
Lazy Behavioral Subtyping ?

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Dept. of Informatics, University of Oslo, Norway
{johand,einarj,olaf,msteffen}@ifi.uio.no

Abstract. Late binding allows flexible code reuse but complicates formal rea-
soning significantly, as a method call’s receiver class is not statically known.
This is especially true when programs are incrementally developed by extend-
ing class hierarchies. This talk presents a novel method to reason about late
bound method calls. In contrast to traditional behavioral subtyping, reverification
is avoided without restricting method overriding to fully behavior-preserving re-
definition. The approach ensures that when analyzing the methods of a class, it
suffices to consider that class and its superclasses. Thus, the full class hierarchy is
not needed, and incremental reasoning is supported. We formalize this approach
as a calculus which lazily imposes context-dependent subtyping constraints on
method definitions. The calculus ensures that all method specifications required
by late bound calls remain satisfied when new classes extend a class hierarchy.
The calculus does not depend on a specific program logic, but the examples use
a Hoare-style proof system. We show soundness of the analysis method.

1 Motivation

Late binding of method calls is a central feature in object-oriented languages and con-
tributes to flexible code reuse. A class may extend its superclasses with new methods,
possibly overriding the existing ones. This flexibility comes at a price: It significantly
complicates reasoning about method calls as the binding of a method call to code cannot
be statically determined; i.e., the binding at run-time depends on the actual class of the
called object. In addition, object-oriented programs are often designed under an open
world assumption: Class hierarchies are extended over time as subclasses are gradually
developed and added. In general, a class hierarchy may be extended with new subclasses
in the future, which will lead to new potential bindings for overridden methods.

To control this flexibility, existing reasoning and verification strategies impose re-
strictions on inheritance and redefinition. One strategy is to ignore openness and assume
a “closed world”; i.e., the proof rules assume that the complete inheritance tree is avail-
able at reasoning time (e.g., [9]). This severely restricts the applicability of the proof
strategy; for example, libraries are designed to be extended. Moreover, the closed world
assumption contradicts inheritance as an object-oriented design principle, which is in-
tended to support incremental development and analysis. If the reasoning relies on the
world being closed, extending the class hierarchy requires a costly reverification.

? This research is partially funded by the EU project IST-33826 CREDO: Modeling and analysis
of evolutionary structures for distributed services (http://credo.cwi.nl).



An alternative strategy is to reflect in the verification system that the world is open,
but to constrain how methods may be redefined. The general idea is that to avoid rever-
ification, any redefinition of a method through overriding must preserve certain proper-
ties of the method being redefined. An important part of the properties to be preserved
is the method’s contract; i.e., the pre- and postconditions for its body. The contract can
be seen as a description of the promised behavior of all implementations of the method
as part of its interface description, the method’s commitment. Best known as behavioral
subtyping (e.g, [1,7,8,10]), this strategy achieves incremental reasoning by limiting the
possibilities for code reuse. Once a method has committed to a contract, this commit-
ment may not change in later redefinitions. That is overly restrictive and often violated
in practice [11]; e.g., it is not respected by the standard Java library definitions.

2 Contribution

In this work, we relax the property preservation restriction of behavioral subtyping,
while embracing the open world assumption of incremental program development. The
basic idea is as follows: given a method m declared with p and q as the method’s pre-
and postcondition, there is no need to restrict the behavior of methods overriding m
and require that these adhere to that specification. Instead it suffices to preserve the
“part” of p and q actually used to verify the program at the current stage. Specifically,
if m is used in the program in the form of a method call {r} e.m() {s}, the pre- and
postconditions r and s at that call-site constitute m’s required behavior and it is those
weaker conditions that need to be preserved to avoid reverification. Thus, we distinguish
declaration-site specifications, which need not be enforced on redefinitions, from call-
site requirements, which are in fact enforced on redefinitions. This distinction leads
to behavioral subtyping “by need”. We call the corresponding analysis strategy lazy
behavioral subtyping. This strategy may serve as a blueprint for integrating a flexible
system for program verification of late bound method calls into object-oriented program
development and analysis tools environments [2–4].

The presentation uses an object-oriented kernel language, based on Featherweight
Java [6], and Hoare-style proof outlines. We formalize lazy behavioral subtyping as a
syntax-driven inference system in which the analysis of a class is done in the context
of a proof environment constructed during the analysis. The proof environment keeps
track of the context-dependent requirements on method definitions, derived from late
bound calls. The strategy is incremental; for the analysis of a class C, only knowledge
of C and its superclasses is needed. Proofs derived in the context of superclasses are
never violated by later extensions to the class hierarchy. We show the soundness of
the proposed analysis strategy. The talk builds on previously published work by the
authors [5], but extends this work with methodological aspects and applications in the
context of multiple inheritance.

2



References

1. P. America. Designing an object-oriented programming language with behavioural sub-
typing. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Foundations of
Object-Oriented Languages, pages 60–90. Springer, 1991.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Intl. Workshop on
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS’04),
volume 3362 of LNCS, pages 49–69. Springer, 2005.

3. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software.
The KeY Approach, volume 4334 of LNAI. Springer, 2007.

4. L. Burdy, Y. Cheon, D. R. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, , and
E. Poll. An overview of JML tools and applications. In T. Arts and W. Fokkink, editors,
Proceedings of FMICS ’03, volume 80 of ENTCS. Elsevier Science Publishers, 2003.

5. J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazy behavioral subtyping. In J. Cuellar
and T. Maibaum, editors, Proc. 15th Intl. Symposium on Formal Methods (FM’08), volume
5014 of LNCS, pages 52–67. Springer, May 2008.

6. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for
Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450,
2001.

7. G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and
modular reasoning. Technical Report 06-20a, Department of Computer Science, Iowa State
University, Ames, Iowa, 2006.

8. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

9. C. Pierik and F. S. de Boer. A proof outline logic for object-oriented programming. Theo-
retical Computer Science, 343(3):413–442, 2005.

10. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swier-
stra, editor, 8th European Symposium on Programming Languages and Systems (ESOP’99),
volume 1576 of LNCS, pages 162–176. Springer, 1999.

11. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In
P. Devanbu and J. Poulin, editors, Proc. Fifth International Conference on Software Reuse
(ICSR5), pages 206–215. IEEE Computer Society Press, 1998.

3


