reception of a method call, instead of the existefitleecenabled o, 7/, stm; stm’) € T,
we require that a call of the method afis enabled inT, o) with resulting callee local state
directly after communicatids.

It can be shown that these assertions are expressible irsfiggtian language [56]. The augmented
program together with the above annotation build a prodfreuthat we denote byrog’.

What remains to be shown for completeness is that the prdtfiewrog’ indeed satisfies the verifi-
cation conditions of the proof system. Initial and localregtness are straightforward.

Completeness for the interference freedom test and theecatign test are more complex, since,
unlike initial and local correctness, the verification citietds in these cases mention more than one
local configuration in their respective antecedents. Nbw,reachability assertions pfog’ guarantee
that, when satisfied by an instance local state, theistsa reachable global configuration responsible for
the satisfaction. So a crucial step in the completenesd fapmterference freedom and the cooperation
test is to show that individual reachability of two local fignrations implies that they are reachable
in acommoncomputation. This is also the key property for the historgialades: they record enough
information such that they allow to uniquely determine theyve configuration has been reached; in
the case of instance history, uniqueness of course, onlgrassfthe chosen instance is concerned. This
property is stated formally in the following local mergirgmma.

Lemma 7.1. (Local merging lemma)
Assume two reachable global configuratiafi§, o1) and (Ts, o9) of prog’ and(«, 7, stm) € Ty with
a € Val(o1) N Val(oz). Thenoy(a)(hinst) = o2(a) (hinst) implies (a, 7, stm) € T.

For completeness of the cooperation test, connecting twsilply different instances, we need an
analogous property for the communication histories. Arguin the global level, the cooperation test
can assume that two control points are individually realghbbt agreeing on the communication histo-
ries of the objects. This information must be enough to ensommon reachability. Such a common
computation can be constructed, since the internal cortipnsaof different objects are independent
from each other, i.e., in a global computation, the localavédr of an object is interchangeable, as long
as the external behavior does not change. This leads toltbeiftg lemma:

Lemma 7.2. (Global merging lemma)

Assume two reachable global configuratidf$, o1) and (7%, o2) of prog’ anda € Val(o1) N Val(o2)
with the propertyo (@) (hcomm) = o2(a)(hecomm). Then there exists a reachable configurati@io)
with Val(o) = Val(o2), o(a) = o1(«), ando () = oo(B) for all 5 € Val(o2)\{a}.

Note that together with the local merging lemma this imptfet all local configurations X7}, o)
executing in and all local configurations itil», o) executing in3 # « are contained in the commonly
reached configuratiofi’, o).

This brings us to the completeness result:

Theorem 7.2. (Completeness)
For a progranprog, the proof outlineprog’ satisfies the verification conditions of the proof systenmfro
Section 5.3.

%8For the precondition of the observatisfin, at the beginning of theun-method of the main clasé[’, o) can also be the initial
configuration before the execution of the observation.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 43

8. Conclusion

In this work we presented a tool-supported assertionalfprathod for aJavasublanguage including
multithreading and exception handling. We introduced #mgiage and the proof system incrementally
in four steps: We started with sequentialJavasublanguage and its proof system. In the next step we
included dynamic thread creation, resulting imailtithreadedsublanguage. Finally we extended the
language and the proof system to commwnitor synchronizatiomndexception handlingThe resulting
proof system is sound and complete.

Tool support is given by the proof condition generat@rger The tool takes an augmented and
annotatedJavaprogram, a so-called proof outline, as input and generdites/érification conditions,
which assure invariance of the annotation. We use the thepreverPVS to verify the conditions.

Future work There are a lot of challenging and interesting researclesapithe field, which need fur-
ther analysis. The incremental development illustratas tooextend the language and the proof system
to deal with additional language features. As to future waevk plan to extend the programming lan-
guage by further constructs, like inheritance and subtypifve are also interested on the development
of a compositional proof system. Currently, the proof sysfe not compositional in that it contains
no explicit composition rules for combining proofs of “sapstems” into a proof of a composed sys-
tem. However, the assertions used in the proof system fahevstructure of the language already —we
called it modular— in that it is presented at three diffedernels of the language: at the global level, at
the level of the classes, and finally at the local level insitigle methods. Related to this separation of
concerns, the proof obligation are cleanly split into lggadof obligations, those dealing with interfer-
ence within objects, and the cooperation tests at the glelsal. Indeed, adding appropriate auxiliary
variables or observations, when developing the modulasfystem, corresponds basically in develop-
ing a compositionatemanticof the behavior of the language. Furthermore, the proof ohdoess and
especially completeness of the modular proof system shmatsémantics encoded in the augmentation,
in particular, in the history variables, indeed is composél (even if not necessarily fully abstract. See
e.g., [55] for a fully abstract trace semantics for classeldeobject-oriented programs). We see this as a
benefit of undertaking the effort to provide a sound and cetephodular proof system: it paves the way
towards a truly compositional proof system, i.e., one tlnafust embodies a compositional semantics in
the augmentations, but additionally has compositigmadf rules.

Though the proof method is tool-supported, the annotatimhaugmentation must be given by the
user. This task can be very complex, making the applicatifficut in practice. To increase practical
relevance, an additional tool support for annotation gatimr would be of great benefit.

References

[1] Abraham, E.An Assertional Proof System for Multithreaded Java — Thaag/Tool SupportPh.D. Thesis,
University of Leiden, 2004, Defended 20.1.2005.

[2] Abraham, E., de Boer, F. S., de Roever, W.-P., Steffen, Miuttive Proof-Outlines for Monitors in Java, in:
Najm et al. [34], 155-169, A longer version appeared as teehreport TR-ST-03-1, April 2003.

[3] Abraham, E., de Boer, F. S., de Roever, W.-P., Steffen, IMductive Proof Outlines for Multithreaded
Java with ExceptionsTechnical Report 0313, Institut fir Informatik und Piiakhe Mathematik, Christian-
Albrechts-Universitat zu Kiel, December 2003.

44 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

[4] Abraham, E., de Boer, F. S., de Roever, W.-P., Steffen, MCampositional Operational Semantics for
Java,r, International Symposium on Verification (Theory and Pre}j July 2003N. Derschowitz, Ed.),
2772, Springer-Verlag, 2004, A preliminary version appéaas Technical Report TR-ST-02-2, May 2002.

[5] Abraham, E., de Boer, F. S., de Roever, W.-P., Steffen, M:A&sertion-Based Proof System for Multi-
threaded Javalheoretical Computer Sciencg31, 2005.

[6] Abraham-Mumm, E., de Boer, F. S.: Proof-Outlines for Thiea Java, Proceedings of CONCUR 2000
(C. Palamidessi, Ed.), 1877, Springer-Verlag, August 2000

[7] Abraham-Mumm, E., de Boer, F. S., de Roever, W.-P., Steffén A Tool-Supported Proof System for
Monitors in Java, in: Bonsangue et al. [20], 1-32.

[8] Abraham-Mumm, E., de Boer, F. S., de Roever, W.-P., Steffen Verification for Java’s Reentrant Multi-
threading ConcepRroceedings of FoOSSaCS 2002. Nielsen, U. H. Engberg, Eds.), 2303, Springer-Verlag,
April 2002, A longer version, including the proofs for soumeds and completeness, appeared as Technical
Report TR-ST-02-1, March 2002.

[9] Alves-Foss, J., Ed.Formal Syntax and Semantics of Javal. 1523 ofLecture Notes in Computer Science
State-of-the-Art-Surveyspringer-Verlag, 1999.

[10] Andrews, G. R.:Foundations of Multithreaded, Parallel, and DistributedoBramming Addison-Wesley,
2000.

[11] Apt, K. R.: Ten Years of Hoare’s Logic: A Survey — PartACM Transactions on Programming Languages
and System$(4), October 1981, 431-483.

[12] Apt, K. R., Francez, N., de Roever, W.-P.: A Proof SysfemCommunicating Sequential ProcessAgM
Transactions on Programming Languages and Syst2ni®980, 359-385.

[13] The Project Balihttp://isabelle.in.tum.de/Bali/, 2003.

[14] van den Berg, J., Huisman, M., Jacobs, B., Poll, E.: AeRjmeoretic Memory Model for Verification
of Sequential Java Program®ecent Trends in Algebraic Development TechniqesBert, C. Choppy,
P. Mosses, Eds.), 1827, Springer-Verlag, 2000, An earbesion appeared as Computer Science Institute,
University of Nijmegen, Technical Report CSI-R9926, 1999.

[15] vanden Berg, J., Jacobs, B.: The Loop Compiler for JagadL, Tools and Algorithms for the Construction
and Analysis of Systems(TACAS '0R)Margaria, W. Yi, Eds.), 2031, Springer-Verlag, 2002.

[16] van den Berg, J., Jacobs, B., Poll, E.: Formal Specifinand Verification of JavaCard’s Application Identi-
fier Class,Java on Smart Cards: Programming and Security. RevisedBaj&va Card 2000, International
Workshop, Cannes, Frané¢k Attali, T. Jensen, Eds.), 2001.

[17] de Boer, F. S.: A WP-Calculus for OORroceedings of FoSSaCS '99/. Thomas, Ed.), 1578, Springer-
Verlag, 1999.

[18] de Boer, F. S., Pierik, C.: Computer-Aided Specificatand Verification of Annotated Object-Oriented
Programs, Proceedings of the Fifth International Conference on Foriiathods for Open Object-Based
Distributed Systems (FMOODS 204B). Jacobs, A. Rensink, Eds.), 209, Kluwer, 2002.

[19] de Boer, F. S., Pierik, C.Towards an Environment for the Verification of Annotatede@bOriented Pro-
grams Technical report UU-CS-2003-002, Institute of Infornsatiand Computing Sciences, University of
Utrecht, January 2003.

[20] Bonsangue, M. M., de Boer, F. S., de Roever, W.-P., GBafEds.:Proceedings of the First International
Symposium on Formal Methods for Components and Objects (FRI@?2), Leidenvol. 2852 ofLecture
Notes in Computer Sciencgpringer-Verlag, 2003.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 45

[21] Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: An &w-Based Structural Operational Semantics of
Multi-Threaded Java, in: Alves-Foss [9], 157-200.

[22] Floyd, R. W.: Assigning Meanings to ProgramByoc. Symposia in Applied Mathematics: Mathematical
Apsecs of Computer Scien@e T. Schwartz, Ed.), 1967.

[23] Hoare, C. A. R.: An Axiomatic Basis for Computer Prograing, Communications of the ACM 2(10),
1969, 576-580.

[24] Huisman, M.: Java Program Verification in Higher-Order Logic with PVS atghbelle Ph.D. Thesis,
University of Nijmegen, 2001.

[25] Huisman, M., Jacobs, B.: Inheritance in Higher Ordegico Modeling and Reasonind;heorem Proving in
Higher Order Logics (TPHOL 200QM. Aagaard, J. Harrison, Eds.), 1869, An earlier versiopesgped as
Technical Report CSI-R0004 Computing Science Institutayérsity of Nijmegen., 2000.

[26] Huisman, M., Jacobs, B., van den Berg, J.: A Case Studlass Library Verification: Java’s Vector Class,
Software Tools for Technology Transfa¢3), 2001, 332—-352.

[27] Jacobs, B.: A Formalisation of Java's Exception Medtiamy Proceedings of ESOP 20@D. Sands, Ed.),
2028, Springer-Verlag, 2001.

[28] Jacobs, B., van den Berg, J., Huisman, M., van BarkumHdnsel, U., Tews, H.: Reasoning about Classes in
Java (Preliminary Reportbject Oriented Programming: Systems, Languages, and@stjoins (OOPSLA)
'98 (Vancouver, CanadapACM, 1998, InSIGPLAN Notice80(10).

[29] Jacobs, B., Kiniry, J., Warnier, M.: Java Program Vesfion Challenges, in: Bonsangue et al. [20], 202—-219.

[30] Jacobs, B., Pall, E.: A Logic for the Java Modelling Larage JML, Fundamental Approaches to Software
EngineeringH. Hussmann, Ed.), 2029, Springer-Verlag, 2001.

[31] Leavens, G. T., Leino, K. R. M., Muller, P.: Specificatiand Verification Challenges for Sequential Object-
Oriented Programdsormal Aspects of Computing007, To appear.

[32] Levin, G., Gries, D.: A Proof Technigue for CommunicetiSequential Processe&cta Informatica 15(3),
1981, 281-302.

[33] The LOOP project: Formal methods for object-orientgstemshttp: //www.cs.kun.nl/~bart/L0O0OP/,
2001.

[34] Najm, E., Nestmann, U., Stevens, P., Ed®oceedings of the 6th IFIP International Conference onrkal
Methods for Open Object-Based Distributed Systems (FMOWDB)S Paris, vol. 2884 ofLecture Notes in
Computer Scien¢&pringer-Verlag, November 2003.

[35] Nipkow, T.: Hoare Logics in Isabelle/HOL, Proof and System-ReliabilityH. Schwichtenberg,
R. Steinbriiggen, Eds.), Kluwer, 2002.

[36] Nipkow, T., von Oheimb, D.: Java-light is Type-Safe —fDéely, Proceedings of POPL '98ACM, 1998.

[37] Nipkow, T., von Oheimb, D., Pusch, CuJava: Embedding a Programming Language in a Theorem
Prover, Foundations of Secure Computation. Proc. Int. Summer SdWladktoberdorf 1999(F. L. Bauer,
R. Steinbriiggen, Eds.), I0S Press, 2000.

[38] von Oheimb, D.: Axiomatic Semantics for J4¢4, in: Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications Eurofamference on Object-Oriented Program-
ming (OOPSLA) (ECOOPR2000.

[39] von Oheimb, D.:Axiomatic Sematics for Jat&" in Isabelle/HOL, Technical Report CSE 00-008, Oregon
Graduate Institute, 2000.

46 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

[40] von Oheimb, D.: Hoare Logic for Java in Isabelle/HOIGoncurrency and Computation: Practice and
Experiencel3(13), 2001, 1173-1214.

[41] von Oheimb, D., Nipkow, T.: Machine-Checking the Jaye8fication: Proving Type-Safety, in: Alves-Foss
[9].
[42] von Oheimb, D., Nipkow, T.: Hoare Logic for NanoJava: xliary Variables, Side Effects and Virtual

Methods revisited Proceedings of Formal Methods Europe: Formal Methods —iGgtiT Right (FME’'02)
(L.-H. Eriksson, P. A. Lindsay, Eds.), 2391, Springer-€grl2002.

[43] Owicki, S., Gries, D.: An Axiomatic Proof Technique fBarallel ProgramsActa Informatica6(4), 1976,
319-340.

[44] Owre, S., Rushby, J. M., Shankar, N.: PVS: A Prototypefidation SystemAutomated Deduction (CADE-
11)(D. Kapur, Ed.), 607, Springer-Verlag, 1992.

[45] Paulson, L. C.The Isabelle Reference Manudiechnical Report 283, University of Cambridge, Computer
Laboratory, 1993.

[46] Pierik, C.: Validation Techniques for Object-Oriented Proof Outling2h.D. Thesis, Universiteit Utrecht,
May 2006.

[47] Pierik, C., de Boer, F. S.: A Syntax-Directed Hoare Loofgir Object-Oriented Programming Concepts, in:
Najm et al. [34], 64—78, An extended version appeared asdusity of Utrecht Technical Report UU-CS-
2003-010.

[48] Poetzsch-Heffter, A.: A Logic for the Verification of @dzt-Oriented ProgramsProceedings of Program-
ming Languages and Fundamentals of Programnfiid3erghammer, F. Simon, Eds.), Institut fir Informatik
und Praktische Mathematik, Christian-Albrechts-Uniitétszu Kiel, November 1997, Bericht Nr. 9717.

[49] Poetzsch-Heffter, A.Specification and Verification of Object-Oriented Programi®chnische Universitat
Munchen, January 1997, Habilitationsschrift.

[50] Poetzsch-Heffter, A., Muller, P.: Logical Foundat®for Typed Object-Oriented Languagdroceedings
of PROCOMET '99D. Gries, W.-P. de Roever, Eds.), International Fedendio Information Processing
(IFIP), Chapman & Hall, 1998.

[51] Poetzsch-Heffter, A., Muller, P.: A Programming Lodor Sequential JavalProgramming Languages and
System$S. Swierstra, Ed.), 1576, Springer, 1999.

[52] Poll, E., van den Berg, J., Jacobs, B.: SpecificatiorheffavaCard API in JMLFourth Smart Card Re-
search and Advanced Application Conference (CARDIS’2Q@0pomingo-Ferrer, D. Chan, A. Watson,
Eds.), Kluwer Acad. Publ., 2000.

[53] Pall, E., van den Berg, J., Jacobs, B.: Formal specifinatf the Java Card API in JML: the APDU class,
Computer Networks36(4), 2001, 407-421.

[54] Stark, R., Schmid, J., Borger, ElJava and the Java Virtual Machine: Definition, Verificatiorglidation,
Springer-Verlag, 2001.

[55] Steffen, M.: Object-Connectivity and Observability for Class-Basedjeot-Oriented LanguagesHabili-
tation thesis, Technische Faktultat der Christian-Adhis-Universitat zu Kiel, 2006, Submitted 4th. July,
accepted 7. February 2007.

[56] Tucker, J. V., Zucker, J. IProgram Correctness over Abstract Data Types, with Ermat&Semanticyvol. 6
of CWI Monograph SerieNorth-Holland, 1988.

[57] Warmer, J. B., Kleppe, A. G.The Object Constraint Language: Precise Modeling With UMQbject
Technology Series, Addison-Wesley, 1999.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions a7

A. Proofs of properties of substitutions and projection

Proof of Lemma 2.1 on page 12:By induction on the structure of local expressions and &issst The
base cases for local expressions are listed below, wherenthe for instance and local variables are
covered by the respective provisos of the lemma.

[x Z/this]]g’o = [[z;,;]] —U([[z]] Nz) = o(w(2))(z) = [[w,o(w(z2)),m

[2/this]

[ulz/this]]s” = [u]e” = w(u) = 7(u) = [u]¥ o(w(2)),T
[this[z/this]]g7 = [2]57 = [-2pt]w(z) = [[thls]]zo(“ 2)),T
[null[z/this]]g7 = null = [null] o (w(2))7

[2'[z/this]]57 = [Z]5° =w(Z) = [[Z/HZ’O(W(Z))’T

Compound expressions are treated by straightforward timhuc
[fle1, ..., en)[z/this] |57
f(ler[z/this]]g7, . .., [en[2/this]]57) semantics of assertions
- f([[el]]?“(w(z))”, s [en Z"(“(z))’) by induction

w,o(w(z)),

= [fler,...,en)l, semantics of assertions

For local assertions, negation and conjunction are stifaigiard. Unrestricted quantificatiofiz’. p in
the local assertion language is only allowed for variabfagme ¢ € {Int, Bool} and for types composed
from them, for whichValt, (o) = Val'. We get
[(32". p)[z/this]]g7 = true

> [32. plz/this]] = true def. substitution

= [[p[z/this]]]g[le”]"’ = true for somev € Val' assertion semantics

e [p]sF o @EDT — e for somew € Val' by induction

— [3.p]} TWET e assertion semantics
For restricted quantification over elements of a sequencg e LVart. Then

[(32" € e. p)[z/this][&7 = true

< [32. 2 € e[z/this] A p[z/this]]57 = true by definition

< [7' € e[z/thig] /\p[z/this]]]g’o = true semantics
for somev € Val!,,;,(0) andw’ = w[z’ + 1]

= ([[z/]]g 7 € [e[z/this]]s 7 A [plz/this]]4 ") = true semantics

for somev € Val!,;(0) andw’ = w2’]

= ([[z]]“’ 2 @EDT ¢ e]]“’ (@) A [[p]]“’ o(w(=).) true by induction

for somev € Val’ (o) andw’ = w2’ v]

— [(z'€e) /\p]]” @EDT = trye semantics

for somev € Val’ (o) andw’ = w2’]

w,o(w(z)),T

— [F €ep], = true semantics

48 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

The last equation uses the assumption that the local stael the instance statgw(z)) assign values
from Val,,; (o) to all variables, i.e.¢ does not refer to values of non-existing objects (see Lemri A

Consequentlyy € Val®,,, together with[z" € e]]i[z/H”]’”(“(z))’T = true impliesv € Val’, (o). The
case for restricted quantification over subsequences isgmss. O

Proof of Lemma 6.1 on page 34:We proceed by straightforward induction on the structurdoo#l
assertions. Lef,,., = o, [7—[e]> "] and? = +[7—[e]> "] In the case for local variables
u = y; we get
[wle/ gz " = eidz”"
= 7(u)
— [I:u:l];7é'mst77’— .

For instance variables = y; similarly:

[[x[é‘/g’”]Z’binszt’% — [[ei]]LZ’&instﬂ\—
= é-inst (CC)
— [[x]]z7émst’7’— .
The remaining cases are straightforward. O

Proof of Lemma 6.2 on page 35:Letw = w[j—[E]5°] andé = &[[2]5°.§—[E]y”]. We proceed
by induction on the structure of global expressions andrases. The base cases foull and 2z’ are
straightforward. For the induction cases, we start withctueial one for qualified reference to instance
variables. For expressiorE’.x[E/z.g] with z not in ¢/ the property holds by induction. So assume that
zisiny:

[(E) E/2qle° = [if E'[E/2.9) = zthen E;else (E'[E/z.3)).y; fil5” .

This conditional assertion evaluates[t;];” if [E'[E/25]57 =[] and O[(E'[E/2.4)).y:]5"
otherwise. So in the first case we get

(B y)E/25]0" = [E]S°

= é([[z]]g’&)(yi) by def. of 5

= G([E'|E/=4)]2")(y:) by the case assumption
= G([F']57) (wi) by induction

= [E'%lg” by def. of[.] -

If otherwise[E'[E /2.7]]5" # [2]&°, then

(B y)lE/=qlg" = [(F'E/=q)-uilg”
= o([E'[E/=4]15°)(v:) by def. of [Ig
= G([F'[E/24]]57)(y:) case assumption+def.
= é([[E']]é’é)(yi) by induction
= [E'wl5° by def. of[], .

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 49

For operator expressions we get:

[(F(BL. o E)IE/24)lg"
— [f(El[E/z.g],.\.l L EnE/ 2] ° ~ def. substitution
= FUBIE/=305°, ., [EalE/z0l5°) def. [g
F([EG7 - [Ealg?) by induction
= [f(Br,...,E)]S’ def. [], -

For global assertions, the cases of nhegation and conjunatm straightforward. For quantification,

[(32. P) [E/zﬁ]ﬂga = true

— [37. P[E/z.gﬂ]]é’b = true def. substitution
= [PIE/2gISF" " = true for someve Val,,y(5) def. [],
= [[P]]é[z/H”}’é = true for somev € Val,,;(&) by induction
= [3. P57 = true, Val (&)= Val(6)
wherez’ is not iny/ (otherwise the substitution renamgs. O

Lemma A.l. Let o be a global state and a logical environment referring only to values existingsin
Then[E];“ € Val,,; (o) for all global expression&’ € GEzp that can be evaluated in the context of
w ando.

Proof of Lemma A.1: By structural induction on the global assertion. The casddugical variables

z € LVart isimmediate by the assumption abaytthe ones fonull and operator expressions are trivial,
respectively follows by induction. For qualified referesdé.x with £ € GFExp® andx an instance
variable of typet in classe, if E.x can be evaluated in the contextofand o, then [[E]]E"’ = null.
Hence by inductiof E];” € Val,,; (o), more specificallyfE];” € Val(o). Therefore by definition
of global states ([E]; ") (x) € Val,,; (o). O

Proof of Lemma 2.2 on page 19:We prove the lemma by structural induction on global assesti As-
sume a global statg, and leté = &[a— o] be an extension of with a new objectr € Val,
a ¢ Val(s). Assume furthermore a logical environmenteferring only to values existing iar, and
let v be the sequence consisting of all elements$ joflalt (o). Let finally P be a global assertion,
2 € LVar'stObiect g |ogical variable not occurring if?, andw = w[z’ — v]. Since?’ is fresh inP, we
have for all logical variables in P that [[z]]g’& =w(z) =w(z) = [[z]]g’é =[z | z’]]g’é. For qualified
references to instance variables, the argument is as faillow

[Baly” = o(El3°)(x) semantics
= 4([E]g7) (=) [E]&°#a by Lemma A.1 andv¢ Val (&)
= 6([E | #]5°)(x) by induction
= [(E|2)a]5° semantics
= [(Ex)] Z]g° def. | 2’.

50 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

The interesting case is the one for quantification. #ar LVar?:

0,5 =g 32 P

< wlz—ul,0 g P forsomeuc Vall (&) semantics
< dJz—ul,6 g P | 2 forsomeu e Val’,, (&) induction
<— W[zr—ul,d g obj(z) CZAP | obj(u) Cwv
for someu € Valt,;, (&)
= O, 6 g Jz.obj(z) T AP |2 semantics
= O, 6 Eg (32.P)] 7.
The remaining cases are straightforward. O

B. Soundness proof

This section contains the inductive proof of soundnesseptioof method. We start with some ancillary
lemmas about basic invariant properties of proof outlif@sinstance properties of the built-in auxiliary
variables added in the transformation. Afterwards, we sbouwndness of the proof system.

B.1. Invariant properties

Lemma B.1. Let prog’ be a proof outline for a programrog. Then(T', o) is a reachable configuration
of prog iff there exists a reachable configuratiGf', o) of prog’ with (T" | prog, o’ | prog) = (T, o).

Proof of the transformation Lemma B.1: We proceed for both directions by straightforward induc-
tion on the length of reduction. The only interesting prayef the transformation is the representation
of natification by a single auxiliary assignment of the netifiFor this case we use Lemma B.3 showing
soundness of the representation of the wait and notifiedogetse auxiliary instance variableait and
notified. O

Lemma B.2. (Identification)
Let (T, o) be a reachable configuration of a proof outline. Then

1. for all stackst and¢’ in 7" and for all local configurationéx, 7, stm) € £ and(o/, 7/, stm’) € &
we haver(thread) = 7/(thread) iff £ = ¢/, and

2. for each stackag, 19, stmyg) . . . (n, T, Stmy,) in T and indiced) < i,j < n,

(@) 7;(thread) = avp;

(b) i < j ando; = «a; implies7;(conf) < 7;(conf) < o (o) (counter),
(c) 0 < jimpliesTj(caller) = (o1, 7j—1(conf), 7;_1(thread)), and
(d) proj(ro(caller),3) # To(thread),

whereproj (v, i) is theith component of the tuple.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 51

Proof of Lemma B.2 on the facing page:All parts by straightforward induction on the steps of proof
outlines. 0

Lemma B.3. (Lock, Wait, Notify)

Let (T, o) be a reachable configuration of a proof outline for the ogfjjprogramprog, o € Val(o)
an object identity, and let = (ap, 10, stmg) o ¢’ € T. Let furthermoren be the number synchronized
method executions &fin «, i.e.,n = |{(a, 7, stm) € & | stm synchr}|. Then

1. (&) mowns(T | prog,) iff o(a)(lock) = free
(b) owns(& | prog,«) iff o(a)(lock) = (ag,n)

2. (a) & € wait(T | prog,a) iff (ap,n) € o(a)(wait)
(b) & € notified(T | prog,a) iff (ap,n) € o(a)(notified)
(©) proj (o (a) (wait)[i], 1) = proji(o(a)(wait)|j], 1) implies = j
(d) proj(o(a)(notified)[i], 1) = proj(o(a)(notified)[s],1) impliesi = j
(e) if (ag,m) € o(a)(wait) or (g, m) € o(a)(notified) thenm = n
() o(a)(wait) N o(a)(notified) = 0,

wheres|:] is theith element of the sequense

Proof of Lemma B.3: The cases 2a and 2b are satisfied by the definition of the pijecperator.
Inductivity for the cases 2c and 2d are easy to show using L@ and the cases 2a and 2b of this
lemma. If the order of the elements is unimportant, in théofahg we also use set notation for the
values of thewait andnotified variables. Correctness of the projection operation usesasults of this
lemma and is formulated in Lemma B.1. For the other cases weepd by induction on the length of
the run(Ty, oo)—*(T', 6) of the proof outlineprog’.

In the base case of an initial configurati¢fy, o) (see page 8), the s&j contains exactly one thread
(a, T, stm), executing the non-synchronized main-statement of thgrpr, i.e.,~owns(Ty | prog,),
and initially the lock of the only object is set tofree. Furthermore, the instance variablesit and
notified of the initial object are set t9, and thewait andnotified sets of the semantics are also empty.

For the inductive step, assuni@&, o)—*(1",5) — (T',6). We distinguish on the kind of the
last computation step.

Case:CALL g4rt, CALLjfgjt, RETURN,;,, TRY, FINALLY , YRT, THROW;,
THROWs, THROW3, THROW;
In these cases none of the concerned variables or predaratesmuched, and the property follows directly

by induction.

Case:ASS;,st, ASSce
Note that this case handles assignments, but not the olises/@f communication, object creation,
and exception handling. Remember furthermore that theaBignmechanism is implemented in proof
outlines by auxiliary assignments, and thus this case soaisio the rules IBNAL, SIGNAL g, and
SIGNALALL.

If the assignment is not in @otify- or in anotifyAll-method representing notification, then the case
is analogous to the above one.

52 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Assume first that the assignment in the last computation reepesents notification in aotify-
method of the proof outline. If the wait sé{«)(wait) is empty, then no notification takes place; the
property follows directly by induction. Thus assume that tait set is not empty. l.e., a thregde 7
notifies another threagh = (as, 7, stm) o &, € T in the wait set of. Remember that notification is
represented by a single assignment of the notifier, and treustack of the notified thread does not
change. However, according to the projection definitionthasnotifier changes the value whit of «,
thp projectiorts | prog represents a thread being in the wait se{tﬁn&> and being in the notified set in
(T,6).

The only relevant effect of the step is movif@, n) € o(«)(wait) from the wait set into the notified
set ofa, wheren is by induction the number of synchronized invocationg-.oh «. Thus the properties
la, 1b and 2e are automatically invariant. Induction ingoéitso uniqueness of the representation of the
wait and notified sets, i.eq is contained neither itr(«) (notified) nor in 6 (a)(wait). Thus moving the
thread ofay from the wait into the notified set does not violate uniquerafghe representation.

The case for the assignment in thetifyAll-method is analogous, with the difference that all threads
in the wait set get notified by;. The notifier sets the value of the auxiliary instance vaeiabtified
of a to &(a)(notified) U &(«)(wait), whereas the correspondingit variable gets the valu@. By
induction we haver(a)(notified) N & () (wait) = (), and thus the required properties are invariant under
notification.

Case:NEw

Assume that the last step creates a new object, and exebetesrresponding observation. Lete
dom(6). Thena either references the newly created objectpoe dom(s). In the first casex ¢
dom(&), and by the definition of global configurations (see page @)ettis no local configuration
(v, T, 8tm) € T, and the wait and notified set of in 7" are empty. Since the last step doesn’t add
any local configurations t@", we havea # 3 for all (3,7, stm) € T and thus-owns(T | prog, a).
Since the lock of the new object is initialized feee, andwait and notified of o get the valud), the
required property holds for the new object. In the secon@,cégx € dom(c), the property follows
directly by induction.

Case:CALL

Leta € dom(d). Then alsax € dom (o). If « is not the callee object, then the property holds directly
by induction. If« is the callee object, the only new local configuratien 7, stm) in T represents the
execution of the invoked method.

If the invoked method is non-synchronized, then the prepkttows by induction (invocations of
monitor methods are covered by thalC ,,.,..:o» Case below). In the case of a synchronized method,
let ¢ € T be the executing thread. The antecedetuns(T\{f} | prog,) implies by induction
that, if there is no local configuration in the thread’s stagkcuting a synchronized method@then
o(a)(lock) = free, ando(«)(lock) = (g, n) otherwise, wheréag, 79, stmg) is the deepest configura-
tion in the thread’s stack andthe number of synchronized method invocations in the sfadkin the
state prior to the method invocatioric)(lock) = free, then(a, 7, stm) is the only local configuration in
T representing the execution of a synchronized methedimf a thread not in the wait or notified sets of
a. Furthermore, the callee observation sefs)(lock) = («p, 1), and thus the required property holds.
In the second case, using the fact that the callee configaregion top of its stack, the callee observation
changesr(a)(lock) = (ag,n) to 6(a)(lock) = (ag,n + 1), and we get the property by Lemma B.2 and
by induction.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 53

Case:CALL monitor

Similarly to the case ELL, for o € dom(6) alsoa € dom(&), and ifa is not the callee object, then the
property holds by induction. In the case of the non-syndaeahnotify- andnotifyAll-methods, none of
the concerned variables or predicates are touched, anthipsoperty holds by induction again. So let
¢ e T be the executing thread invoking the non-synchronized-method ofa.

The antecedentwns(§ | prog,) implies by inductions(«)(lock) = (ag, n), where(ag, 79, stmg)
is the deepest configuration in the stgckndn is the number of its synchronized method invocations
in «. Furthermore, sinc€ does not yet execute wait-method prior to the call, fron§ ¢ waz’t(T 1
prog,) U notz‘ﬁed(T | prog,) we conclude by induction that, is contained neither iwait nor in
notified of o in &.

The execution places the thread ini¢s wait set and, since at most one thread can own a lock
at a time, it gives the lock of free, i.e., we hav&owns(T | prog,a). The corresponding callee
observation extends(«)(wait) with (g, n), and sets the lock-value efto free. Thus the case follows
by induction.

Case:RETURN

Assumea € dom(s) = dom(s). If a is not the callee object, or if the invoked method is non-
synchronized, then the property holds directly by induttiNote that returning from theait-method is
covered by the RTURN,,,;; case below. So let € T be the thread ofy, returning from a synchronized
method ofc; we denote the thread after executiondye 7.

Since¢ is neither in the wait nor in the notified set af we get by definitionowns(¢ | prog, o)
prior to execution. If the given method is the only syncheedi method ofr executed by, then in the
successor configurationowns(&' | prog, «), and from the invariant property that at most one thread
can own a lock at a time we implyoums(T | prog,). Otherwise, if¢ has reentrant synchronized
method invocations in, then the thread doesn't give the lock free upon return,inghe successor state
we still haveowns (&' | prog, o).

Using owns(§ | prog,a), we get by inductions(«)(lock) = (ag,n), wheren is the number of
invocations of synchronized methods @fby £. The auxiliary variabldock of « is set by the callee
augmentation tgree, if n = 1, and to(«p,n — 1), otherwise. Since the auxiliary variableait and
notified are not touched, the property follows by induction.

Case:RETURNq;t
Assume that the threagl € 7" of an objectay is returning from thewait-method ofa dom(6) =
dom(5); we denote the thread after executiondye 7°.

The semantics assureswns (T | prog,«) and by definitions € notified(T | prog,a). We get
by inductiond («)(lock) = free and (g, n) € &(a)(notified), wheren is the number of invocations of
synchronized methods afby £. After returning, the thread gets removed from theified-set ofa and
gathers the lock of, i.e.,&’ ¢ notified(T | prog, a) andowns(&' | prog, a).

The augmentation of theait-method removeéng, n) from &(«)(notified); from the uniqueness of
the representation follows, # £ for all (5, m) € &(«)(notified). Furthermore, the observation sets the
lock of a to (ag, n), by which we get the required property.

Case:THROW,

This case is analogous to the caseTRRN. Remember that the observationgiofow statements outside
try-catch-finally blocks in synchronized methods decrenties lock value. O

54 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Lemma B.4. (Started)
For all reachable configuratior’, o) of a proof outline for a programrog, and all objectsx € Val (o),
we havestarted(T' | prog, o) iff o(«)(started).

Proof of Lemma B.4: Straightforward by the definition of augmentation. O

B.2. Proof of the soundness theorem

Proof of the soundness Theorem 7.1 on page 39:We prove the theorem by induction on the length
of the computation, simultaneously for all parts of Defniti7.1.

For the initial case assumém(og) = {a}, oo(a) = o™i[thisi—a], 79 = 7" [thread — af,

inst

and let{ps} 7" (i, := &)7%" {p3} stm be the main statement. Then the initial configuratidf, o)
of the proof outline satisfies the followingr, = og[a.72 —[é gO(O‘)’TO], and for the stack we have

Té = {(Oé, Té, stm)} with 7'6 = 7-0[372 ,_>[[é’2]]go(oz),m]_

Let w be a logical environment referring only to values existing4. As in og there exists exactly
one objecky being in its initial instance state, we have

wlz—al,o0 g InitState(z) AVZ. 2'=null v z=2" |

wherez is of the type of the main class, ardis a logical variable of typ®bject. Using the initial
correctness condition we get

w[ZHa]7JO):g (GI A P3(Z) A I(z)) © fobs o fim’t
with I the class invariant of, ¥ the local variables of theun-method of the main class, and

finie = [this, (null,0, null) /thread, caller|[Init(¢)) /7] , and
Jobs = [52(2)/Z'g2]'

Applying Lemma 6.2, we get for the global invariant, o, =g GI for W' = w[z— a|[T+— 7)(7)].
Since GI may not contain free logical variables, its value does npedd on the logical environment,
and thereforev, o, =g GI.

Similarly for the local propertys, we get with Lemma 6.2 that’, o{, = Ps(z). With Lemma 2.1
we getw’, o (), 7 = pre(stm). Sincepre(stm) does not contain free logical variables, we get finally
w, o0 (), 7 Ec pre(stm). Part 3 is analogous.

For the inductive step, assuni&), oo)—*(1,&) — (T, ¢) such that(T",) satisfies the con-
ditions of Definition 7.1. Letv be a logical environment referring only to values existingsi We
distinguish on the kind of the computation st@p &) — (T,).

If the computation step is executed by a single local conditjom, we use the local correctness
conditions for inductivity of the executing local configtican’s properties, and the interference freedom
test for all other local configurations and the class invasian (7', 6). For communication, invariance
for the executing partners and the global invariant is shasing the cooperation test for communication.
Communication itself does not affect the global state; riavece of the remaining properties under the
corresponding observations is shown again with the helphefinterference freedom test. The case
for throwing exceptions outside try-blocks is similar. &g for object creation, invariance for the

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 55

global invariant, the creator local configuration, the tedaobject’s class invariant is assured by the
conditions of the cooperation test for object creationptiker properties are shown to be invariant using
the interference freedom test.

Case:ASsS;st, ASS,.
Note that signaling is represented in proof outlines by learyi assignments, thus this case covers also
the rules $GNAL, SIGNALALL, and SGNAL 4;,. Note furthermore that this case does not cover obser-
vations of communication, object creation, or exceptioowhing and handling.

Let the last computation step be the execution of an assigniméhe local configuratiofi, 71, 7 :=

o(a), 71

& stm1) € T resulting in(a, 71, stm;) € T. According to the semantics; = #;[7+—[e]z "] and
& = sl [ed @M.

Since assignments, that does not observe object creatbommanication, or exception throwing,
don’t change the values of variables occurringih, part (2) is satisfied.

For part (1), assumé3, 7o, stms) € T. If (8,12, stms) = (a, 71, stmy) is the executing local con-
figuration, then by inductiow, &(«), 71 =, pre(y := €). The local correctness condition implies that
w,o(a), T = pre(stmq)[€/y]. Using the properties of the local substitution formulatedemma 6.1
we getw, 6 (), 71 = pre(stmy).

If otherwise(3, T2, stms) is not the executing local configuration, then it is contdiire?. If # 0,
i.e., the execution didn’t take place j# thens(3) = 6(8), and thusw,5(5), 72 =, pre(stms) by
induction. Otherwise let be [— 72(7)], wherev = dom(r2) and?’ fresh. Then Lemma B.2, the
induction assumptions, and the definitionimferleavable imply

w,o(a), T [pre(y = €) A pre’(stmsg) A interleavable(pre(stms), := €) ,

and with the interference freedom test we get («), 7 =, pre(stm2)[€/y]. Using the substitution
Lemma 6.1 and the fact that, due to the renaming mechaniswvarables ind” may occur iny, yields
w,d(a), 72 = pre(stms).

Part (3) is similar, using the fact that the class invariaatymontain instance variables only, and thus
its evaluation doesn’t depend on the local state.

Case:CALL

Let (o, 71, uper == eo.m(€); (i = &) stm,) € T be the caller configuration prior to method
invocation, and leta, 71, stm)) € T'and (6, 72, stms) € T be the local configurations of the caller and
the callee after execution. Let furthermdiig := &)7° stm, be the invoked method’s body anits

formal parameters. Directly after communication the eHas the local state = 7 [@ H[[é]]g(a)’h];

o(a), 11

after the caller observation, the global stateris= ola.y; —[é1],] and the caller’s local state

is updated tor; = 71 H[[él]]g(o‘)’ﬁ]. Finally, the callee observation updates its local staté,te-
#o[ij2 —[22]2?™] and the global state = 5(8.7, —[2]2"”™). Let# denotedom (+) and assume
w = wlz—a][z' — B[t — F1 (1))

The semantics assures# null andfg = [[eo]]g(a)’%1 # null, and we get with Lemma 2.1 and the
definition ofw thatw, & =g 2z # null A 2/ # null A Ey(z) = 2.

If the method is synchronized ards the stack of the executing threaddh then according to the
transition rule—owns(T\{¢} | prog,3). Using Lemma B.3 and Lemma B.2 we get3)(lock) =
free \V/ thread (5(3)(lock)) = 71 (thread) and thusy, & =g 2’.lock = free V thread(2’.lock) = thread.

56 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

In the following letp; = pre(uyet := eg.m(€)), p2 = pre(yi = €1), p3 = post(y1 = €1), g1 = Iy,
q2 = pre(y» == &), andgs = post(y» = &), wherel, is the class invariant of the callee. Then we
have by inductionv, & |=¢ GI, for the class invarianb, &(3), 71 =, 1,4, and for the precondition of the
callw,o(a), 71 =, p1. Using the lifting lemma, the cooperation test for commatian implies

0,6 g (Pa(z) AQy()[E(2), 'n't(0)/i, 7] A .
(GI A Ps(z) A Q3(2)[E5(2) /2) [Er (2) /25] [E(2), Init(8) /i, 7],

wherev contains the local variables of the callee without the fdrperametersi. Using the lifting
lemma again but in the reverse direction and Lemma 6.2 sxsult =g GI, and thus part (2). Note
that in the annotation no free logical variables occur, &g the values of assertions in a proof outline
do not depend on the logical environment. Furthermore gu$ia same lemmas we get

w,o(), 71 =L p2 w,o(6), 72 FEr g2
w,6(a), 71 Fr p3 w,d(6), 72 FEr g3 -

Thus part (1) is satisfied for the local configurations inedhin the last computation step. All other
configurations(y, 73, stms) in T are also inl. If v # « andy # 3, thens(y) = &(v), and thus
w,6(7), 13 =, pre(stmg) by induction.

Assume nexty = « anda # 3, and letr be 1, [v" — 73(¥)], whered = dom(73). Then Lemma B.2,
the induction assumptions, and the definition of the agseititerleavable imply with the interference
freedom tesw, 5(«), 7 = pre’(stms)[é1/71]. The substitution Lemma 6.1 and the fact that, due to the
renaming mechanism, no local variablegiiroccur ing;, yield w, 5(a), 73 = pre(stms). Now, since
B # «, the callee observation also does not change the callstarioe state, and we hawgy) = J(«).
Thus we getv, 6(«), 73 = pre(stms).

The casey = g anda # (is similar. Communication and caller observation do nonggathe in-
stance state ¢f, i.e.,o(8) = 6(3). The interference freedom test resultsr (3), 7 =, pre’(stms)[€2/9o]
with 7 = 7 [t — 73(¥)]. Due to the renaming mechanism, we conclude with the lodtiution lemma
thatw, 6(8), 7 = pre’(stms) with 7(7') = 75(7), and thusw, (5), 13 = pre(stms).

For the last case = a = 8 note that, according to the restrictions on the augmemtatie caller
may not change the instance state. Thus the same argumédotsyas G anda # 5 apply. l.e., part (1)
is satisfied.

Part (3) is analogous: The interference freedom test impli& («), 71 =, I, wherel, is the class
invariant of the caller. Sincg, may contain instance variables only, its evaluation ddespend on the
local state. Similarly for the callee;, 6(5), 72> =, 1,. The state of other objects is not changed in the
last computation step, and we get the required property.

Case:CALL yqp¢, CALL *FP,

These cases are analogous to the above one, where we aaltjitiveedw, 5 =g —z’.started and
w,0 g 7 .started, respectively, to be able to apply the cooperation test. abmve properties result
from the transition antecedentsstarted (T, 3) and started(T', 3), respectively, using Lemma B.4 and
w(z") = p.

Case:CALL monitor

As above, wherey, 5 =¢ thread(z’.lock) = thread is implied by the transition antecedenins(¢ |
prog,) for the executing threagl and Lemma B.2.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 57

Case:RETURN
This case is analogous to thex@. case, where we defing as the precondition of the corresponding
return statement instead of the callee class invariantraugirementy, & =g Eo(z) = 2/ A i’ = E(2)
of the cooperation test results from the fact that the vatdidsrmal parameters may not change during
method execution, and that the method invocation statesmaay not contain instance variables, so that
the values of the formal parameters and the expressions mgithod invocation statement are untouched
during the execution of the invoked method.

For the application of the interference freedom test, tonstie validity of theinterleavable pred-
icate, we use the fact that the assertjon(stms) neither describes the caller nor the callee, since the
corresponding local configuration is not involved in theat@n.

Case:RETURN,,
Similar to the return case.

Case:RETURNq;t

In this case the antecedeﬁbwns(T | prog, 3) of the transition rule together with Lemma B.3 imply
w, o g 2'.lock = free. Furthermore, the executing thread is in the notified sefrppa execution, and
the same lemma yields that the executing thread is registeie(3) (notified), i.e.,w, & =g thread’ €

2 .notified.

Case: THROW;,
This case is similar to the RURN case, wherg; is the precondition of the givetrhrow statement.

Case:TRY

Let the last computation step be the entering of a try-céitaily block with observationy := €, ex-
ecuted in the local configuratiofa, 71, stm1) € T, resulting in(«, 71, stm1) € 1. According to the
semantics, directly after entering the block but before dbeesponding observation we havg =

),5’1 6’(0{),7‘1

o null] ands = . After executing the observation we ggt= 7, [—[€]]
ands = o[o.i—[e]2 ™.

Since observations afy keywords must not change the values of variables occumirig/i part (2)
is satisfied.

For part (1), assumés, o, stmg) € T. If (8,79, stms) = (a,71,stmy) is the executing local
configuration, then by inductiow, 5(a), 7, |=¢ pre(stm;). The local correctness condition implies
w,o(a), 71 ¢ pre(stmy)[€/7]exc o null/exc]. Using the properties of the local substitution formu-
lated in Lemma 6.1 we get, 6(a), 71 =, pre(stmy).

If otherwise (3, T2, stms) is not the executing local configuration, then it is contdiie?’. If a #

G, i.e., the execution didn't take place i) theno(5) = 6(5), and thusv, 6(3), 2 | pre(stms)

by induction. Otherwise, analogously to the argumentatibave, the local correctness Condition 10
impliesw,o(a), 71 = pre(y := €)lexconull/exc]. Using the properties of the local substitution
formulated in Lemma 6.1 we get, o («), 71 =, pre(y := €).

Let 7 be 7 [¢/ — 72 (¥)], wheret = dom(72) and¢’ fresh. Then Lemma B.2, the induction assump-
tions, and the definition dhterleavable imply

T1[exc— [[exc]]g(a

w,o(a), 7 = pre(§ := €) A pre/(stmz) A interleavable(pre(stms), 7 := €) ,

and with the interference freedom test we getr(a), 7 =, pre’(stmz)[€/y]. Using the substitution
Lemma 6.1 and the fact that, due to the renaming mechaniswvanmables ind” may occur iny, yields

w,6(a), 7o = pre(stms).

58 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Part (3) is similar, using the fact that the class invariaat/montain instance variables only, and thus
its evaluation doesn’t depend on the local state.

Case:FINALLY , YRT
These cases are analogous to the above one, whereNaLlr we haver; = 7, and for YRT

(), 71 o(a), 11

F1 = Tilexc, top —[head(exc)]z , [tail(exc)] ¢ |; the substitution[exc o null/exc] is replaced

accordingly.

Case: THROW;

Let(a, 7, stm) € T with stm = throw e; (i := €)W stmy; catch (¢ uy) stmy ... ; catch (¢, uyn) stmy,
finally stm,, 11 yrt; stm,,1 0 be the executing local configuration prior to the computastep, resulting
in (o, 7, stm) € T with stm = stmy; finally stm,, ;1 yrt; stm,,,» after execution. According to the se-

mantics,[[e]]g(o‘)’% € Val® for somel < i < n, implying [ez£null A hastype(e,ci)]]g(a)’%. Furthermore,
fromV1 < j <. [[e]]g(o‘)’T ¢ Val® we concludgVl < j < i.— hastype(e,cj)]]g(a)’T.
Directly after exception throwing we have = 7[u; H[[e]]g(a)”] ands = &. The observation

modifies the states resulting in= #[7—[]2*""] andé = &[a.g—[]2).

Since observations of exception throwing inside try-cdiahlly blocks must not change the values
of variables occurring irGI, part (2) is satisfied.

For part (1), assumé?, v/, stm') € T. If (8,7, stm’) = (o, 7, stm) is the executing local con-
figuration, then by induction, 5(a),+ =, pre(stm). The local correctness Condition 17 implies
w,o(a), T =, pre(stm)[€/i][e/u;]. Using the properties of the local substitution formulatedemma 6.1
we getw, 6(a), 7 =, pre(stm).

If otherwise (3, 7', stm’) is not the executing local configuration, then it is contdiire?". If o #+
3, i.e., the execution didn't take place ih thens(3) = 4(3), and thusw, 6(3), 7" =, pre(stm’)
by induction. Otherwise, the induction assumptions, tloallcorrectness Condition 16, and the local
substitution Lemma 6.1 imply, o («), 71 =, pre(y := €).

Let 7 be 7[¢' — 7/(¥)], wherev = dom(7') and’ fresh. Then Lemma B.2, the induction assump-
tions, and the definition dhterleavable imply

w, (), T = pre(§ := €) A pre/(stm’) A interleavable(pre(stm'), 7 := €) ,

and with the interference freedom test we get(«), 7 = pre’(stm/)[€/y]. Using the substitution
Lemma 6.1 and the fact that, due to the renaming mechaniswvarables ind” may occur iny, yields
w,6(a), 7" L pre(stm’).

Part (3) is similar, using the fact that the class invariaaymontain instance variables only, and thus
its evaluation doesn’t depend on the local state.

Case: THROW,;, THROW;3, THROW;
These cases are similar to the above one. None of these statemay change the values of variables
occurring in the global invariant, and thus part (2) is Stk

The induction assumptions and the semantics assures ¢haticedents of the corresponding local
conditions hold in the configuration prior to execution.i§fattion of the local conditions and the local
substitution lemma imply that the precondition of the staat of the executing local configuration hold
after the computation step.

For the other local configurations, local correctness assadditionally, that the precondition of the
attached observation hold directly before its executiogai, we use induction assumption, satisfaction

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 59

of the interference freedom conditions, and the local sitisin lemma to show that the given assertion
attached to the control point of the non-executing locafigomation hold after observation.

Case:NEW

Let (o, 71,u = new; (7 := @)"Wstm,) € T be the local configuration of the executing thread
prior to object creation, anfu, 71, stmy) € T after it. Object creation updates the global state to
5 = o[B+— oMitlthis 3]], where3 ¢ dom(c); the executing thread's local state gets updated to

inst
6’(0{) ,T1

1 = Tilu— (3]. After observation we haveé, = 7[j—[¢€], | and for the global staté =
&la.j-[e]5 ™).

In the following letp; = pre(u := new), po = pre(y := €), andps = post(y := €). By
inductionw,o ¢ GI andw,o(«), 71 =2 pi1- Using the lifting lemma we geb,o =g GI A
Pi(z) for v = wlz— a][0; — 71 (V)] andv; the variables from the domain éf. Lemma 2.2 yields
w[z' +— dom(o)][u— B],0 g (GI A (3u. Pi(z))) | 2. Note thatGI may not contain free logical
variables, and thus its evaluation does not depend on tiwalagnvironment. The newly created object
with a fresh identity is in its initial instance state, imjplg w [z’ — dom (&)|[u+— (], 5 =g Fresh(2',u).
Thus the cooperation test for object creation implies

<

Ou— 8,6 Fg Pa(2) AlLew(u) A (GI A Py(2))[E(2) /2] ,

wherel, ., is the class invariant of the new object. Using the liftinghtea again but in the reverse
direction and Lemma 6.2 resulis & =g GI, and thus part (2). Note that in the annotation no free
logical variables occur, and thus the values of assertionsotidepend on the logical environment.

Furthermore, using the substitution lemmas we get

(A),é’(@),i’l lzﬁ D2, w7é(a)77£1 lzﬁ P3, and W,O,'(ﬁ),T):L: Inew

for all 7. For the class invariant of the executing thread, the iaterfce freedom testimplies 5 («), 71
I, wherel is the class invariant af. Sincel may contain instance variables only, its evaluation ddesn’
depend on the local state, and the required property holus sfiate of other objects not involved in the
last step is not changed in the last computation step, and3)as satisfied.

Furthermore, part (1) is satisfied for the local configuratitvolved in the last computation step. All
other configurationgy, 7o, stms) in T are also inl” and~y # 3. If v # «, then&(y) = &(v), and thus
w, (), T2 Er pre(stms) by induction.

Assume nowy = «, and letr be 71 [V — 12 (¥)], whered = dom(72). Then, sincer(«) = (),
Lemma B.2, the induction assumptions, and the definitiomtefleavable imply using the interference
freedom test thab, 5(a), 7 = pre’(stms)[€/y]. The substitution Lemma 6.1 and the fact that, due
to the renaming mechanism, no local variables’ioccur ing, yieldsw, 6 (a), 72 = pre(stms). l.e.,
part (1) is satisfied. O

Corollary B.1. If prog’ = ¢progr @NAIE @progr — Pprog, theNprog = @y, .

Proof of the soundness Corollary B.1: The proof is straightforward using the soundness Lem-
ma 7.1. O

60 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

C. Completeness proof
The following lemma states that the variable indeed stores the current control point of a thread:
Lemma C.1. Let (T, o) be a reachable configuration @fog’ and(«a, 7, stm) € T'. Thenr(loc) = stm.

Proof of Lemma C.1: Straightforward by the definition of augmentation. O

Proof of the local merging Lemma 7.1 on page 42Assume two computationdy, o) —* <T1, G1)
and (Tp, oo)—* (T, 65) of prog/, and let(a,r,stm) € T1 with a € dom(d,) N dom () and
G1(a)(hinst) = G2(a)(hinst). We prove(a, 7, stm) € Ty by induction over the sum of the length of
the computations.

In the initial case botW} and 7} contain the same single initial local configuration, andstkhe
property holds.

For the inductive case, I}, 5,) — (T1,61) and (s, 55) — (Tb,62) be the last steps of
the computations. The augmentation definition implies #sth computation step appends at most
one element to the instance hlstoryanf If &1(a)(hinst) = d1(a)(hinst), then, by the definition of
the augmentation(7},&,) — (11,6,) did not execute iny, i.e., (o, 7, stm) € 11, and the prop-
erty follows by induction. The case fa@ry(«)(hinst) = F2(a)(hspns) IS analogous. Thus assume in
the fO”OWing é’l(a)(hmst) = &1(o¢)(hmst) o (Uz'lnst77_1) ando/'z(()é)(hmst) = &Q(Q)(hmst) (U?nst,’rz).
From 61 () (hinst) = Ga(a)(hinst) we conclude thab (o) (hinst) = Fa()(hinst) and (o}, 71) =
(O-?nst’7—2)' . 3

Sinced(a)(hinst) # o1(a)(hinst), the computation stegply, o) — (71,61) executed some
statements irv. If there is only one local configuration in that was involved in the step, then the
augmentation definition and the local substitution lemmplynthat its resulting local configuration in
Ty is given by (a, 71, stmy) with stm; = 7 (loc). From (o ot 4s) = (02, 72) we conclude that
the same local configuration executed(ify, &) — <T2,0’2> Thus, either(a, 7, stm) € Ty is the
executlng configuratiofw, 71, stm1) and then it is also iff, or not, and then it is if7y, by induction in
Ty, and since it wasn't involved in the executloﬁz Jo) — <T2, O'2> also inT.

If otherwise there are two local configurationsiiinvolved in (71, &1) — (T1,641), then(al .., 71)
specifies the callee’s instance local state. However, dileetduilt-in auxiliary variables, the identity
of the caller local configuration is also storedrp in the formal parametetaller of the callee. The
caller configuration is iV}, and by induction iril,. Furthermore, since there are no two local configu-
rations with the same identity in a reachable configuratiath steps execute in the same instance local
configuration.

Thus, either(«, 7, stm) € T1 is one of the executing configurations and then it is alsiﬁzi,mr not,
and then it is inl, by induction inT%, and since it wasn't involved in the execution, als&in O

Proof of the global merging Lemma 7.2 on page 42Assume two reachable configuratio(iﬁl, G1)

and (T, 65) and leta € dom(61) N dom(62) satisfying 61 () (heomm) = 62(a)(heomm). We show
that there exists a reachaldlB, 6) with dom (&) = dom(d3), 6(a) = 61(c), andé(8) = 65() for all

B € dom(é2)\{a}. We proceed by induction on the sum of the lengths of the coatipns.

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 61

In the base case we are givéﬁ, G1) = <T2, G92) and the property trivially holds.

For the inductive step, lefl1,5,) — (11,61) and(Ts, &5) — (I, 65) be the last steps of the
computations.

If a ¢ dom (1) ora ¢ dom(o2), thena was created in one of the last steps, and thu&) (hcomm) =
Ga(a)(heomm) = €. That means, no methods @fwere involved yet, i.eq is in its initial instance state
61(a) = 6a(a) = ot [this— af; in this case(Th, &) already satisfies the requirements. Assume in
the followinga € dom(o1) N dom(o2). We distinguish whether the last computation steps updigte t
communication history oft or not.

Case:&l(a)(hcomm) =J (g)(hcomm)

In this case(Ty,01) — (11, 1) doesn’t execute any non-self communication or object et «.
By induction there is a computatioffy, oo)—*(1", &) leading to a configuration such thafa) =
o1(a) ands(B) = 69(p) for all B € dom(d2)\{a}.

In case(T1, 1) — (11,61) does not execute in at all, i.e.,&;(a) = 61(«), then(T', &) already
satisfies the requirements.

Otherwise, the local configurations iR, which execute imy and which are involved in the com-
putation step1, ;) — (11, 6,) are by the local merging Lemma 7.1 alsolin Furthermore, from
o1(a) (heomm) = F1(a)(heomm) We conclude that they don’t execute any non-self commuipicatr ob-
ject creation, and thus their enabledness and effect depmrig on the instance state @f That means,
the same computation as i1, 1) — (11,4;) can be executed itl’, &), leading to a reachable
global configuration satisfying the requirements.

Case: &Q(Q)(bcomm) = dZ(Q)(hcomm)

In this case(T»,59) — (1%,d2) does not execute any non-self communication or object ioreat
involving . By induction, there is a reachablé’, &) with &(a) = ¢1(c) and&(3) = &2(3) for all

B € dom(é)\{a}.

If (T, 59) — (T3, 62) performs a step within, then, according to the case assumption, it executes
exclusively withina.. This meansiy,(8) = 62(3) for all 3 € dom(é2)\{a}, and(T, &) already satisfies
the required properties.

If otherwise (15, &3) — (15, 45) does not execute in, then all local configurations iffy, ex-
ecuting in an object different from, are also inI’; this follows from &5 (3) = &(3) for all 3 <
dom(&2)\{a}, and with the help of the local merging Lemma 7.1 appliedZos) and (13, &3). The
enabledness of local configurations, whose execution dat@evolve «, are independent of the instance
state ofx; furthermore, the effect of their execution neither infloes the instance state @ihor depends
onit. Thus in(T', &) we can execute the same computation steps &&irr,) — (15, 62), leading to
a reachable configuration with the required properties.

Case: a'1(04)(hcomm) 7& d:l (a)(hcomm) ,anda'2(a)(hc\omm) 7& éQ(Q)(hcomm)
In this case finally botRT},01) — (T4,61) and(Ts, 02) — (T4, 62) execute some object creation
or non-self communication in, including exception throwing between different objedtée show that
in this cased () (hcomm) = G2(a)(heomm) implies alsod () (heomm) = 02(a)(heomm), and thus
by induction there is a computation leading to a configuratit, &) such thatdom (&) = dom(5s),
o(a) = 01(a), ande(B) = o2() for all other objectss € dom(&2)\{a}.

Furthermore, combining those local configurations invelire(7}, &) — (17, 61) which execute
within a with those in(Ty,&,) — (T3, d5) which execute outside, we can define a computation

,

(T, &) — (T, 6) such thats(a) = 61 () andé () = 62(;3) for all other objectss € dom(62)\{a}.

62 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

The case assumptions imply, that the last elements of thencomeation historiess («) (hcomm)
andéa(a)(heomm) Were appended in the last computation st&p$iv) (hcomm) = F2(a) (heomm) IMply
that the last elements are equal.

According to the augmentation, each computation step dgtdre communication history efwith
at most one element. Thus we geta)(hcomm) = 02(a)(hcomm), @nd by induction there is a reachable
(T, &) with dom/(&) = dom(5s), &(a) = &1(a), and& () = &2(3) for all 3 € dom(&2)\{a}.

Note that the last elements of the communication histefi€s) (h comm) andda(a)(heomm) record
the kind of execution, and so we know that both steps exebgtsdme kind of communication i
Furthermore, the last elements record also the identitheflécal configuration executing i, the
communication partner af, and the communicated values, which are consequently gisal.e

We distinguish on the kind of the computation st&p, &) — (11,61):

Subcase:NEwW
In this cases| () (hcomm) = 1(@)(heomm) © (o, null, (new®, thread,,)), wherethread,, is the identity
of the creator thread as specified by its local variabtead, and~ is the newly created object.

From the preliminary observations we conclude tti, &5) — (7%, 65) creates the same new
objecty being in the same initial state; furthermore, it leaves thtes of all objects frordom (¢2)\{a}
untouched.

As o(a) = o1(a), the local merging Lemma 7.1 implies that the local configaraof the creator
in 77 is also contained if". Thus, sincey ¢ dom(&2) = dom(5), the same computation step as in
(Ty,&1) — (T1,61) can be executed also ifl’, &), leading to a reachable configurati¢fi, &) with
Val®%t (5) = Val®t (&) U {y} = Val®%*(5y) U {y} = Val®®*%(4y), 6(a) = 61(c), and
6(B) = o(B) = 02(8) = 62(B) for all B € dom(o2)\{a}. Finally, for the newly created object we
haves(y) = G2(y) = oMt this—], and thuss(3) = 62(8) for all 3 € dom(62)\{a}.

inst

Subcase: CALL
Assume first thaty is the caller object an@ # « the callee. According to the preliminary observations,
also (T3, &5) — (Ty,62) executes the invocation of the same method ofvhereq is the caller and
(3 the callee. Furthermore, by the local merging lemma, thierciical configuration frond; is also in
T, and its execution is also enabled(ﬁﬁ, o). The last property holds also for synchronized and monitor
methods, since the invocation of the same method bf the same thread is enabled(ify, &), and
o2(8) = o (B). . .

Thus the caller local configuration froffi can execute the method invocation(ifi,), leading to
a reachable configuratiofi’, &) with 6 (a) = 6 («). Furthermore{T", &) — (T, ¢) and (T, &5) —
(Ty, 65) execute the same callee observation in the same instarteeystd) = (5) and the same
initial local state after the communication of the same algbarameter values, and théi§3) = 62(53).
The states of other objects are not touched, and {hus) satisfies the required properties.

Similarly, if the callee object is, then the same caller local configuration aglif, &5) — (1%, 62)
can execute imT, o) leading to a reachable configuration satisfying the requérgs.

Subcase: RETURN, THROW,

These cases are analogous to the above caseafor.CThe computation?’,5) — (T',6) is con-
structed from the execution of the local configuratiomimwhich executes ir(Tl,[m — <T1,él>,
together with the execution of the communication partner ahich executes 7, &2) — (Ts, 65).
(]

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 63

Lemma C.2. (Initial correctness)
The proof outlineprog’ satisfies the initial conditions of Definition 6.1.

Proof of Lemma C.2: Let {po}7 (77, := &)7%@ {p3} stm;return be the main statement with local
variablesv, and letl be the class invariant of the main class. We have to show Hitrary o € ¥ and
w € Q referring only to values existing in, that
w,o0 g InitState(z) A (V2. 2 = nullvz=2") —
Py (2) o finit N (GI N P3(2) N1(2)) © fops © finit »

wherez is of the type of the main class), of type Object, and wheref;,,;; = [z, (null, 0, null) /thread, caller][Init(7) /7]
and fops = [E2(2)/z.72]. We observe that

w,0 =g InitState(z) A (V2. 2/ = null v 2/ = 2)

implies thato is the initial global state prior to the execution of the ealbbservation at the beginning of
the main statement, i.e., defining exactly one existingathjéz) = « being in its initial instance state
o(a) = oMi[this— a]. We start transforming the right-hand side using the sultisth Lemmas 6.2
and 2.1:

[P2(z)[z, (null, 0, null) /thread, caller][Init(¥)/v]]]

)
= [Pa(z)[z, (null, 0, null)/thread, caIIer]]]w[lemt(v)}’o
[[PQ()]]w[v»—rlnlt(¥)][thread — af,c

= [palz™ "

with 7 defined byr*[thread — a][caller — (null, 0, null)]. The above value i¢rue, since therun-
method of the main class is initially invoked in the given .

For the global invariant we get similarly

[GI[E3(2)/z.5])[z, (null, 0, null) /thread, caller][Init(& 0)/7]]g°
_ HGI[EQ(Z)/Z.gQ]Hg[UHImt(¥)][thread — af,c
= [cIg
= [GI]g”
for some logical environment’ and ¢’ given by o|a.75 +—>[[§2]]§(“)’T]. In the last step we used the
restriction that the global invariant may not contain fregital variables. The step before made use

of the following equation forﬁg(z), which we get using Lemma 2.1 and with the fact tBatloes not
contain logical variables:

[[E2()]]w[v»—rlnlt(¥)][thread — af,c [Z/thls]]]w[lenlt(¥)][thread — af,c

= [[62
[[52]]2)[11 — Init(?)][thread — a],0(a),7

[[82]]@5 ,o(a),

64 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Since(T”,o') with T" = {(a, 7/, stm)} and7’ = 7[ij» H[[éz]]g(“)“] is an initial global configuration of
prog’ after the observation at the beginning of the main statentésteachable, and the initial condition
for the global invariant is satisfied. The casesfpand! are similar to that of7/, where we additionally
use the lifting substitution Lemma 2.1 to show th&g(z)]; " = [ps]; 7 ()",

O

Lemma C.3. (Local correctness: Assignment)
The proof outlineprog’ satisfies the conditions of local correctness from Defini6®.

Proof of Lemma C.3: Let ¢ be a class ofprog’ with class invariant/, w € €, o,,,, € Zins, and
T € Xjoe With o, (this) = a. Assume a multiple assignmefit; } 4 := €{p2} in ¢ which is not the

observation of communication or object creation. We havehtow that

W5 Oinsts T lzﬁ p1—>p2[é’/g] .

Fromw,o,,.;,7 = p1 it follows by the definition of the annotation that there isemchable(T’, &)
with &(a) = o,,,, and(a, 7,7 := &; stm) € T. Executing the local configuration ifi’, &) leads to a
reachable global configuratigfi’, &) with () = a,,,, [7—[€]z"™""] and (e, T[7+—[E]e""], stm) €
T. Thus by the definition of the annotation frog’ we have

W, O[T [Elg™ "), 77— [Elg™ "] Ec p2

and further with the substitution Lemma 6ulo,,.,, T =2 p2[€/y], as required. O

Lemma C.4. (Local correctness: Exception handling)
The proof outlineprog’ satisfies the conditions of local correctness from Defini6c3.

Proof of Lemma C.4: Let stm be a statement of the formy (Y Tery 1= €rry StMo; catch (1 up) stmy ...;
catch (¢, up) stmy, finally (G == Ein)™ stmyqq yrt (Gyrt := &)Y in a classe. We show that for all
W, 0,4, ANAT,

W, 05T Ec pre(stm) — pre(Yiry := €ury)[exc o null/exc] A

pre(stmo)[€ry /Grry][exc o null /fexc] .

Fromw,o,,,,7 = pre(stm) it follows by the definition of the annotation that there isemchable
(T, o) with o(a) = 0, and(«, 7, stm; stm’) € T. Executing the exception throwing in the above lo-
cal configuration in7", &) updates the local state fo= +[exc H[[exc]]gm"‘“% o null]. The corresponding
observation complett?s the computation step and leads &zhable global configuratio(rT, ¢)with g =
ola0 g [Gery — [[é’try]]gim ’T]
catch (¢, uy) stmy, finally (7, == é’ﬁn>ﬁ” Stmp41 yrt) € T.
Thus by the definition of the annotation fprog’ we have

=1 T o= Ty H[[étry]]g"”“’%], and (a, 7, stmg; catch (¢ uy) stmq .. .;

W, Ginst, T FEr pre(stmg) ,

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 65

and further with the substitution Lemma 6.1

W, Oinsts T . pre(stmo)[@in/ Tiin] [exc o null /exc] .

Note that the annotation may not contain free logical vdesb

The case for the precondition of the observation is simiBy:definition we havev,s,,,.7 =¢
pre(Yery = €uwy), and thusv, o,,,.,, 7 =2 pre(Yiy = €uy)[exc o null/exc] , as required.

The other cases are similar. The antecedents of the camglitissure reachability and enabledness;
we use the local substitution lemma to show the requiredeptiss. O

Lemma C.5. (Interference freedom)
The proof outlineprog’ satisfies the conditions for interference freedom from Diédim 6.4.

Proof of Lemma C.5: Assume an arbitrary assignment= ¢ with preconditionp in classc with class
invariantI, and an arbitrary assertignat a control point in the same class. We show the verification
condition from Equation (32) on page 37

W, Oinsts T L A Ainterleavable(q, 7 := &) — ¢'[¢/7]

for some logical environment together with some instance and local statgs, andr, whereg’ denotes
q with all local variables: replaced by some fresh local variabtés

Leta = o,,,(this), and assume first that := € is not the observation of communication, object
creation, or exception throwing or handling. The first cewso,,,.,, 7 =, p implies that there exists a
computation reachingl},, &,,) with &,(a) = o,,,,, and a configuratiofic, 7, i := €; stm},) € T),.

Fromw,o,,,,7 Er ¢ we get by renaming back the local variables that .., =, ¢ for
7'(u) = 7(u’) for all local variables: in ¢. Let ¢ be the precondition of the statemeitits,,. Note thaty
is an assertion at a control point. Applying the annotatiefinition we conclude that there is a reachable
(Ty, 5q) With &4(a) = 0, = &y(a) and (a, 7/, stmg; stml}) € T,. The local merging Lemma 7.1
implies that(a, 7/, stmg; stmy,) € Tp.

Let <Tp, dp) result from(Tp,&p> by executing the enabled local configuration 7,4 := €; stmy,).
We haves,(a) = 0;,.,[7—[€]¢"""]. From the assumption, o,,,, 7 = interleavable(q, 7 := ¢) we
get that(a, 7/, stmg; stmy,) is not the executing configuration, and thas 7', stmg; stmy,) € Tp.

According to the annotation definitian, o, [77—[€]z™"""], 7" =, ¢, and after renaming the local
variables ofg alsow, o, [+ [€]z""""], 7 = ¢'. Due to renaming, no local variables gfoccur ing,

implying
W, Ot [T (€)™ "), TG = [Ele™) e d -

Finally, by the substitution Lemma 6.1 we geto,,..,, 7 = ¢'[€/7].

If the assignment observes object creation, communicatipexception throwing or handling, the
proof is similar. For object creationy,o,,.,, 7 =2 p implies that there exists a computation reaching
(Tp, 0p) With &p(a) = 0., and an enabled configuratidn, 7,,, stmy; stmy,) € Ty, Wherestm,, is

of the formu := new; (¥ := €)"®". The local stater, is 7[u+ v] for some valuev, such that the
local configuration is enabled to creat@:). Directly after creation, the creator local configuratiash

66 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

the local stater and executes its observation resulting in the local stafe-[¢]2""] and instance
stateo,,.,[7—[€]e"""]. Note thato,,, is not influenced by the object creation itself. Again, the
interleavable predicate assures that, 7', stmg; stmy,) is not the executing configuration, and we get
w, 0,4, T Ec ¢[€/y] as above.

The other cases for observations of communication, objeettion, or exception throwing and han-
dling are analogous. In the case of caller observation infecammunication, the restrictions on the
augmentation imply thaf := & does not change the values of instance variables, and thgeesmgnt
follows directly from the assumptions. jfis the precondition of a callee observation at the beginning
of a method body, then the annotation assure that the irieacaf the method is enabled itf},,)
such thatr is the local state of the callee directly after communicatimt before observation. Note
that for self-communication, the caller part does not cleatip instance state. Thus the only update
of the instance state af is given by the effect off := €. Again, theinterleavable predicate assures
that (o, 7/, stmg; stmy) is neither the caller nor the callee, and tius 7', stmg; stmy,) € Tp. We get
w,0,,4,T Ec ¢[€/y] as above.

Validity of the verification condition 31 for the class iniamt is similar, where we additionally use
the fact that the class invariant refers to instance vaggbhly. O

Lemma C.6. (Cooperation test: Communication)
The proof outlineprog’ satisfies the verification conditions of the cooperation fl@scommunication
of Definition 6.5.

Proof of Lemma C.6: We distinguish on the kind of communication starting witk trerification con-
dition for synchronized method invocation.

Case:CALL

Let {p1} trer == e0.m(€); {p2}' (77, := &)@ {p;}"aT be a statement in a clas®f prog’ with ¢, of
typec, where methodn ¢ {start, wait, notify, notifyAll} of ¢’ is synchronized with bod{g, } 73 (i, :=
&)7% {43} stm, formal parameters, local variables without the formal parameters givervbgnd let
¢q1 = I be the callee class invariant. Assume

w, 0 g GIAPI(2)ANQ)(Z) ANcomm A z # null A 2’ # null

for distinct and freshe € LVar¢ andz’ € LVar®, and wherecomm is Fy(z) = 2/ A (2'.lock =
free V thread(z’.lock) = thread). Note that for completeness we don't need the informatiorestin
the caller class invariant. By definition of the global inaat, the assumptiotr, & =g GI implies that
there exists a reachab|&, o) with

dom(&) = dom(o) anddo () (heomm) = () (heomm) for all v € dom(o) .
Assumingw(z) = « as caller identityw, o =g Pi(z) impliesw,o(«), 71 =, p1 by the substitution
Lemma 2.1, for some local state with 71 (u) = w(w) for all local variables: occurring inp;. By the

annotation definition there exists a reachable configurdfl®, 1) such that

o1(a) = &(a) and(a, 71, tyer == e9.m(8); (71 = €)' stm1) € Ty .

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 67

Recall that () (hcomm) = () (hcomm) forally € dom (o), and especially for the callet(a) (hcomm) =
() (heomm) = o1()(hcomm). Using the global merging Lemma 7.2 applied 14, 01) and(T, o) we
get that there is a reachal[&’, ') with dom(o’) = dom(c) and

o'(a) = o1(a) ando’(v) = o(v) for all v € dom(o)\{a}.

Furthermore(a, 1, et := eo.m(&); (1 := €)' stm,y) € T, o1(a) = ¢’ (c), and the local merging
Lemma 7.1 implies that

(a0, 71, Upet := €9-m(€); (1 := §1>!Ca" stm1) € T'.

Let 3 = w(2’) be the callee object. In case of a self-call, i.e.,doe 3, we directly get that7”, o") =
(T", o'} is a reachable configuration such thdt{«) = 5(«), " (7)(heomm) = () (heomm) for all
v € dom(5), and(a, 71, Upes = eg.m(E); (7 := &) stmy) € T".

Otherwise, the assumptian o =g I (z") impliesw, &(8), 72 = I for some local state,. Note
that the class invariant contains instance variables,. dyydefinition of the class invariant, there is a
reachable global configuratigfi’,, o) such that

We need to fall back upon the two merging lemmas once more tirob common reachable config-
uration: Analogously to the caller part, the global mergirgnma 7.2 applied td7%, o2) and (7", ")
yields that there is a reachable configurati@t{, o) with dom(c”) = dom(c’") and

" (B) = o2(B) ando” (v) = o’ (v) for all v € dom(a’)\{3} .

Now, (a, 71, tper = eg.m(€); (i = €)' stmy) € T', 0”(a) = o'(a), and the local merging
Lemma 7.1 implies that the local configuratiom, 71, w,e; := eg.m(€); (71 := €)' stmy) isin T".
Thus(T",c") is a reachable configuration with’(«) = & (), o”(8) = &(8), " (7)(hcomm) =
(7)) (heomm) for all v € dom (&), and(a, 71, wret := eg.m(€); (7 := €)' stmy) € T".
With the antecedenb, & =g 2’.lock = free V thread(z’.lock) = thread of the cooperation test
we geto(5)(lock) = free V thread (5 (5)(lock)) = 71 (thread). With &(8) = ¢”(5) and Lemma B.3
we get—owns(T"\{¢}, 3), where¢ is the stack with ﬁ,um = eo.m(8); (i1 := &) stm;y) on

top. Furthermorey, & =g comm impliesw, & =g Ey(z) = 2/, and by the lifting substitution lemma
[[eo]]g(a) Tt = [eo] @™ = (') = B. This means, the invocation of methodof 3 is enabled in
the local configuratioticy, 71, tre; := eg.m(€); (71 := €)' stmy) in (T, o").

The definition of the augmentation, antl(«) = &(«) gives

U\')v a'(04)7 7\-1 lzﬁ P2,

which by the substitution Lemma 2.1 and with the definitionrpfjieldsw, o =g P»(z). Due to the
renaming mechanism we get

dj o)Zg PQ(Z) o fcomm
for feomm = [E(2), nit(¥)/d,). For the precondition of the method body, the annotatiomitifn
implies
w,0(8), 72 Fr g2

68 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

—

with 7 = 7™ [g H[[e]]g(a)’h]. For the actual parameters we obtain by the substitutionrhar.1
[E(2)]5? = [e]27 ™ = [e]Z*"™, and further with the same lemma

0,6 g Q3(2)[E(2), Init () /@, 7]

as required by the cooperation test.

Directly after communication we have a global configuratiath still the same global stat€”’. The
caller observation evolves its own local staterfo= [} H[[él]]g"(o‘)’ﬁ], and the global state ® =
oy —[@]2 ™. Finally, the callee observation changes the global statet &[8. 7, —[#]2?™]
where its own local state is updated#o= 7| &—)[[62]]2(6)’%2]. According to the annotation definition

we get

(;j,O,'(O[),’fl ’:l: p3, w O,-() 742 ’:l: qs, and &) o)):g GI .

Letw = o[i s Init(B)][@ —[e]7 ™ ™[—[a] 2™ ™7 — 812 ™). The lifting lemma implies
W, 6 =g GI A P3(z) A Q45(2"); with the global substitution lemma finally

0,5 g (GI A Py(2) A Q4(2")[E3(2) /2 Bh)[EL(2) /-] [E (=), nit() /@,]

and thus the cooperation test is satisfied for the invocatiaynchronous methods.
The case for non-synchronized methods is analogous, wineesntecedent .lock = freeVthread(z'.lock) =
thread is dropped.

Case: CALL monitor

This case is similar to the above one ofIC , where for the invocation of a methed € {wait, notify, notifyAll},
the assertiomomm is given by Ey(z) = 2’ A thread(z’.lock) = thread, implying owns(&, 3) for the

caller threadt and the callee objegt.

Case:CALL g4t

Enabledness of starting the thread of an objecequires—started(T”,3). Due to the definition of
comm, we have additionally, ¢’ =g —2'.started, which implies—¢"(3)(started). We get enabledness
by Lemma B.4.

. skip
Case:CALL g,

The enabledness argument is similar fosLC*F”,, where we usev,o” =g 2’.started to imply the
enabledness predicatéurted (T", 3).

Case:RETURN

For return, the construction ¢f"”, o) is similar, where we get instead of the enabledness of thercal
that the callee configuratio(, 7o, return e,;; (3 := €3)"™) is in (I, s"), and thus enabled to exe-
cute.

Case:RETURNyqit
In this case we additionally have to shewwns(T”, 3), which we get from theomm assertion imply-
ingw, & =g 2’.lock = free and using Lemma B.3.

Case:RETURN,;,
Since therun-method cannot be invoked directly, we conclude that thewkeg local configuration is
the only one in its stack, i.e., the transition rule/RRN,,, of the semantics can be applied(ifi”, o)
to terminate the calleg3, 72, return; (i3 := &3)'™et).

O

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 69

Lemma C.7. (Cooperation test: Instantiation)
The proof outlineprog’ satisfies the verification conditions of the cooperation fiasobject creation of
Definition 6.6.

Proof of Lemma C.7: Let{p;} u := new®; {p2}"*W (7 := &)"*"{p3} be a statement in clagsof prog’,
and assume

0,6 g z#nullAz#uA3. Fresh(2,u) A (GI A Fu. Pi(2)) | 2

with z € LVar< andz’ € LVar'stObiect fresh. Note that we don't need the class invariant of thetarea
for completeness. We show that

9,6 g Pa(z) No(u) A (GI A Py(2)[E(2)/2.4)
Letw(z) = a andw(u) = §. According to the semantics of assertions we have that
w,5 Eg Fresh(z,u) A (GI A Fu. Pi(2)) | 2

for some logical environment that assigns te’ a sequence of objects frobfulomect (6) =U, Val§,;(5),
and agrees on the values of all other variables witffhe assertioffrresh(z’, u) is defined by

InitState(u) Au & 2/ AVv.v €2 Vuv=u,

wherelnitState(u) expands ta: # null A Ay, vz = Init(z). Thus,w, s |=¢g Fresh(z',u) implies
that3 € Val®(5) with 5(8) = o™it[this—], and additionallyVal®®*%(5) = w(z') U {B}. Lets

inst null

be the global state with domaibial®™t(5) = Val®%e(5)\{3} and such that(y) = &(v) for all
objectsy € Val®®t(5). Thens = &[3+— o™[this — G]], and from

nst
w, 5 g (GI AJu. Py(2)) | 2

we get with Lemma 2.2
w,0 g GI A Ju. Py(z) .

By definition of the annotation,, & =g GI implies that there is a reachable configuratigi, &) such
that
dom(o1) = dom (o) andey () (heomm) = () (heomm) for all v € dom(s) .

The precondition of the object creation statement
w,o Eg Ju. Pi(z)

implies
wlu—v], 6 =g Pi(2)

for somev € Val®%°(5). Applying the lifting Lemma 2.1 we get that

null
O'(CY), T lzﬁ P1

70 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

for a local stater with 7(u) = v and7(v) = w(v) for all other local variables. By definition of the
annotation, there is a reachable global configuratitn o,) such that

NeWstm) € Ty .

oo(a) = o(a) and(a, 7, u := new’; (¢ := €)
Recall thato; () (hcomm) = 0(7)(heomm) for all v € dom(c); especially we havé (a)(heomm) =
() (heomm) = 02()(heomm). Using the global merging Lemma 7.2 applied to the reachgloleal
configurations(75, o) and(17, &1) we get that there is a reachable configuratidy o3) with

dom(o3)=dom(51), o3(a)=02(r), andos(y)=01(7) for all yedom(o1)\{a}.

Furthermore,(a, *,u = newS; (7 = &)"Wstm) € Ty, da(a) = &3(), and the local merging
Lemma 7.1 implies thatw, 7, u := newS; (y := €)"*Vstm) € T5.

So we know tha(Tg, o3) is a reachable configuration containing the local configoma(o, 7, u :=
newS; (7 := &)"Wstm) e Ty. With Val®® <t (5) = Val®® <t (5)\{5}, dom(>1) = dom(¥), and
dom(&3)=dom(&1) we get that3 ¢ dom(o3), i.e., the local configuration is enabled to create the fresh
object = w(u). With &3(a) = o2(ar) = 6(ar) we get

w’ov-(a%% ’:l: b2,

where7 = 7[u— f]; with the lifting Lemma 2.1 together with the definition dfthis meansv, 5 =¢

P,(z), as required in the cooperation test. .
Executing the instantiation in the local configurati@n 7, u := new®; (i := €)"*Wstm) in (T3, 03),

creating a new object ¢ dom(&3), results in(T3, 53) with &3 = &3]3 — oit[this+— j3]]; executing

the creator observation leads to a reachdblg 65) with 65 = &3[a.y*H[[€]]ZS(Q)’%] and(a, 7, stm) in

Ty with 7 = 7[5 [2] 2],

As (T3, 63) is reachable witl#s (3) = o [this—] = () we know

inst

('D?é'(ﬁ)a%):K I..

As I. may not contain local variables, applying the lifting Lemeha& again withwv(u) = [yields the
required conditiono, & =g I.(u) for the class invariant. It remains to show that

5,6 g (GIAP)E(2)/24).

Applying the substitution Lemma 6.2 and the fact thdtdoes not contain free logical variables yields
[GIE(z)/=q157 = 61157

with 6 = &[a.y*H[[E(z)]]g’é]. Thus we have to show the existence of a reachable confignraiih a
global state defining the same object domain and commuaithtstory values as. The configuration
(T3, 63) satisfies the above requirements, since, first, it is redetveith

ValObject(O/,g) — VG,ZObJECt(a'g) U {B} — ValObJECt &1) U {ﬁ}
ValObject(a,) U {B} — ValObJECt(é') — ValObJECt(é'))

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 71

Furthermoregs(a) = &3(a)[7—[]2*"7), and withgs(a) = &3(a) = &a(a) = &(c) and
[B(2)]57 = [Elz/this]]27 = [E]2 = [e]2@7

we getés(a) = 6(a). For the new objectiz(8) = 73(3) = o™i[this— (] = 5(8) = 4(3). Finally,

nst

for all other objectsy different from botha and 5 from the domain o5 we haveds(y)(heomm) =

a?)('Y)(hcomm) = a'1(’7)(hco7mn) = 0,-(7)(hcomm)-
Similarly for the postconditiomps of the observation,

[Ps(2)[B)/ 2lg" = (B
= [psle/this]]5? = [ps] 277 = [pa] 277

Thus we have to show the existence of a reachable configuraiith a global state defining the same
instance state far asé3 and containing the local configuratidr, 7, stm). The configuration75, 63)
satisfies the above requirements. O

Lemma C.8. (Cooperation test: Exception handling)
The proof outlineprog’ satisfies the verification conditions of the cooperation fi'msexception han-
dling of Definition 6.7.

Proof of Lemma C.8: The proof is analogous to the proof for the cooperation mstdmmunication.
Let wpe; = eg.m(€) (stm)'C {p VAL, 170 (37, = ;)7 p3} be a statement in a clagswith
m # start andeg of typec’, and let{q;} throw e {go)W (775 := &)W be a statement im (i) of ¢/
which is not in the try-block of any try-catch-finally statem. We have to show that

w, 0 Eg GIAP(2) ANQi(2') A comm
- (PQ(z) A Qé(zl)) © fthmw A (GI A P3(z)) o fobs? o fobs] © fthmw

holds for arbitraryw and¢&, with distinct fresh logical variables € LVarc andz’ € LVar<', and with
comm given by Ey(z) = 2/ A = E(z) A E'(2') # null A z # null A 2’ # null. Furthermore f ;0. iS
[E'(2")/top], fobss 1S [E5(2") /2 .45, and fopse 1S [Ea(2) /2.4
So assume that the antecedent holds. Fitom =g GI we get that there exists a reachalilé o)
with
dom (o) = dom(c) andd () (hcomm) = (7)(heomm) for all v € dom(o) .

Assumingw(z) = « as caller identityw, o =g Pi(z) impliesw, o(«), 71 =, p1 by the substitution
Lemma 2.1, for some local state with 74 (u) = w(u) for all local variables: occurring inp;. By the
annotation definition there exists a reachable configurdfl®, ;) such that

o1(a) = &(a) and(a, 11, receive tye; (4 1= &) stm) € Ty .

Recall that () (hcomm) = () (hcomm) forally € dom(o), and especially for the callet(a) (hcomm) =
() (heomm) = o1()(hcomm). Using the global merging Lemma 7.2 applied 14, o1) and(T, o) we
get that there is a reachal[&’, ') with dom(o’) = dom(c) and

o'(a) = o1(a) ando’(v) = o(v) for all v € dom(o)\{a}.

72 E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions

Furthermore, (o, 71, receive t,e;; (4 = &)"™'stmy) € Ty, o1(a) = o’(a), and the local merging
Lemma 7.1 implies that
(ov, 71, receive tper; (G4 := 1) stmy) € T'.

Let 5 = w(z’) be the callee object. The assumptibry ¢ Q1 (2') impliesw, &(3), 72 Er ¢ with
T2(v) = w(v') for all local variables in ¢;. By definition ofg; there is a reachable global configuration
(T, 09) such that

o2(3) = &(8) and(3, 2, throw e; (73 1= &)™ stmy) € T .

In case of a self-call, i.e., for = [, we directly get that7”,¢”) = (T”,¢') is a reachable con-
figuration such that”(a) = o(a) = &(8), 0" (V) (hecomm) = () (heomm) for all v € dom(&),
and (o, 71, receive upes; (G4 = €1)"®'stmy) € T". With the local merging lemma we get additionally
(8, 7o, throw e; (73 1= &)W stmy) € T,

Otherwise, for a non-self-call, we need to fall back upontétemerging lemmas once more to obtain
a common reachable configuration: Analogously to the cplier, the global merging Lemma 7.2 applied
to (Ty, 02) and(T”, o’) yields that there is a reachable configurat{@i{, o) with dom(c”) = dom(o”)
and

" (B) = o2(8) ando” (v) = o’ (v) for all v € dom(a’)\{3} .

Now, (a, 71, receive wse; (1 := €)™ stmy) € T, 0" (a) = o'(a), and the local merging Lemma 7.1
implies that the local configuratiofic, 71, receive w,es; (7a = &) "®tstmy) is in T”. Similarly,
(B, 7o, throw e; (773 == &)W stmy) € Ty, o”(8) = 02(f), and the local merging Lemma 7.1 im-
plies (3, 72, throw e; (73 := &)W stmy) € T,

Thus(T",c") is a reachable configuration wit’ (o) = o (), o”(8) = &(8), " (7)(hcomm) =
() (heomm) for all v € dom(5), (a, 71, receive u,et; (s = €)' stm1) € T" and (3, 7, throw e;
(773 = &)W stmy) € T,

With the antecedent, & =g comm of the cooperation testwe get & =g Eo(z) = /A’ = E(z)A
E'(2) # null A z # null A 2 # null, and by the lifting substitution lemnao]2(®"™ = [¢]% ™ =
w(2') = B. Furthermore, using the same lemma giﬁ*&‘éﬁg"’”(ﬁ)’%2 = [[é]]“xg"’//(a‘)’%1 and[[e]]g”(ﬁ)’%2 #
null. l.e., the values of the formal and actual parameters agretthus the augmentation definition and
Lemma B.2 assures that the local configurations are in ezdliége relationship. Additionally, the value
of the exception to be thrown is not the empty reference, lnsl the exception throwing is enabled.

The definition of the augmentation, antl(«) = &(«) gives

dj, 5’(0[), T1 ’:l: D2,

with 7, = #[top—[e]2 ®™], which by the substitution Lemma 2.1 and with the definitidn-p
implies thatu[top —[e]Z 7], & =g Pa(2), i.e.,

dj,@'):g PQ(Z) ofcomm .

Since the local state of the callee is not modified during pttoe throwing, the annotation definition
impliesw, o(8), 72 £ ¢o, 1.€.,w,0 =g Q4(2'). Due to the renaming mechanism we get

(:.), o):g Q/Q(Z/) © fcomm .

E. Abraham et al./ A Deductive Proof System for Multithreadada with Exceptions 73

Directly after communication we have a global configuratiath still the same global stai€’. The
callee observation evolves the global staté te o”[(3.7/3 H[[ég]]g"(ﬂ)’b]. Finally, the caller observation
changes the global state o = (.7 H[[al]]g(o‘)’ﬁ], where its own local state is updatedtp =
#1 [—[21]%2*"™). According to the annotation definition we get

dj,d_(a)"fl ’:l: p3 and w, 6 ’:g GI.

o(a),T2

Let & = oftop—[e]Z ™[—[E]127 i — [, The lifting lemma implies, & =g
GI A Ps(z); with the global substitution lemma finally

©,0 g (GI A P3(2))[Ea(2) /240 [Es /2 G][E' (') /top]

and thus the cooperation test for exception handling isfgadi for this case. The case for rethrowing is
analogous. 0

Proof of Theorem 7.2 on page 42: Straightforward using the Lemmas C.2, C.3, C.4, C.5, C.6, an
C.8,and C.7. O

