
Universitetet i OsloInstitutt for informatikk
In
rementalReasoning forMultiple Inheritan
e
Johan Dovland,Einar B. Johnsen,Olaf Owe, and MartinSte�en
Resear
h Report 373ISBN 82-7368-333-8
April 2008

Incremental Reasoning for Multiple Inheritance

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Department of Informatics, University of Oslo
PO Box 1080 Blindern, NO-0316 Oslo, Norway{johand,einarj,olaf,msteffen}�ifi.uio.no

Abstract. Object-orientation supports code reuse and incremental programming.
Multiple inheritance increases the power of code reuse, butcomplicates the bind-
ing of method calls and thereby program analysis. Behavioral subtyping allows
program analysis under anopen world assumption; i.e., under the assumption
that class hierarchies are extensible. However, method redefinition is severely re-
stricted by behavioral subtyping, and multiple inheritance often leads to conflict-
ing restrictions from independently designed superclasses. This paper presents an
approach to incremental reasoning for multiple inheritance under an open world
assumption. The approach, based on a notion oflazy behavioral subtyping, is
less restrictive than behavioral subtyping and fits well with multiple inheritance,
as it incrementally imposes context-dependent behavioralconstraints on new sub-
classes. We formalize the approach as a calculus, for which we show soundness.

1 Introduction

Object-orientation supports code reuse and incremental programming through inheri-
tance. Class hierarchies are extended over time as subclasses are developed and added.
A class may reuse code from its superclasses but it may also specialize and adapt this
code by contributing new method definitions, possibly overriding definitions in super-
classes. This way, the class hierarchy allows programs to berepresented in a compact
and succinct way, significantly reducing the need for code duplication. Late binding
is the underlying mechanism for this incremental programming style; the binding of a
method call at runtime depends on the actual class of the called object. Consequently,
the code to be executed depends on information which is not statically available. Al-
though late binding is an important feature of object-oriented programming, this loss of
control severely complicates reasoning about object-oriented programs.

Behavioral subtypingis the most prominent solution to regain static control of late
bound method calls (e.g., [1, 16, 17]). This approach achieves incremental reasoning
with anopen world assumption; i.e., class hierarchies are extensible. However, the ap-
proach restricts how methods may be redefined in subclasses.To avoid reverification,
any method redefinition mustpreservecertain properties of the method being redefined.
In particular, this applies to the method’s contract; i.e.,the pre- and postcondition for its
body. The contract can be seen as a description of the promised behavior of all imple-
mentations of the method. Unfortunately, this restrictionhinders code reuse and is often
violated in practice [23]; e.g., it is not respected by the standard Java library definitions.

Work on behavioral reasoning about object-oriented programs has mostly focused
on languages with single inheritance (e.g., [5, 20, 21]). With single inheritance, a class

is derived from one direct superclass. Recently, we have relaxed the behavioral sub-
typing restrictions on method redefinition in this context,leading to a notion oflazy
behavioral subtyping[10]. Given a methodm declared with preconditionp and post-
conditionq, there is no need to restrict the behavior of methods overriding m to ensure
that these adhere to this specification. Instead, it sufficesto preserve the “part” ofp and
q used to verifythe program at the current stage. Specifically, ifm is used in a method
call {r} e.m(. . .) {s}, the pre- and postconditionsr ands at that call-site constitutem’s
requiredbehavior. Only these weaker conditions need to be preservedto avoid reverifi-
cation. Behavioral subtyping is not implied by this approach: Whenm is overridden in
a classC, the new definition need not implement all superclass specifications ofm, but
only the requirements made by superclasses ofC towards usage ofm. Lazy behavioral
subtyping still supports incremental reasoning under an open world assumption.

Multiple inheritance allows a class to be derived from several direct superclasses.
This offers greater flexibility than single inheritance, asseveral class hierarchies can be
combined in a subclass. It also complicates language designand is often explained in
terms of complex run-time data structures such as virtual pointer tables [24]. Formal
treatments are scarce (e.g., [4,6,11,22,25]) but help clarify intricacies, thus facilitating
design and reasoning for programs using multiple inheritance. Multiple inheritance also
complicates behavioral reasoning, as name conflicts may occur between methods inde-
pendently defined in different branches of the class hierarchy. Although name conflicts
are often resolved through qualification or renaming [2,18,24], it might be undesirable
to force the programmer to modify method names, making programs more difficult to
understand and maintain. Name conflicts may also be seen as a natural feature of mul-
tiple inheritance and resolved by imposing an ordering of superclasses [7,9,14].

In this paper, we extend the lazy behavioral subtyping approach to multiple inher-
itance class-based systems. For this purpose, we adopt apruned bindingstrategy for
method calls, which resolves name conflicts based on the static context of each method
call. This binding strategy supports incremental reasoning and ensures that method
binding applies inside the scope of the constraints ensuredby lazy behavioral subtyping.
The approach is formalized as an inference system, for whichwe show soundness.

Paper overview.Section 2 introduces late binding and multiple inheritance, and Sec-
tion 3 proof environments for behavioral reasoning. Section 4 presents the inference
system for incremental reasoning. Section 5 discusses related work, and Section 6 con-
cludes the paper.

2 Late Binding and Multiple Inheritance

In an object-oriented program, classes are related by meansof inheritance in a class
hierarchy. We say that a classC1 is belowanother classC2 (and writeC1 ≤ C2) if C1

extendsC2, C1 extends a class which is belowC2, or C1 andC2 are the same class.
Furthermore,C2 is above C1 if C1 is belowC2. A subclassis below asuperclass. Single
inheritance class hierarchies are tree-shaped; a class canhave several direct subclasses,
but only one direct superclass.Verticalname conflicts occur when a method is overrid-
den in a subclass. Thebinding strategyfor method calls must resolve such conflicts.

4

P ::=L {t} L ::=
lass C extends C { f M}

M ::=m (x){t} t ::=v := new C() | v := p | v := e
p ::=e.m(e) | m(e) | m(e) :> C | skip | if b then t else t fi | t; t

Fig. 1.The language syntax, in whichC denotes a class name,ma method name,ean expression,
andb a Boolean expression. Variablesv are fieldsf or return. We use vector notation to denote
lists and whitespace for the list concatenation operator (i.e., botheandeeare lists of expressions).

Late binding, or dynamic dispatch, is a central concept of object-orientation, already
present in Simula [8]. A method call is late bound, orvirtual, if the method body to be
executed is selected at run-time, depending on the callee’sactual class: if an object of
classC2 executes a methodn defined in a superclassC1 and this method calls method
m defined in both classes, then the code selected for executionis associated to thefirst
matching occurrenceof m aboveC2; i.e., m of C2 is selected and not the one inC1. If
n, however, were executed in an instance ofC1, the virtual invocation ofm would be
bound tom’s definition inC1. We say that a definition ofm is reachablefromC if there
is a classD ≤ C such that a call tom will bind to that definition for instances ofD. For
instance, ifm is overridden byD, that definition is reached fromC for instances ofD.
Thus, for a virtual call there might be several reachable definitions.

In contrast, multiple inheritance class hierarchies form acyclic directed graphs. This
means thathorizontalname conflicts may occur, as a class may have several direct su-
perclasses. In the class hierarchy above a given class, several definitions of the same
method may be reached, depending on the chosen path through the hierarchy. More
elaborate binding strategies are needed to resolve horizontal conflicts. One solution is
explicit resolution; e.g., to use qualification or renaming as in C++ [24], Eiffel[18], and
POOL [2]. A second approach, which we follow in this paper, isto consider horizon-
tal name conflicts as a natural feature of multiple inheritance. In particular when using
libraries, the programmer cannot be expected to know (or resolve) potential name con-
flicts of, e.g., auxiliary methods in the libraries. Following [7,9,14], ambiguities can be
solved by fixing the order in which inherited classes are searched; e.g., left to right.

2.1 A Multiple Inheritance Kernel Language

An object-oriented kernel language is given in Fig. 1, basedon Featherweight Java [13].
A programP consists of a listL of class definitions and a method body. A class extends
a list C of superclass names, which may beObje
t, with fields f and methodsM. A
methodM takes parametersx and contains a statementt. The sequential composition
of statementst1 andt2 is writtent1; t2. The statementv := newC() creates a new object
of classC with fields instantiated to default values, and assigns the new reference to
v. In a method invocatione.m(e), the objecte receives a call to the methodm with
actual parameterse. The expressione.m(e) denotes avirtual call. (For convenience,
we often writee.m(e) or simplye.m instead ofv := e.m(e).) The statementm(e) :> C
denotes astatic call to m aboveC; i.e., the call occurs in a class belowC and it is
bound aboveC independent of the actual class of the called object. This statement
replaces the call to the superclass found in languages with single inheritance,C may

5

D

(a) CC’

D

(b)

Fig. 2. Different binding strategies: (a)maximal scopeand (b) restricted scope. For a given
methodm, C is the class making a call,D is the binding environment andC′ is bind(C,m),
the default binding ofm in C.

here be any superclass in the class hierarchy. Upon completion, a method activation
returns the value of itsreturn variable. Finally, there are standard statements forskip,
conditionalsif b then t else t fi, and assignmentsv := e. As usual, the pseudo-
variablethis is read-only. For simplicity, we assume given a language of side-effect
free expressionse and we let fields have distinct names, methods with the same name
have the same signature (i.e., no method overloading), class names be unique, programs
be well-typed, and we ignore the types of fields and methods.

To make the representation of class hierarchies compact, a class name is bound to
a tuple〈C, f ,M〉 of typeClass, whereC is a list of superclass names,f a set of fields,
andM a set of methods. The listC is assumed to consist of unique names and may be
nil. The list of superclass names, field set, and method set of a class tuple are accessible
by observer functionsinh, att, andmtds, respectively.

2.2 The Binding of Virtual and Static Calls

We consider binding strategies for multiple inheritance class hierarchies with horizontal
name conflicts. LetCid andMid denote types for class and method names. A call to a
methodm is bound with respect to asearch class D; i.e., the search for a definition of
m starts inD. Except for static calls, the search class is the callee’s actual class.

In order to successfully bind a call tom, the name conflicts must be resolved: the
binding algorithm traverses the class hierarchy in, e.g., aleft-first depth-first manner.
Assume thatD1, . . . ,Dk are the direct superclasses ofD. If m is not defined inD, search
recursively for a definition ofm in the class hierarchy aboveD1. If a definition is not
found aboveD1, proceed to the next superclassD2 of D. By type-safety, we may as-
sume that a method definition is eventually found. This binding strategy is illustrated in
Fig. 2(a), and defined by a partial functionbind.

Definition 1. Define bind : List[Cid]×Mid → Cid as follows:

bind(nil,m) , ⊥

bind(C L,m) , C if m∈C.mtds
bind(C L,m) , bind(C.inh L,m) otherwise

For a virtual call tom on an instance ofD, bind(D,m) is thedefault bindingof the
call. Remark that a static callm :> B is bound bybind(B,m), regardless of the object’s

6

actual class. Withbind(D,m), all local virtual calls to a methodm in an instance ofD
are bound to the same definition, independent of where in the class hierarchy aboveD
the call was initiated, as illustrated by the shaded area of Fig. 2(a).

This binding strategy above resolves horizontal as well as vertical name conflicts at
the syntactic level, but may result in unexpected behavior.When two class hierarchies
are merged in a common subclass, virtual calls in one hierarchy may suddenly be bound
in the other, caused by unforeseen name conflicts. In order toextend the class hierarchy
with a classD in a controlled way, the definition of every methodm in bind(D,m) must
meet the requirements imposed by all calls tomaboveD. This is necessary even ifm is
not defined inD, which generally means that all calls made by some class aboveD must
be considered. Thus, reasoning about program behavior quickly becomes intractable.

In order to better control method binding, we adapt the so-called pruned binding
strategy[14]; wheneverm is called from a method defined in classC, the call will, for
instances of any subclass ofC, be boundbelow the default bindingbind(C,m). (We
shall refer toC as the calling class ofm.) Intuitively, a call will only be bound to a
definition which explicitly redefines the method definition known to the programmer.
Technically, pruned binding is defined as follows:

Definition 2 (Pruned binding). Define pbind: List[Cid]×Cid×Mid → Cid by:

pbind(nil,C,m) ,⊥

pbind(C L,C,m) , bind(C,m)

pbind(D L,C,m) , D if D < C∧m∈ D.mtds
pbind(D L,C,m) , pbind(D.inh,C,m) if D < C∧m /∈ D.mtds
pbind(D L,C,m) , pbind(L,C,m) otherwise

Thus,pbind(D,C,m) searches the class hierarchy above the search classD for a defini-
tion of m in a left-first, depth-first manner. In contrast tobind(D,m), the search space is
restricted by the calling classC. If the search reachesC, the default bindingbind(C,m)
will be returned. Thus, the search is limited to the shaded area in Fig. 2(b). A virtual,
local call tom insideC is bound bypbind(D,C,m). Static analysis ensures the defined-
ness ofbind(C,m), and thereby also ofpbind(D,C,m).

3 Lazy Behavioral Subtyping: Tracking Behavioral Constraints

Incremental reasoning means that extending a given class hierarchy by new classes does
not require reverification of already established properties. Clearly, with late bound
methods and without any restriction on how a class hierarchycan be extended, this goal
cannot be achieved. The simple reason is that a virtual call to a methodm refers to code
which is not statically determined at compile-time (or verification-time). In an open
setting the implementation referred to in the call tommay change, whenm is overridden
in a newly added class. Without imposing any restrictions,m’s new implementation may
be completely unrelated to the original one. Consequently,any correctness proof for
the calling method which relies on properties of (the original) m is worthless and must
be redone in the extended hierarchy. In summary, if the behavior of called methods is

7

allowed to change arbitrarily by inheritance (single inheritance or not), old proofs about
code using those methods are invalidated when the methods’ behavior changes.

That clearly indicates also how to get a grip on the problem:restrict the way a
method’s behavior may change by overriding. A classical wayto do so isbehavioral
subtypingand works as follows. Assuming that the behavior of a method is logically
specified by its pre- and postcondition (writtenm(x) : (p,q){t}), that specification
“freezes” the behavior; i.e., it fixes the behavior for all later implementations. Behav-
ioral subtyping supports incremental reasoning, but is toorestrictive in practice [23].
Lazy behavioral subtyping[10] relaxes the regime regulating which properties need to
be preserved: to avoid re-verification, it suffices to preserve properties that areneeded
when a method is used, not those announced by a method definition in its pre- and
postcondition. Thus, this approach distinguishes thecommitmentof a method (the pre-
and postcondition of a method definition), and the requirements to a method: a call-site
to a methodm, written {r}x.m(e){s} for a virtual call imposes the specification as a
requirementto (reachable) method definitions form.

The proof method for lazy behavioral subtyping has two parts. A conventional pro-
gram logic (e.g., [3,12,19,20]) and, on top of that, a framework which tracks commit-
ments and requirements to methods as the program analysis incrementally proceeds.

Proof outlines. The proof system is presented using Hoare triples{p} t {q}, wherep
is the pre- andq the postcondition to the statementt. The meaning of a triple{p} t {q}
is that if t starts execution in a state wherep holds andt terminates, thenq holds after
t. Triples can be derived in any suited program logic, so let⊢PL {p} t {q} denote that
the triple{p} t {q} is derivable in the chosen program logic PL. Aproof outline[19]
for a method definitionm(x){t} is an annotated methodm(x) : (p,q){t} where method
calls insidet are decorated with call-site requirements. We henceforth assume that all
method bodies are decorated in this way. The derivability⊢PL m(x) : (p,q){t} of a
proof outline is given by⊢PL {p} t {q}. If p is the pre- andq the postcondition to some
method (body), we call(p,q) aspecificationof that method (body).

Lazy behavioral subtyping for single inheritance.The core of the method is to appro-
priately track and manipulate behavioral constraints during the program analysis. This
is done in a so-calledproof environment. The proof environment in particular contains
the constraints collected during analysis so far in the formof two mappingsS andR.
Given a class and a method name, the two mappings specify the associated commit-
ments and requirements as sets of pre- and postcondition pairs. They are first explained
for the single inheritance proof system.

Assume that we have verified a proof outlinem(x) : (p,q){t} in some classC. If
m is directly defined inC (as opposed to inherited), the specification(p,q) is added to
S(C,m). If m is inherited and not redefined,m may guarantee different commitments
in the context ofC than those provided in the superclass which containsm’s definition.
In the last case,S(C,m) acts as alocal extensionof the superclass commitments ofm,
containing the commitments known to be valid inC.

The analysis of a proof outlinem(x) : (p,q){t} in C imposesrequirementsto the
methods called bym. For a call ton, the required specification(r,s) is given by an
occurrence of a Hoare triple{r}n{s} in the proof outline. Two steps are taken for

8

Am

@@
@@

@@
@@

Bm,n

||
||

||
||

D

Fig. 3. A small multiple inheritance class hierarchy, focusing on definitions of methodsm andn.
The subscripts indicate the existence of a definition in the associated class.

each such requirement: The requirement is analyzed with regard to the definition ofn
reached for instances ofC, and it isrememberedin R(C,n). The first step ensures that
(r,s) is valid whenn is executed by instances ofC. To ensure that(p,q) remains a valid
commitment whenm is executed by an instance of a subclass ofC, the second step
imposes constraints on overridings ofn: Whenn is overridden in a subclass ofC, the
requirements captured byR(C,n) must hold for the new definition.

Additionally, theS mapping is used during the verification process to avoid reveri-
fication of specifications. LetS↑(C,n) be the union ofS(B,n) for all B betweenC and
the first class aboveC that definesn. The verification of a requirement(r,s) succeeds
immediately if can be concluded fromS↑(C,n), denotedS↑(C,n) _ (r,s), where_ is
the entailment relation for specifications (see Appendix. A). Otherwise, an additional
proof outline for(r,s) is needed. The successful analysis of this new proof outlinewill
add(r,s) to S(C,n), and it may cause new requirements on methods called byn in the
context ofC.

3.1 The Commitment Mapping for Multiple Inheritance

For single inheritance the binding of a virtual call tom is unambiguous wrt. a given
search classD, as there is a unique path fromD to the first class aboveD that implements
m. Thus it is also unambiguous which method definition a given local extension of the
commitment mapping refers to. This becomes ambiguous for multiple inheritance when
the calling class is used for method binding, as illustratedby the following example.

Example 1 (Multiple inheritance).Consider the hierarchy in Fig. 3, where a methodm
is defined in classesA andB and not overridden inD. SoS(A,m) andS(B,m) contain
the commitments ofm in A andB, respectively. Assume next that some method defined
in D and callingm (via a self-call) is analyzed. This call is bound tom in A, starting the
search inD. If the requirement of the call leads to the analysis of a new proof outline,
the verified commitment is captured by the local extensionS(D,m). However, assume
that later analysis ofD requires to verifyn of B, and thatm is called from this method,
as well. That call will be bound tom in B. With single inheritance, we could then rely
onS(D,m) when analyzing the requirement of this call. However, this is no longer safe,
asS(D,m) contains local commitments ofm as inherited from A. Furthermore, if the
call in n leads to an analysis of a new proof outline form in B, a new commitment
should be captured by a local extension forD. However, we cannot distinguish the local
commitment extension form in A from the one form in B. ⊓⊔

9

lass D extends B,C {
. . .

}

lass B extends A {
n2 {. . . }

}

lassC extends A,G{
m1 : (p,q){. . . ;{r}n1(){s}; . . .}
m2 : (p′,q′){. . . ;{u}k(){v}; . . .}

n1@A : (r,s){. . . ;{r ′}n2(){s′}; . . .}
k@G : (u,v){. . . ; {u′}n2(){v′}; . . .}

}

lass A {
n1 {. . . }
n2 {. . . }

}

lass G {
k {. . . }
n2 {. . . }

}

Fig. 4. An example class hierarchy. The notationn@E : (p,q){t} used below the line in classC
indicates proof outlines ofn defined inE generated during the analysis ofC.

In order to adapt the commitments to multiple inheritance, we let the mapping take
an additional class argument, such thatS(C,B,m) returns the commitments ofm as
defined in B, that are established during analysis ofC.

Example 2.Referring to Fig. 3, the setS(A,A,m) is built during the analysis ofA, and
similarly for B. Furthermore,S(D,A,m) andS(D,B,m) return the local extensions ofm
in A andB, respectively. During the analysis of a method defined inD, a call tom can
rely on bothS(A,A,m) andS(D,A,m), andS(D,A,m) is extended if the call requires
the analysis of a new proof outline form in A. For classB, the analysis of the call tom
from n in the contextD, can rely onS(B,B,m) andS(D,B,m), and the setS(D,B,m) is
extended if a new proof outline form in B is analyzed. ⊓⊔

The setS(D,C,m) is only extended during analysis ofD. Therefore, whenever
S(D,C,m) is non-empty, the classD is belowC, and m is defined inC. The com-
mitment collecting functionS↑(D,C,m) is defined such thatS↑(D,C,m) collects the
union ofS(B,C,m) for all classesB such thatD ≤ B≤C. The formal definition of this
function can be found in Appendix A.

3.2 The Requirement Mapping for Multiple Inheritance

Next we consider the tracking of method requirements for multiple inheritance. We
start by illustrating that the requirement mapping for single inheritance is too weak in
the presence of multiple inheritance.

Example 3.Consider the diamond-structured hierarchy in Fig. 4. We focus on the anal-
ysis of classC. Let (p,q) be the commitment ofm1 of C as indicated by the figure,
i.e., S(C,C,m1) = {(p,q)}, which leads to a requirement(r,s) on n1. Assume that
(r,s) does not follow from the already established commitments ofn1 in A, such that a
new proof outline is analyzed, as indicated below the line inC. After this analysis, we

10

haveR(C,n1) = {(r,s)}, S(C,A,n1) = {(r,s)}, R(C,n2) = {(r ′,s′)}, andS(C,A,n2) =
{(r ′,s′)}. Thus, the specifications(r,s) and(r ′,s′) are established wrt. the definitions of
n1 andn2 in A. For the analysis ofB, the independence ofB andC implies that require-
ment(r ′,s′) is not imposed onn2 in B whenB is analyzed;B is not a subclass ofC.
This, however, leads to a potential soundness problem whenD is introduced. Method
m1 is inherited fromC to D. Nonetheless, a call tom1 from D cannot rely onS(C,C,m1)
unless(r ′,s′) is verified forn2 in B.

To ensure soundness, we therefore have to verify(r ′,s′), included in the setR(C,n2),
with respect ton2 in B whenD is introduced. However, it is unnecessary restrictive to
verify all elements ofR(C,n2) againstn2 in B, as illustrated by classG in Fig. 4. Assume
that a proof outline for{u}k(){v} is analyzed during analysis ofC. Since there is a call
{u′}n2(){v′} in the proof outline ofk, the setR(C,n2) will contain the element(u′,v′).
For an instance ofD, the call ton2 in G will still be bound toG, which means that the
requirement(u′,v′) should not be imposed onn2 in B. ⊓⊔

For a classC, let commSup(C) return the name of classes that are abovemorethan
one class inC.inh. We say that a diamond is introduced byC if commSup(C) 6= /0. A
classB is in commSup(C) if there are two different classesC1 andC2 in C.inh such
that C1 ≤ B andC2 ≤ B, and we then refer toB as acommon superclassof C. The
above example illustrates that wheneverC is analyzed, it might be necessary to verify
some requirements made by classes betweenC and the common superclasses ofC. The
requirements that need verification are generated during analysis of a proof outline in a
common superclass. To handle this problem, the multiple inheritance definition of the
requirement mapping is more fine-grained than for single inheritance. For two classesC
andD whereC≤D, we letR(C,D,m) return the requirements towardsmthat are needed
during verification ofC for a calling classD. Thus, the calls tom occur syntactically in
D. The more fine-grained requirement mapping is illustrated by the following example:

Example 4.Reconsider the class hierarchy in Ex. 3. For the analysis ofm1 in C, the
requirement(r,s) is added toR(C,C,n1). Furthermore, the analysis of the proof outline
for n1 adds(r ′,s′) to R(C,A,n2). For the analysis ofm2, we getR(C,C,k) = {(u,v)}
andR(C,G,n2) = {(u′,v′)}. Consequently, we can distinguish(r ′,s′) as required byA,
from (u′,v′) as required byG. ⊓⊔

The commitments of a classC are captured by differentS(C,_,_) sets, and the
requirements on which these commitments rely are captured by R(C,_,_) sets. Lazy
behavioral subtyping for multiple inheritance applies thefollowing strategy: in order
to ensure that the commitments of the methods ofC are valid when these methods are
executed in an instance of a subclass, the requirements imposed byC must hold when
calls are bound with the subclass as search class. Ifm is overridden by a subclassG of
C, all requirements onm made aboveG must be verified for the new definition. This is
captured by a verification of the requirements returned byR↑(G,m), which denotes the
union of all requirements tom made by classes aboveG. Consider next a requirement
setR(C,D,m) of C, and assume thatm is not overridden by the subclassG of C. There
is a special case whereD is a common superclass ofG. Calls made byD may then be
bound in a class which is neither below nor aboveC; i.e., the requirements made byC
was not imposed on this class when it was analyzed. The same argument applies to other

11

classes aboveG, and in general we let the setdreq(G,D,m) of diamond requirements
be the union ofR(C,D,m) for all suchC betweenG andD. Verification ofG leads to a
verification ofdreq(G,D,m) with regard to the definition ofm to which the calls from
D are bound for instances ofG. We refer to Appendix A for formal definitions ofdreq
andR↑.

Example 5.Referring to Ex. 3, the classA is a common superclass ofD. The require-
ment(r ′,s′) contained inR(C,A,n2), is returned bydreq(D,A,n2), and(r ′,s′) is then
verified with regard ton2 in B. Remark that(u′,v′) in R(C,G,n2) is not indreq(D,A,n2).

3.3 Proof Environments for Multiple Inheritance Class Hierarchies

We now give the formal definition of proof environments and their soundness.

Definition 3 (Proof environments for multiple inheritance). A proof environmentE
of type Env is a triple〈P,S,R〉, where P: Cid → Class is a partial mapping,R andS
are total mappings of type Cid×Cid×Mid → Set[Prop].

In an environmentE , P reflects the class structure,S(C,D,m) the set of commit-
ments ofm defined inD with respect to a subclassC, andR(C,D,m) the set of require-
ments tom from C that must be ensured by classes belowC. If the proof environment
of a mapping is not clear from the context, we use a subscript;e.g.,RE .

Definition 4 (Sound environments).A sound environmentE satisfies the following
conditions for all C,D ∈ E and m: Mid:
∀(p,q) ∈ SE (C,D,m) . ∃bodyE (D,m) . ⊢PL m(x) : (p,q){bodyE (D,m)}
∧ ∀{r}n{s} ∈ bodyE (D,m) . ∀G ≤E C . S↑E (G,pbindE (G,D,n),n) _ (r,s))
∧ ∀{r}n :> B{s} ∈ bodyE (D,m) . S↑E (C,bindE (B,n),n) _ (r,s)
∧ ∀{r}x.n{s} ∈ bodyE (D,m) . ∃E . ((x : E) ∈↑C.att) ⇒ S↑E (E,n) _ (r,s)

Informally, a proof environmentE is soundif, whenever(p,q)∈SE (C,D,m), there
is a proof outline form in D with respect to the commitment(p,q). Furthermore, for
each requirement{r}n{s} in this proof outline and each subclassG of C, (r,s) must
follow from the commitments of the method to which a call is bound for search classG.
For each external call{r}x.n{s}, the requirement must follow from the commitments
of n in D. Let S↑E (C,m) abbreviateS↑E (C,bindE (C,m),m), bodyE (D,m) return the
body ofm in D, andC∈ E denote thatPE (C) is defined.

Remark that the requirement mapping is not visible in Def. 4.However, it is needed
to show that the calculus maintains environment soundness.Let |=C {p} t {q} denote
|= {p} t {q} under the assumption that virtual calls int are bound in the context ofC,
and let|=C m(x) : (p,q){t} be given by|=C {p} t {q}. If there are no method calls in
t and⊢PL {p} t {q}, then|= {p} t {q} follows by the soundness of PL. Lemma 1 below
states that if(p,q) ∈ SE (C,D,m) and a methodm in D is executed in an instance of a
subclass ofC, a sound environment guarantees that(p,q) is a valid commitment:

Lemma 1. Given a sound environmentE and a sound program logicPL. For all C,D :
Cid, m: Mid, and(p,q) : Prop such that C,D ∈ E and(p,q) ∈ S↑E (C,D,m), we have
|=C m(x) : (p,q){bodyE (D,m)}.

12

Proof. By induction on the call structure ofm. Since(p,q) ∈ S↑E (C,D,m), there must,
by Def. 4, exist some classB such thatC ≤E B ≤E D and (p,q) ∈ SE (B,D,m). In
addition, there must exist a proof outlinebodyE (D,m) for the method such that⊢PL

m(x) : (p,q){bodyE (D,m)}.
Base case:The execution{p}bodyE (D,m){q} does not lead to any method calls.

Then|=C m(x) : (p,q){bodyE (D,m)} follows by the soundness of PL.
Induction step:Consider a method call{r}n{s} in the methodbodyE (D,m), and let

H = pbindE (C,D,n). Assume|=C n(y) : (p′,q′){bodyE (H,n)} as induction hypothesis
for each(p′,q′)∈S↑E(C,H,n). Consequently, it suffices to ensureS↑E(C,H,n) _ (r,s),
which follows by Def. 4. A corresponding argument applies to{r}n :> B{s}.

4 The Inference System

Based on the proof environments, we next present the derivation system, given as a set
of inference rules, analyzing and manipulating the proof environment.

4.1 Analysis Operations

In the calculus, judgments have the formE ⊢A , whereE is the proof environment and
A is a list ofanalysis operationswith the following syntax.

O ::= ε | analyzeMtds(M) | verify(C,m,R) | analyzeOutline(C,t) single class
| supCls(C) | supMtd(C,m) | O·O

S ::= /0 | L | require(C,m,(p,q)) | S ∪S set of classes
A ::= module(L) | [〈C : O〉 ; S] | [ε ; S] | module(L) ·A seq. of modules

The rule system below roughly specifies an algorithm that recursively traverses a class
hierarchy and its syntactic constituents — classes, methods, statements, etc. — accord-
ing to the principles explained in Section 3; in particular,tracking commitments and
requirements. A program is given as a sequence of modules, where a module is a set
of classes considered as acompilation unit. Programs are open in the sense that at
later stages, the class hierarchy may be extended. However,at each stage of the devel-
opment, the modules given so far represent a complete, compilable program. Hence,
modules are analyzed in sequential order, whereas classes inside a module are simply
represented as a set. The operations above, together with a proof environment, steer
the algorithm through the program (which is assumed to be syntactically well-formed
and well-typed). The analysis starts with anE ⊢ A whereE is empty andA contains
the program as a sequence of modules. On the level of classes,the setS contains a
module’s classes. However, the inference rules ensure thata class can only be analyzed
after all its superclasses have been analyzed. The operation
lassC extendsD { f M}
initiates the analysis ofC, and[〈C : O〉 ; S] analyzesO in the context of classC before
operations inS are considered. The analysis of a specific class involves theanalysis the
proof outlines for its methodsM, the verification of the requirements for a method, and
collecting the proof obligations for the calls mentioned inside the method bodies (by the
operationsanalyzeMtds(M), verify(D,m,R), andanalyzeOutline(D,t)). The operation

13

require(D,m,(p,q)) applies to external calls to ensure thatm in D satisfies the require-
ment(p,q). Requirements are lifted outside the context of the analyzed class by this
operation, and the verification of requirement(p,q) for m in D is shifted into the setS
of analysis operations. The remaining two operations,supCls(D) andsupMtd(D,m) are
used during analysis ofC, if C introduces diamonds in the class hierarchy. The opera-
tion supCls(D) takes a list of class names and generates asupMtd(D,m) for eachD∈ D
wheremare the names of the methods that are called byD.

Environment updatesare represented by the operator _⊕ _ : Env× Update→ Env,
where the second argument represents the update. There are three different environment
updates; loading a new class and extending the commitments or the requirements of a
method in a class. The updates are defined as follows:

E ⊕
lassC extends D { f M} = 〈PE [C 7→ 〈D, f ,M〉],SE ,RE 〉
E ⊕extS(C,D,m,(p,q)) = 〈PE ,SE [(C,D,m) 7→ SE (C,D,m)∪{(p,q)}],RE 〉
E ⊕extR(C,D,m,(p,q)) = 〈PE ,SE ,RE [(C,D,m) 7→ RE (C,D,m)∪{(p,q)}]〉

4.2 The Inference Rules

The inference rules are given in Fig. 5 and 6. Rule(NEWMODULE) initiates the analysis of
a set of classes. Furthermore,(NEWCLASS) loads a new classC for analysis, the second
premise ensures that the superclassesD have already been analyzed. For each methodm
in C, the calculus generates an operationverify(C,m,R), whereR is the set of require-
ments that must hold for this method. Rules(REQDER) and (REQNOTDER) deal with the
verification of a particular property with respect to the implementation. If the property
follows from the established specification of the method, rule (REQDER) continues with
the remaining analysis operations. Otherwise, a proof of the property is required. By
(REQNOTDER) , an outline of the method property is then analyzed by ananalyzeOutline
operation. Remark that(REQNOTDER) is the only rule which extends theSmapping.

The rule (CALL) analyzes a requirement to a virtual call occurring in some proof out-
line. The rule leads extends theR mapping and generates averify operation to analyze
the requirement for the implementation to which the call will bind. The extension ofR
ensures that future redefinitions ofm respect the requirement; i.e., when a new imple-
mentation is considered by(NEWMTD) . Rule (SUPCALL) also generates averify operation,
but does not extendR. External calls are handled by the rules(EXTREQ) and (EXTCALL) .

Fig. 6 contains rules for analyzing requirements from common superclasses when
diamondsare introduced in the environment. Rule(SUPMTD) generates asupMtd for
each common superclass. For each of these superclasses,(SUPREQ) generates averify
operation for each method called by the class. If a classC is introduced by(NEWCLASS)

whereC does not have any common superclasses, thesupClsoperation generated by the
rule will have an empty argument. This operation is then discarded by (NOSUP). Some
structural rules are left out from Fig. 5 and Fig. 6. These canbe found in Appendix C.

Theorem 1. LetE be a sound environment andL a set of class declarations. If a proof
ofE ⊢ module(L) hasE ′ as its resulting environment, thenE ′ is also sound.

14

E ⊢ [ε ; L] ·A

E ⊢ module(L) ·A
(NEWMODULE)

C /∈ E D 6= nil ⇒ D ∈ E E = commSupE (C)

E⊕ (
lass C extends D { f M}) ⊢ [〈C : analyzeMtds(M) ·supCls(E)〉 ; S] ·A

E ⊢ [ε ;
lass C extends D { f M} S] ·A
(NEWCLASS)

E ⊢ [〈C : verify(C,m,(p,q)∪R↑E (C.inh,m)) ·O〉 ; S] ·A

E ⊢ [〈C : analyzeMtds(m(x) : (p,q){t}) ·O〉 ; S] ·A
(NEWMTD)

S↑E (C,D,m) _ (p,q) E ⊢ [〈C : O〉 ; S] ·A

E ⊢ [〈C : verify(D,m,(p,q)) ·O〉 ; S] ·A
(REQDER)

⊢PL m : (p,q){bodyE (D,m)}

E ⊕extS(C,D,m,(p,q)) ⊢ [〈C : analyzeOutline(D,bodyE (D,m)) ·O〉 ; S] ·A

E ⊢ [〈C : verify(D,m,(p,q)) ·O〉 ; S] ·A
(REQNOTDER)

pbindE (C,D,m) = E
E ⊕extR(C,D,m,(p,q)) ⊢ [〈C : verify(E,m,(p,q)) ·O〉 ; S] ·A

E ⊢ [〈C : analyzeOutline(D,{p}m{q}) ·O〉 ; S] ·A
(CALL)

bindE (B,m) = A E ⊢ [〈C : verify(A,m,(p,q)) ·O〉 ; S] ·A

E ⊢ [〈C : analyzeOutline(D,{p}m :> B{q}) ·O〉 ; S] ·A
(SUPCALL)

x : E ∈↑C.att E ⊢ [〈C : O〉 ; S ∪ require(E,m,(p,q))] ·A

E ⊢ [〈C : analyzeOutline(D,{p}x.m{q}) ·O〉 ; S] ·A
(EXTCALL)

C ∈ E D = bindE (C,m) S↑E (C,D,m) _ (p,q) E ⊢ [ε ; S] ·A

E ⊢ [ε ; require(C,m,(p,q))∪S] ·A
(EXTREQ)

E ⊢ [ε ; S] ·A

E ⊢ [〈C : ε〉 ; S] ·A
(EMPCLASS)

E ⊢ A

E ⊢ [ε ; /0] ·A
(EMPPACK)

Fig. 5. The inference system. Herem denotes a call, including actual parameters.

Proof. The auxiliary lemmas used in this proof can be found in Appendix. B. Assume
given a sound environmentE . The proof is by induction over the inference rules. The
only rule that extendsSE (C,D,m) is (REQNOTDER) , and this rule ensures that there is a
proof outlinebodyE (D,m) of mdefined inD such that⊢PL m(x) : (p,q){bodyE (D,m)}
for each(p,q) ∈ SE (C,D,m) and we must haveC ≤E D.

For each{r}n{s} in the proof outline we then haven ∈ calledE (D) and the rule
(CALL) will ensureRE (C,D,n) _ (r,s). As the class hierarchy evolves, we then need
to ensureS↑E (G,pbindE (G,D,n),n) _ (r,s) for all classesG ≤E C. This is done by
induction over the depthd of the class hierarchy belowC.

Base case:d = 0, i.e., G = C. In this case, we need to ensureS↑E (C,H,n) _

(r,s) for H = pbindE (C,D,n). When the rule(REQNOTDER) is applied, including(p,q)
in SE (C,D,m), an operationanalyzeOutline(D,{r}n{s}) is generated and analyzed
in the context ofC. The rule (CALL) will then lead to an operationverify(H,n,(r,s)).

15

E ⊢ [〈C : supMtd(D,calledE (D)\C.mtds) ·O〉 ; S] ·A

E ⊢ [〈C : supCls(D) ·O〉 ; S] ·A
(SUPMTD)

E = pbindE (C,D,m) E ⊢ [〈C : verify(E,m,dreq(C,D,m)) ·O〉 ; S] ·A

E ⊢ [〈C : supMtd(D,m) ·O〉 ; S] ·A
(SUPREQ)

E ⊢ [〈C : O〉 ; S] ·A

E ⊢ [〈C : supCls(/0) ·O〉 ; S] ·A
(NOSUP)

E ⊢ [〈C : O〉 ; S] ·A

E ⊢ [〈C : supMtd(D, /0) ·O〉 ; S] ·A
(NOSUPMTD)

Fig. 6. The extension of the inference system with rules for analyzing of requirements made by
common superclasses.

Since the operation succeeds, either rule(REQDER) or (REQNOTDER) is applied. The relation
S↑E(C,H,n) _ (r,s) must hold directly if (REQDER) is applied. Otherwise, if(REQNOTDER)

is applied, the setSE (C,H,n) is extended with(r,s). The desired relation then holds
sinceS↑E(C,H,n) _ SE (C,H,n).

Induction Step: d = d′ + 1, i.e.,G <E C at depthd belowC. For all classesG′

at depthd′ such thatG′ ≤E C, we assumeS↑E (G′,pbindE (G′,D,n),n) _ (r,s) as the
induction hypothesis.

We consider two cases:n∈ G.mtdsandn /∈ G.mtds.
Case 1:n ∈ G.mtds. SincepbindE (G,D,n) = G, the relationSE (G,G,n) _ (r,s)

must be ensured. By Def. 6, we haveR↑E (G,n) _ RE (C,D,n) sinceG <E C ≤E

D. Therefore, the rule(NEWMTD) will initiate an operationverify(G,n,(r,s)) which is
analyzed in the context ofG. This operation either succeeds by(REQDER) or (REQNOTDER) ,
both ensuring the desiredSE (G,G,n) _ (r,s).

Case 2:n /∈G.mtds. LetE = lm(G.inh,D) (see Def. 8). Thus,E is the leftmost class
in G.inh that is belowD. Furthermore, letH = pbindE (E,D,n). We here distinguish
between two cases, depending on whetherE is belowC or not.

Case 2a:E ≤E C. SinceE∈G.inhandE ≤E C, we know thatE is at depthd′ below
C, and may use the induction hypothesis to assumeS↑E(E,H,n) _ (r,s). By Lemma 2,
we havepbindE (G,D,n) = pbindE (E,D,m) which givespbindE (G,D,n) = H. The
desired relationS↑E (G,H,n) _ (r,s) then follows sinceS↑E (E,H,n) ⊆ S↑E (G,H,n)
by Def. 5.

Case 2b:E �E C. SinceE ≤E D, we must haveC 6= D. SinceG <E C, there
must exist someE′ = lm(G.inh,C). SinceE �E C, we must haveE 6= E′. By E ≤E D
and E′ ≤E C <E D, we then know thatD is a common superclass ofG, i.e., D ∈
commSupE (G). Analysis ofG will initiate a supCls(commSupE (G)) operation. Appli-
cation of rule (DECOMPSUP) will generate asupCls(D) operation. Sincen∈ calledE(D)\
G.mtds, rules (SUPMTD) and (DECOMPSUPMTD) will generate asupMtd(D,n) operation. Rule
(SUPREQ) will then initiate averify(H,n,dreq(G,D,n)) operation. Analysis of each re-
quirement in this set either succeeds by application of(REQDER) or (REQNOTDER) , which
ensuresS↑E(G,H,n) _ dreq(G,D,n). The desired conclusionS↑E(G,H,n) _ (r,s) fol-

16

lows by transitivity of_ sinceRE (C,D,n) _ (r,s), andRE (C,D,n) ⊆ dreq(G,D,n)
by Lemma 3.

5 Related Work

Multiple inheritance is supported in, e.g., C++ [24], CLOS [9], Eiffel [18], POOL [2],
and Self [7]. Horizontal name conflicts in C++, POOL, and Eiffel are removed by ex-
plicit resolution, after which the inheritance graph may belinearized. Multiple dispatch,
or multi-methods [9], gives a more powerful binding mechanism, but reasoning about
multi-methods and redefinition is difficult. The prototype-based language Self [7] pro-
poses an elegantprioritized binding strategy. Each superclass is given a priority. With
equal priority, the superclass related to the caller class is preferred. However, explicit
class priorities may cause surprises in large class hierarchies: names may become am-
biguous through inheritance. If neither class is related tothe caller, binding fails.

Formalizations of multiple inheritance in the literature traditionally use theobjects-
as-recordsparadigm. This approach addresses subtyping issues related to subclassing,
but method binding is not easily captured. In Cardelli’s denotational semantics of mul-
tiple inheritance [6], not even access to methods of superclasses is addressed. Rossie,
Friedman, and Wand [22] formalize multiple inheritance using subobjects, a run-time
data structure used for virtual pointer tables [15,24]. This work focuses on compile-time
issues and does not clarify multiple inheritance at the abstraction level of the program-
ming language. A natural semantics for virtual binding in Eiffel models the binding
mechanism at the abstraction level of the program [4]. Recently, an operational seman-
tics and type safety proof inspired by C++ has been formalized in Isabelle [25].

Work on behavioral reasoning about object-oriented programs address languages
with single inheritance (e.g., [5,20,21]). For late binding, different variations of behav-
ioral subtyping are most common [1,16,17], as discussed above. Pierik and de Boer [20]
present a sound and complete reasoning system for late boundcalls which does not rely
on behavioral subtyping. This work, also for single inheritance, is based on a closed
world assumption, meaning that the class hierarchy is not open for incremental ex-
tensions. To support object-oriented design, proof systems should be constructed for
incremental reasoning. We are not aware of proof systems formultiple inheritance.

6 Conclusion

Lazy behavioral subtyping supports incremental reasoningunder an open world as-
sumption, where class hierarchies can be extended by inheritance. The approach is
more flexible than traditional behavioral subtyping. In this paper, we have extended
the lazy behavioral subtyping approach to a language with multiple inheritance, based
on a pruned binding strategy for virtual calls. The combination of pruned binding and
lazy behavioral subtyping has the advantage that requirements from two independent
class hierarchies do not interfere with each other when the hierarchies are combined
in a common subclass. This is essential in an incremental proof system. The inference
rules for incremental reasoning are essentially syntax-driven and would form a good
basis for combining behavioral reasoning in a program development environment.

17

References

1. P. America. Designing an object-oriented programming language with behavioural sub-
typing. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg,editors,Foundations of
Object-Oriented Languages, pages 60–90. Springer, 1991.

2. P. America and F. van der Linden. A parallel object-oriented language with inheritance
and subtyping. In N. Meyrowitz, editor,Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), volume 25(10), pages 161–
168. ACM Press, Oct. 1990.

3. K. R. Apt and E.-R. Olderog.Verification of Sequential and Concurrent Systems. Texts and
Monographs in Computer Science. Springer, 1991.

4. I. Attali, D. Caromel, and S. O. Ehmety. A natural semantics for Eiffel dynamic binding.
ACM Transactions on Programming Languages and Systems, 18(6):711–729, 1996.

5. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications.International Journal on Software
Tools for Technology Transfer, 7(3):212–232, 2005.

6. L. Cardelli. A semantics of multiple inheritance.Information and Computation, 76(2-
3):138–164, 1988.

7. C. Chambers, D. Ungar, B.-W. Chang, and U. Hölzle. Parentsare shared parts of objects:
Inheritance and encapsulation in SELF.Lisp and Symbolic Computation, 4(3):207–222,
1991.

8. O.-J. Dahl, B. Myhrhaug, and K. Nygaard. (Simula 67) Common Base Language. Technical
Report S-2, Norsk Regnesentral (Norwegian Computing Center), Oslo, Norway, May 1968.

9. L. G. DeMichiel and R. P. Gabriel. The Common Lisp Object System: An overview.
In J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, editors, European Conference
on Object-Oriented Programming (ECOOP’87), volume 276 ofLNCS, pages 151–170.
Springer, 1987.

10. J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazy behavioral subtyping. In J. Cuellar
and T. Maibaum, editors,Proc. 15th International Symposium on Formal Methods (FM’08),
volume 5014 ofLNCS, pages 52–67. Springer, May 2008. To Appear.

11. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the Join calculus.Journal
of Logic and Algebraic Programming, 57(1-2):23–69, 2003.

12. C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Communications of the
ACM, 12:576–580, 1969.

13. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for
Java and GJ.ACM Transactions on Programming Languages and Systems, 23(3):396–450,
2001.

14. E. B. Johnsen and O. Owe. A dynamic binding strategy for multiple inheritance and asyn-
chronously communicating objects. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P.
de Roever, editors,Proc. 3rd International Symposium on Formal Methods for Components
and Objects (FMCO 2004), volume 3657 ofLNCS, pages 274–295. Springer, 2005.

15. S. Krogdahl. Multiple inheritance in Simula-like languages.BIT, 25(2):318–326, 1985.
16. G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and

modular reasoning. Technical Report 06-20a, Department ofComputer Science, Iowa State
University, Ames, Iowa, 2006.

17. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

18. B. Meyer.Object-Oriented Software Construction. Prentice Hall, 2 edition, 1997.
19. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.Acta Infor-

matica, 6(4):319–340, 1976.

18

20. C. Pierik and F. S. de Boer. A proof outline logic for object-oriented programming.Theo-
retical Computer Science, 343(3):413–442, 2005.

21. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swier-
stra, editor,8th European Symposium on Programming Languages and Systems (ESOP’99),
volume 1576 ofLNCS, pages 162–176. Springer, 1999.

22. J. G. Rossie Jr., D. P. Friedman, and M. Wand. Modeling subobject-based inheri-
tance. In P. Cointe, editor,10th European Conference on Object-Oriented Programming
(ECOOP’96), volume 1098 ofLNCS, pages 248–274. Springer, July 1996.

23. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In
P. Devanbu and J. Poulin, editors,Proc. Fifth International Conference on Software Reuse
(ICSR5), pages 206–215. IEEE Computer Society Press, 1998.

24. B. Stroustrup. Multiple inheritance for C++.Computing Systems, 2(4):367–395, Dec. 1989.
25. D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An operational semantics and type safety

proof for multiple inheritance in C++. In P. L. Tarr and W. R. Cook, editors,Proceedings
of the Conference on Object-Oriented Programming, Systems, Languages, and Applications,
(OOPSLA’06), pages 345–362. ACM, 2006.

A Auxiliary Functions

In the following definitions, we assumem : Mid, C,D,E : Cid, andL : List[Cid].

Definition 5 (Commitment collection).DefineS↑: List[Cid]×Cid×Mid→Set[Prop]:

S↑(nil,C,m) , /0
S↑(C L,C,m) , S(C,C,m)∪S↑(L,C,m)

S↑(D L,C,m) , S(D,C,m)∪S↑(D.inh L,C,m) if D < C
S↑(D L,C,m) , S↑(L,C,m) otherwise

Definition 6 (Requirement collection).DefineR↑: List[Cid]×Mid → Set[Prop] by:

R↑ (nil,m) , /0
R↑ (C L,m) , R(C,m)∪R↑ (C.inh L,m)

whereR : Cid×Mid → Set[Prop] is defined by

R(C,m) , req(C,C,m)

and req: Cid×List[Cid]×Mid → Set[Prop] is defined by:

req(C,nil,m) , /0
req(C,D L,m) , R(C,D,m)∪ req(C,D.inh L,m)

Definition 7 (Common superclasses).Define commSup: Cid→ Set[Cid]:

commSup(C) , com(C.inh)

where com: List[Cid] → Set[Cid] is defined by:

com(nil) , /0
com(C L) , (sup(C)∩sup(L))∪com(L)

19

and sup: List[Cid] → Set[Cid] is defined by:

sup(nil) , /0
sup(C L) , {C}∪sup(C.inh L)

Definition 8 (Leftmost superclass).Define lm: List[Cid]×Cid → Cid as a partial
function by :

lm(nil,C) , ⊥

lm(D L,C) , D if D ≤C
lm(D L,C) , lm(L,C) otherwise

Definition 9 (Diamond requirement collection). Define dreq: Cid× Cid× Mid →
Set[Prop] as a partial function by:

dreq(G,D,m) , ldreq(G.inh, lm(G.inh,D),D,m)

where ldreq: List[Cid]×Cid×Cid×Mid → Set[Prop] is defined by:

ldreq(L,⊥,D,m) , ⊥

ldreq(nil,E,D,m) , /0
ldreq(C L,E,D,m) , R(C,D,m)∪ ldreq(C.inh L,E,D,m) if C < D andE � C
ldreq(C L,E,D,m) , ldreq(L,E,D,m) otherwise

Definition 10 (Entailment). Let p′ denote an expression p with all occurrences of
fields f substituted by f′, avoiding name capture. Let(p,q) and(r,s) be specifications
and letU andV denote the sets{(pi ,qi) |1≤ i ≤ n} of specifications and{(r i ,si) |1≤
i ≤ m}. Entailmentis defined by

1. (p,q) _ (r,s) , (∀z1 . p⇒ q′) ⇒ (∀z2 . r ⇒ s′),
wherez1 andz2 are the logical variables in(p,q) and(r,s), respectively.

2. U _ (r,s) , (
V

1≤i≤n(∀zi . pi ⇒ q′i)) ⇒ (∀z . r ⇒ s′).
3. U _ V ,

V

1≤i≤mU _ (r i ,si).

B Auxiliary Lemmas

Lemma 2. Let D,E,G : Cid be classes such that G< D, and let E= lm(G.inh,D).
Then, for any m: Mid such that m/∈ G.mtds, we have pbind(G,D,m) = pbind(E,D,m).

Proof. Follows directly from Def. 2 ofpbind, sinceE is the leftmost class inG.inh that
is belowD andpbindbinds belowD.

Lemma 3. Let D,E,G : Cid be classes such that G< D and E= lm(G.inh,D). Let
C : Cid be a class such that G< C < E and E� C. ThenR(C,D,m) ⊆ dreq(G,D,m)
for any m: Mid.

Proof. The functiondreq(G,D,m) will in one step evaluate toldreq(G.inh,E,D,m).
This function will traverse the class hierarchy (strictly)aboveG, but ignore classes that
are aboveE, or not belowD. For all other classes, the function will return the union
of R(H,D,m) for all H in the set{H : Cid |G < H < D} \ sup(E). It follows from the
premises thatC is in this set.

20

C Structural Inference Rules

E ⊢ [〈C : O〉 ; S] ·A

E ⊢ [〈C : verify(D,m, /0) ·O〉 ; S] ·A
(NOREQ)

E ⊢ [〈C : O〉 ; S] ·A

E ⊢ [〈C : analyzeMtds(/0) ·O〉 ; S] ·A
(NOMTDS)

E ⊢ [〈C : O〉 ; S] ·A t do not contain call statements

E ⊢ [〈C : analyzeOutline(D,t) ·O〉 ; S] ·A
(SKIP)

E ⊢ [〈C : verify(D,m,R1) ·verify(D,m,R2) ·O〉 ; S] ·A

E ⊢ [〈C : verify(D,m,R1∪R2) ·O〉 ; S] ·A
(DECOMPREQ)

E ⊢ [〈C : analyzeOutline(D,t1) ·analyzeOutline(D,t2) ·O〉 ; S] ·A

E ⊢ [〈C : analyzeOutline(D,t1; t2) ·O〉 ; S] ·A
(DECOMPCALLS)

E ⊢ [〈C : analyzeMtds(M1) ·analyzeMtds(M2) ·O〉 ; S] ·A

E ⊢ [〈C : analyzeMtds(M1∪M2) ·O〉 ; S] ·A
(DECOMPMTDS)

E ⊢ [〈C : supCls(D1) ·supCls(D2) ·O〉 ; S] ·A

E ⊢ [〈C : supCls(D1∪D2) ·O〉 ; S] ·A
(DECOMPSUP)

E ⊢ [〈C : supMtd(D,m1) ·supMtd(D,m2) ·O〉 ; S] ·A

E ⊢ [〈C : supMtd(D,m1∪m2) ·O〉 ; S] ·A
(DECOMPSUPMTD)

21

