
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Java Test Driver Generation from
Object-Oriented Interaction Traces

Frank S. de Boer1,2

CWI, Amsterdam, The Netherlands

Marcello B. Bonsangue1,3

LIACS, Leiden, The Netherlands

Andreas Grüner1,4

LIACS, Leiden, The Netherlands

Martin Steffen1,5

UiO, Oslo, Norway

Abstract

In the context of test-driven development for object-oriented programs, mock objects are increasingly used
for unit testing. Several Java mock object frameworks exist, which all have in common that mock objects,
realizing the test environment, are directly specified at the Java program level. Though using directly the
programming language may facilitate acceptance by software developers at first sight, the entailed syntax
noise sometimes distracts from the actual test specification, speaking about interaction traces.
We propose a Java-like test specification language, which allows to describe the behavior of the test harness
in terms of the expected interaction traces between the program and its environment. The language is
tailor-made for Java, e.g., in that it reflects the nested calls and return structure of thread-based interaction
at the interface. From a given trace specification, a testing environment, i.e., a set of classes for mock
objects, is synthesized.
The design of the specification language is a careful balance between two goals: using programming con-
structs in Java-like notation helps the programmer to specify the interaction without having to learn a
completely new specification notation. On the other hand, additional expressions in the specification lan-
guage allow to specify the desired trace behavior in a concise, abstract way, hiding the intricacies of the
required synchronization code at the lower-level programming language.

Keywords: mock objects, black-box testing, Java, trace-based observable behavior, test-driver generation.

1 Part of this work has supported by the NWO/DFG project Mobi-J (RO 1122/9-4) and by the EU-project
IST-33826 Credo: Modeling and analysis of evolutionary structures for distributed services. For more
information, see http://credo.cwi.nl
2 Email: F.S.de.Boer@cwi.nl
3 Email: marcello@liacs.nl
4 Email: agruner@liacs.nl
5 Email: msteffen@ifi.uio.no

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
http://credo.cwi.nl
mailto:F.S.de.Boer@cwi.nl
mailto:marcello@liacs.nl
mailto:agruner@liacs.nl
mailto:msteffen@ifi.uio.no

de Boer, Bonsangue, Grüner, and Steffen

1 Introduction

Testing is of prime importance in assuring the quality of software. In contrast to
exhaustive methods for system verification and validation, testing aims at detecting
faults, thereby increasing confidence in the system under test [20]. To manage the
complexity of modern software, testing should be systematic and integrated into the
software development process. Test scripts should be generated automatically from
the specification and tools should take care of the automation of the several aspects
and levels (e.g. unit, integration, or system testing) of the testing framework [11].

In [18], mock objects have been proposed for unit testing. They have been em-
ployed in test-driven software development [3]. The external behavior of an object
is considered in terms of message sends and returns and in particular distinguishes
between the notion of provided and required interfaces. Mock objects are used to
mimic the environment of the object under test. In that sense they act as stubs, but
contain code and assertions to test for the properties of interest, expressed in terms
of stimulus-response using message calls and returns. For Java, several mock-object
frameworks exist [15] [10] [21]. To lower the burden for software developers, in the
above mentioned frameworks mock objects are set up in terms of pure Java code.
As a consequence, these frameworks have to struggle with syntax noise which may
detract from the actual specification.

The contribution of this paper is threefold.

(i) We define a formal specification language for test cases of Java components.
This specification language is a hybrid of (a subset of) the Java language with
additional constructs for specification purpose, in particular for formalizing
expectations. More specifically, a specification is represented by sequences of
incoming (expected) and outgoing calls and returns, using the usual control
flow operations like while-loops and conditionals, etc. Further it contains con-
structs for data manipulation, expression evaluation, and switch on incoming
method calls. We think that this novel approach of enriching the programming
language with specification constructs allows for both, acceptance by software
developers and a concise and more abstract formalization of test cases by means
of interaction traces.

(ii) We show how to transform a specification of our test specification language
into code of Java classes whose instances represent mock objects. A test speci-
fication is, thus, executable in a common Java environment. We will point out
that due to differences in variable scoping and flow of control between a speci-
fication and its corresponding Java program the code generation is surprisingly
complex.

(iii) We identify a certain type of faulty test cases, i.e., test cases which cannot
be passed by any possible implementation of the component under test. We
show how to distinguish these test cases from faulty components under test at
runtime.

We consider a Java component to be a set of classes and their instances. Compo-
nents may only communicate via method calls. In particular, fields can only be
accessed by objects of the same component. This restricted access is enforced with

2

de Boer, Bonsangue, Grüner, and Steffen

Java access modifiers. To avoid encapsulation problems, inheritance is not allowed
to cross the border between Java components. By contrast, classes can be instan-
tiated even by objects residing in a different component. This way, a component
does not expose its implementation details, and can be compositionally described
by sequences of method calls and method returns between the component and its
environment [2]. These sequences, also called traces, form the formal basis of our
test specification language. Thus, a specification basically describes a sequence of
stimuli (i.e., outgoing calls and returns), to be realized by the testing environment,
and of the expected behavior (i.e., incoming calls and returns) of the component
under test (CUT).

The specification language and the code generation are illustrated by an example,
realizing a voting system. The voting system is a component that, when activated by
an initiator, collects a vote from a group of external voter objects, compile a report
and return it to the initiator. It can be used, for example, to detect termination of
a group of objects. The specification of the example describes the scenarios to be
tested in terms of the expected interactions of the CUT with the initiator object
and with a set of voter objects. From this specification we generate a set of classes
representing the tester-environment. Only if the CUT can execute the expected
interactions, it passes the test. A failure message is returned if the CUT is not able
to follow the sequence of messages as specified. By analyzing the failure message, we
can decide if the failure is due to an unrealizable specification (like communication
between two objects that cannot possibly know each other), a bug (like a memory
fault), or because the component is faulty.

The paper is structured as follows. Section 2 defines the specification language,
used to describe the trace-based behavior of the observer. Section 3, the core of the
paper, describes the code generation from the abstract specification. In Section 4
we discuss briefly the extension of the specification language to the multi-threaded
case. Finally, Section 5 concludes with related and future work.

2 The test specification language for single threaded
Java

This section formalizes the specification language for the observer’s traces. We start
with the abstract syntax of the language; Section 2.2 afterwards deals with failure
reports.

2.1 Syntax

The abstract syntax of the test specification language is shown in Table 1, where we
abstract from failure reports, discussed in the next section. The main aspects of the
syntax are explained in terms of Listing 1, which specifies the external observable
behavior of a voting component.

In general, a test specification spec starts with an (optional) list of imported
classes. These classes may only be used internally in the test, but must not con-
tribute to the communication with the CUT. In our example, we import Java’s
HashSet to store the set of voters. The imported classes are omitted from the

3

de Boer, Bonsangue, Grüner, and Steffen

Listing 1: Specification of the voting example
1 import java.util.HashSet
2

3 provided Voter {
4 vote() : bool;
5 fVote : bool;
6 }
7

8 required Census {
9 census(HashSet) : bool;

10 }
11

12 c : Census;
13 called : HashSet = new HashSet();
14 voters : HashSet = input.read;
15 conj : bool = true;
16

17 new !Census()! {
18 c:=?return()
19 };
20 c!census(voters.clone()) {
21 while (called.size() < voters.size()) do {
22 (this : Voter)?vote() where (called.contains(this) = false) {
23 called.add(this);
24 conj:=conj & this.fVote;
25 !return(this.fVote)!;
26 } }
27 x:=?return(y : bool) where (y = conj)
28 }

code in the rest of the paper. It is followed by a list provided of class signatures
designating the classes belonging to the environment. In our case, the signature
of the environment is specified by the class Voter which contains a boolean field
fVote and its corresponding get-method vote. On the other hand, required denotes
a non-empty list of class signatures designating the CUT. As explained in the intro-
duction, the fields of the provided-classes cannot be accessed by the CUT and the
required-classes only specify method signatures. Finally, stmt describes the behavior
of the tester and the expected behavior of the component. In our example, it first
declares declares the local variables, resp., initializes them appropriately.

After initialization, the actual interaction is described. First, a new instance of
the component class Census is created by calling its constructor method and waiting
for the return value which is assigned to the local variable c. In the specification
language, we view the instantiation of a component class as a particular case of a
call of a method of the component by the tester as explained in detail below. Next,
the tester calls the method census of component object c. It passes a copy of the set
of voters to the component (note, that passing on the set of voters itself would give
rise to a shared data structure which may influence the outcome of the test). This
method call resembles a method call in Java, apart from the additional exclamation
mark and the missing assignment of the result to a variable. The expected behavior
of the CUT is that it returns the conjunction of the votes of all voters. To calculate
the conjunction, the component has to find out the votes of the voter objects of set
voters. This is modeled by a call of a method of a voter by the component. Note
that this method belongs to the tester. Such calls we indicate by question marks.
After having received all this calls, census returns to the tester the final result.

More specifically, after the call of the component’s method census and before

4

de Boer, Bonsangue, Grüner, and Steffen

spec ::= [import ci∗] provided ci∗ required ci+ stmt spec

ci ::= c{meth∗ field∗} class intf.

meth ::= [static] m(T, . . . , T) : T meth. sign.

field ::= f : T field decl.

stmt ::= sout | sin statements

sint ::= x : T | x :=e | e.f :=e | assert(ebool) | x.m(v, . . . , v) internal stmts

sin ::= skip | sin; sin | cin | callswitch : c+
in stmts in

| if (ebool) then sin else sin | while (ebool) do sin

cin ::= (this:T)?m(x:T, . . . , x:T) where ebool sout !return(e) incoming call

sout ::= skip | sout; sout | cout | new cout | sint stmts out

| if (ebool) then sout else sout | while (ebool) do sout

cout ::= c!m(v, . . . , v) sin x=?return(x : T) where ebool outgoing call

c ::= x | T callee

v ::= x | consts values

Table 1
Abstract syntax

the corresponding return with the final result, the component must call method
vote of each Voter object which belong to the tester. Only then the invocation of
census can return. To express this, we split a call of a method of the CUT by the
tester into two distinguished events, i.e., the outgoing call itself, indicated by an
exclamation mark, and the incoming return, indicated by a question mark. Dually,
a call of a method of the tester by the component is described by the incoming
call itself, indicated by a question mark, and the outgoing return, indicated by an
exclamation mark. Both for an incoming call and an incoming return we use formal
parameters to denote the actual parameters provided by the component. Values
which are passed to the tester by an incoming communication can be checked by a
where-expression which must evaluate to true for the actual values, otherwise the
test is not successful.

In the syntax, a call event and the corresponding return event mark the begin-
ning and end of a block construct. 6 These different block constructs are denoted in
the syntax by sin and sout . In a single-threaded setting, the flow of control between
the component and the tester is reflected by alternating nested block statements sin

and sout . These block statements form the basic building block of the language. Of
particular interest is the use of sin statements in the context of a callswitch :, which
allows the specification of non-deterministic choice between incoming calls.

6 We consider a call of a constructor as a special method call.

5

de Boer, Bonsangue, Grüner, and Steffen

Apart from the interactions between the component and the tester, the specifica-
tion in general also will involve internal computations. For example, for computing
values for communication and driving the test execution. In the syntax these state-
ments are denoted by sint . Note that such an internal computation assumes that
the tester has control. Thus, we cannot specify internal computations right after an
outgoing call. The above example shows, however, that in practice it is convenient
for driving the test execution to allow, for instance, evaluation of guards right after
outgoing communication. In Section 3 we explain how to generate Java code for
such specifications.

2.2 Failure reports

A terminating execution of a test specification is successful if not generating a
failure report. In general, failures are caused by violated assert statements and
where-clauses and unspecified incoming method calls and returns. As an example
of the latter kind of failures consider the following specification fragment.

new !C() (this : T)?m() . . . x := ?return()

This example can give rise to two kinds of failures. First, the constructor of com-
ponent class C returns without calling any method of the tester. Second, the con-
structor calls a different, unexpected method of the tester. The implementation of
the specification language generates automatically appropriate failure reports.

Note that it is possible to specify tests which always fail because of unrealizable
interaction scenarios. E.g., consider

x := new T(); new !C() { (this:T)?m(u:T) where (u = x) . . . }

which, after instantiating a test class T , calls the constructor of component class C

and then expects an incoming call with the newly created instance of T as parameter.
As the instantiation of a tester class by the tester itself is an internal action this
newly created object is unknown to the component unless the tester communicates
it. Of particular interest are thus techniques which identify such failures. As it
is impossible to identify all such failures statically, we provide a runtime check by
recording all identities of tester objects known to the component. If a test execution
leads to a situation where a tester object, which actually cannot be known by the
component, is expected in an incoming communication, the tester reports an invalid
test and aborts.

3 Code generation

This section describes how to generate Java code from a test specification for the
methods of the tester classes. To understand the general strategy for the generation,
it is useful to clarify the nature of the specification language and especially, what
are the differences to (or additions to) a programming language like Java. The
abstract goal of the specification language is the specification of interaction traces
used for testing and employing programming-like structuring such as classes and
mentioning methods. As far as the interaction is concerned, i.e., the calls and
returns exchanged at the interface of the CUT, there is a strong duality between

6

de Boer, Bonsangue, Grüner, and Steffen

incoming and outgoing communication, seen from the perspective of the tester (cf.
Figure 1). Outgoing calls and returns must be realized by the tester, and incoming
communication must be checked by it, and both adhering to the linear order as
given by the specification language, specifying a set of traces. It suggests itself, to
realize the interaction labels as given on the specification level by corresponding
method calls and returns at the program level. To do so requires to tackle the
following two points:

control flow: The code at the Java-level must be contained in bodies of meth-
ods, corresponding to the incoming method-labels of the trace specification, i.e.,
the test-code must be appropriately “distributed” over different method bodies
and classes. Furthermore and as mentioned, the order of accepting incoming
communications and generating outgoing ones must be realized as given by the
specification. We use a labeling-mechanism to assure proper interaction sequenc-
ing.

variable binding: The parameters mentioned in an incoming communication at
the specification level introduce a scope much as a method declaration at the
program level introduces a scope, namely for the method’s formal parameters.
There is a crucial difference between the two scoping mechanisms. At the program
label, the formal parameters’ scope clearly spans the method body, only. In
contrast, at the specification level, the scope can extend beyond the body of the
corresponding method, as given by the trace specification.

These are, apart from technicalities, the two main differences to be bridged by the
translation. In general, to generate Java code, we first transform the test specifi-
cation such that its internal computations comply with the single-threaded flow of
control. Applying this transformation to our example results in the specification of
Listing 2 (in the code, we omit the “preamble” of the import statements and the
declaration of the required and provided interface, as that part coincides with the
code of Listing 1).

First, we introduce labels to mark incoming calls and returns. These labels
are also used to rewrite a while statement in an equivalent statement using con-
ditions and virtual goto statements. Such a virtual goto statement is of the form
next :=` where next is a new auxiliary variable for the tester and ` is a label. The
auxiliary variable next describes the control of the tester and refers to the next ex-
pected incoming call or return. The result of this transformation is that all internal
computations fall within the scope of the control of the tester.

Listing 3 contains the code generated from the above specification. The class
Tester introduces an enumeration type for the labels and it initializes the instance
variables next , voters, called , and conj , and declares the instance variable c. Accord-
ing to the test specification, the tester starts the execution. Thus, a main method is
introduced to describe its behavior, first calling the constructor method after which
it is checked whether next has not progressed. Note that this indicates that the
constructor method itself didn’t generate calls of methods of the tester. A similar
test is generated by the subsequent call of the method census. The implementation
of the method voter , on the other hand, checks whether it has been called when
expected. This expectation is expressed by a test involving the corresponding label.

7

de Boer, Bonsangue, Grüner, and Steffen

Listing 2: Preprocessed specification
1

2 c : Census;
3 called : HashSet = new HashSet();
4 voters : HashSet = input.read;
5 conj : bool = true;
6

7 new !Census() {
8 [`0]c:=?return()
9 };

10 if (called.size() < voters.size())
11 then next:=`1
12 else next:=`2;
13 c!census(voters.clone())! {
14 while (called.size() < voters.size()) do {
15 [`1](this : Voter)?vote() where (called.contains(this) = false) {
16 called.add(this);
17 conj:=conj & this.fVote;
18 if (called.size() < voters.size())
19 then next:=`1
20 else next:=`2;
21 !return(this.fVote)!;
22 } }
23 [`2] x:=?return(y : bool) where (y = conj)
24 }

Listing 3: Voting example: Java code
1 class Tester {
2 enum Label = {`0, `1, `2};
3 Label next = `0;
4 HashSet called = new HashSet();
5 HashSet voters = new input.read;
6 bool conj = true;
7 Census c;
8

9 void main() {
10 c = new Census();
11 assert(next == `0);
12 if (called.size() < voters.size()) Tester.next = `1;
13 else Tester.next = `2;
14 y = c.census(voters);
15 assert(next == ell2);
16 assert(y == conj);
17 x = y;
18 } }
19

20 class Voter {
21 bool vote() {
22 switch(Tester.next) {
23 case `1: {
24 assert(called.contains(this) == false);
25 called.add(this};
26 conj=conj & this.fVote;
27 if (called}.size() < voters.size()) Tester.next = `1;
28 else Tester.next = `2;
29 return(this.fVote);
30 }
31 case default:
32 assert(false);
33 } } }

8

de Boer, Bonsangue, Grüner, and Steffen

Listing 4: Specification fragment: the general case
...
[`1] (this : T)?m(. . .) . . .

..

.
[`i] (this : T)?m(. . .) {

...
x!m′() {

...
[`] (this : T ′)?m′′() . . .

...
[`′] ?return . . .

} }
.
..
[`n] (this : T)?m(. . .) . . .

Listing 5: Java code fragment: the general case
T m(. . .) {
switch(Tester.next) {
case `1: . . .

...
case `i: {

next = `;
x.m′();
assert(next == `′);
next = . . .
return e
}
...
case `n: . . .

In the example, the method vote is called only once for every Voter object.
In general, however, a method can of course be called several times in different
situations and with different reactions. We explain the general case in terms of the
following two fragments of a preprocessed test specification. The overall structure
of the fragment in Listing 4 depicts n occurrences of incoming calls of the method
m. Furthermore, the ith incoming call contains an outgoing call to m′ at top level.
Finally, this latter outgoing call contains an incoming call to a method m′′. This
leads to the Java code fragment of method m, shown in Listing 5.

The method body consists of a switch dispatching on the occurrence of the
incoming call. The code for each such case is generated from the corresponding
occurrence. E.g., the outgoing call x!m′ is preceded with the update of next with
label ` of the next expected incoming call of method m′′. After the outgoing call we
check whether next refers to the label of its return. Right before we return from this
call of method m next is updated to the next expected occurrence of an incoming
call or return.

The second complication in the code generation is that the formal parameters
of incoming method calls in the specification language are different from the formal
parameters of Java method definitions and thus cannot be directly translated. To

9

de Boer, Bonsangue, Grüner, and Steffen

Listing 6: specification fragment: formal parameters
[`] (this : T)?m(x : T ′) {

...
[`′] (this : T)?m(y : T ′) {

if (x < y)
then this.f!m′(x) . . .
else this.f!m′(y) . . .
}
}

Listing 7: Java code fragment: formal parameters
T ′′ m(T ′ n) {
switch(Tester.next) {
case `1: Tester.` x = n; . . .
case `2: {

Tester.`′ y = n;
if(Tester.` x < Tester.`′ y)

this.f.m′(Tester.` x); . . .
else this.f.m′(Tester.`′ y); . . .
} } }

understand this, consider the following fragment of another preprocessed specifica-
tion presented in Listing 6. Here, we have two nested incoming calls of the same
method m. However, the outer method call uses x as its formal parameter whereas
the inner method call uses y and also has access to x. Therefore, we model these
formal parameters as static variables of the Tester class which are globally accessi-
ble. To describe the scope of the variables we annotate them with the label of their
occurrence. For the above specification, the implementation fragment is given in
Listing 7.

4 Generalizing to the multi-threaded case

To extend the specification language to a multi-threaded setting, we first extend the
communications between the component and the tester with an additional param-
eter representing the executing thread. Second, we need to relax the nested block
structure of incoming and outgoing communications. This gives rise to the abstract
syntax of Table 2.

For illustration of the new aspects, consider the following specification fragment.
. . .
new !C(tmain);
(this : T)?m(t : Thread);
x := tmain?return(y : C) where (y = t);
t !return()

We left out again initialization and the provided and required interface. The creation
of a new instance of C entails also the creation of a new thread. The main thread
tmain starts within the tester and creates a new instance of C. After that but before
the call returns, the tester expects an incoming call by a new thread t. Then the
return of the constructor call is expected yielding the new objects. Finally, the
thread returns to the component. The generated code describes the behavior of the
tester’s main thread which conrols outgoing method calls and returns and checks

10

de Boer, Bonsangue, Grüner, and Steffen

spec ::= [import clintf ∗] provided clintf + required clintf + stmt spec

clintf ::= c : c {meth∗ field∗} class intf.

meth ::= [static] m(T, . . . , T) : T meth. sign.

field ::= [static] f : T field decl.

stmt ::= sext | sint | stmt ; stmt | if (ebool) then stmt else stmt

| while (ebool) do stmt | callswitch : (cin : stmt)+ statements

sint ::= x : T | x :=e | e.f :=e | assert(ebool) | x.m(v, . . . , v) internal stmts

sext ::= cin | cout | rin | rout stmts ext

cin ::= [new] (this : T)?m(t : thread , x : T, . . . , x : T) where ebool incoming call

cout ::= [new] c!m(t, v, . . . , v)

rin ::= x= t? return(x : T) where ebool

rout ::= t! return(e)

c ::= x | T callee

v ::= x | consts values

Table 2
Abstract syntax: Multi-threading

the incoming communication by means of delegation. For lack of space, we omit
the details of the code generation.

5 Conclusion

5.1 Future work

Currently, we are implementing a tool for the execution of test specifications of
Java programs to demonstrate the feasibility of our framework. As future work, we
plan to extend the specification language to support other concepts of Java such as
monitors and cloning. For these concepts we have already extended our underlying
formal framework. Moreover, we plan to provide modularity in our language to
allow for the reuse of test-patterns. We also want to provide support to mechan-
ically check the correctness proofs of the code generation. In the multi-threaded
case, this requires a formalization of the possible behaviors which arise because of
different interleavings of the executing threads. Another promising extension of our
testing framework could be to provide an automatic synthesis of specifications of
our specification language from higher level specification like automata or message
sequence charts.

11

de Boer, Bonsangue, Grüner, and Steffen

5.2 Related work

The presented framework is based on a fully abstract semantics for may-testing [13].
Roughly speaking, a denotational semantics is fully abstract wrt. a testing semantics
if it equates exactly those programs that pass the same (possibly infinite) set of
tests. For Java-like components, full abstraction results have been explored in [1,2].
A consequence of full abstraction is the definability property stating that a sequence
of messages is in the semantics of a component iff one can construct a successful
test scenario for it.

Various approaches for testing especially object-oriented systems have been de-
veloped. Testing for especially concurrent object-oriented programs based on syn-
chronization sequences is investigated in [9], based on Petri nets and OBJ (OBJSA
[6] [5]). An overview over various integration testing approaches for object-oriented
systems in [8].

A well-known standard test specification language based on sequences of events
is TTCN-3 [22]. It differs in three aspects from our approach. As our test specifi-
cation language is tailored towards a specific programming language, namely Java,
we can faithfully represent the underlying interaction mechanism of the program-
ming language without the need of an additional communication layer (e.g., ports).
As a consequence, we have one semantic framework for both the test specification
language and the programming language. This uniform formal semantics critically
simplifies the correctness of the code generation via a formally established simulation
relation. Especially in the multi-threading case, in our experience, the complexity
of the code generation, which involves sophisticated synchronizations between the
tester and the component, requires a correctness proof and, hence, a uniform formal
framework. Thirdly, an interesting problem of test specification is to avoid spec-
ifying unrealizable interaction scenarios. Concentrating on a specific concurrency
model allows, for instance, in the single threaded case of Java, that only properly
nested calls and returns can be tested for. Message sequence charts (MSC) are a
graphical specification formalism used for the generation of test cases [17]. The fo-
cus of MSCs, however, is on the timed order of message exchanges and often many
test suite details are hidden, like expression evaluation and data generation. This
differs from our approach where a test suite is specified in more detail. [4] proposes
a specification-based (i.e., black-box) testing method for object-oriented software.
The desired interface behavior is described in the object-oriented specification lan-
guage CO-OPN/2, which is formally based on Petri nets and a transition-system
semantics. The approach can be seen as a generalization to the one of [7], [19] (used
for testing abstract data types) to deal with object-oriented programs. Sequences
of the interface behavior can be described using a simple modal logic known as
Hennessy-Milner logic (HML) and hence, the corresponding notion of observational
equivalence is bisimulation equivalence.

Conceptually related to our and the mock object approach is the testing and
validation framework of [16]. Also there, sets of objects are validated in a black-box
manner. Sets of objects exchange messages at the interface of a surrounding envi-
ronment, which behaves according to a behavioral interface specification, designating
the allowed and expected interaction sequences. Unlike the work presented here, the
validation framework deals with concurrent, active objects in the Creol language.

12

de Boer, Bonsangue, Grüner, and Steffen

Furthermore, the behavioral interface specification and the objects under test are
both represented in the rewriting system Maude as a common simulation platform,
whereas we translate our interface specifications into executable Java code. Also
in the context of Creol, [12] investigate a simple trace specfication language with a
focus on the asynchronous nature of that communication model and exploiting the
dual nature of interaction with a (concurrent) object: outgoing communication is
being tested for complies, whereas incoming communication is scheduled.

References

[1] Ábrahám, E., de Boer, F.S., Bonsangue, M.M., Grüner, A., Steffen, M.: Observability, connectivity,
and replay in a sequential calculus of classes. In: M. Bonsangue, F.S. de Boer, W.P. de Roever, S. Graf
(eds.) Proceedings of the Third International Symposium on Formal Methods for Components and
Objects (FMCO 2004), Lecture Notes in Computer Science, vol. 3657, pp. 296–316. Springer-Verlag
(2005). URL http://www.ifi.uio.no/~msteffe/download/fa-fmco.pdf

[2] Ábrahám, E., Bonsangue, M.M., de Boer, F.S., Steffen, M.: Object connectivity and full abstraction
for a concurrent calculus of classes. In: Z. Li, K. Araki (eds.) ICTAC’04, Lecture Notes in Computer
Science, vol. 3407, pp. 37–51. Springer-Verlag (2004). URL http://www-omega.imag.fr/doc/d1000313_
1/WP11-D115-313-V1-fa.pdf

[3] Astels, D.: Test-Driven Development: A Practical Guide. Prentice Hall (2003)

[4] Barbey, S., Buchs, D., Péraire, C.: A theory of specification-based testing for object-oriented software.
In: Proccedings of the European Dependable Computing Conference, Lecture Notes in Computer
Science, vol. 1150. Springer-Verlag (1996)

[5] Battiston, E., Chizzoni, A., Cindio, F.D.: Clown as a testbed for concurrent object-oriented concepts.
In: Concurrent Object-Oriented Programming and Petri Nets: Advances in Petri-Nets, Lecture Notes
in Computer Science, pp. 131–163. Springer-Verlag (2001)

[6] Battiston, E., de Cindio, F., Mauri, G.: Modular algebraic nets to specify concurrent systems. IEEE
Transactions in Software Engineering 22(10), 689–705 (1996)

[7] Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifications. IEEE Software
Engineering Journal 6(6), 387–405 (1991)

[8] Chan, W.K., Chen, T.Y., Tse, T.H.: An overview of integration testing techniques for object-oriented
programs. In: Proceedings of the 2nd ACIS Annual International Conference on Computer and
Information Science (ICIS 2002) (2002)

[9] Chen, H.Y., Sun, Y.X., Tse, T.H.: A strategy for selecting synchronization sequences to test concurrent
object-oriented software. In: Proceedings of the 27th International Computer Software and Application
Conference (COMPSAC 2003), Los Angeles, California. IEEE Computer Science Press (2003)

[10] EasyMock. http://www.easymock.org (2007). URL http://www.easymock.org

[11] Fewster, M., Graham, D.: Software Test Automation. Addison Wesley (1999)

[12] Grabe, I., Steffen, M., Torjusen, A.B.: Executable interface specifications for testing asynchronous creol
components. Technical Report 375, University of Oslo, Dept. of Computer Science (2008). A shorter
version has been submitted for conference proceedings

[13] Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)

[14] Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM
32(1), 137–161 (1985)

[15] jMock. www.jmock.org (2007). URL http://www.jmock.org

[16] Johnsen, E.B., Owe, O., Torjusen, A.B.: Validating behavioral component interfaces in rewriting logic.
Fundamenta Informaticae 82(4), 341–359 (2008)

[17] Koch, B.: Test purpose based test generation for distributed test architectures. Phd thesis, Universität
zu Lübeck, Germany (2001)

[18] Mackinnon, T., Freeman, S., Craig, P.: Endo-testing: Unit testing with mock objects. In: G. Succi,
M. Marchesi (eds.) Extreme Programming Examined, The XP Series, pp. 287–301. Addison-Wesley
(2001)

13

http://www.ifi.uio.no/~msteffe/download/fa-fmco.pdf
http://www-omega.imag.fr/doc/d1000313_1/WP11-D115-313-V1-fa.pdf
http://www-omega.imag.fr/doc/d1000313_1/WP11-D115-313-V1-fa.pdf
http://www.easymock.org
http://www.jmock.org

de Boer, Bonsangue, Grüner, and Steffen

[19] Marre, B.: Sélection automatique de jeux de tests à partir de spécification algébraiques en utilisant la
programmation logique. Ph.D. thesis, Université de Paris XI (1991)

[20] Patton, R.: Software Testing, second edn. SAMS (2005)

[21] rMock. http://rmock.sourceforge.net (2007). URL http://rmock.sourceforge.net/

[22] Methods for testing and specification (mts). The testing and test control notation version 3 (ttcn-3).
European Standard ETSI ES 201 8731 v2.2.1 (2002)

14

http://rmock.sourceforge.net/

	Introduction
	The test specification language for single threaded Java
	Syntax
	Failure reports

	Code generation

	Generalizing to the multi-threaded case
	Conclusion
	Future work
	Related work

	References

