Universitetet 1 Oslo
Institutt for informatikk

Incremental
Reasoning for
Multiple Inheritance

Johan Dovland,

Einar B. Johnsen,
Olat Owe, and Martin
Steffen

Research Report 373
[SBN 82-7368-333-8

April 2008

Incremental Reasoning for Multiple Inheritance

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Matrtifieste

Department of Informatics, University of Oslo
PO Box 1080 Blindern, NO-0316 Oslo, Norway

{johand,einarj,olaf ,msteffen}@ifi.uio.no

Abstract. Object-orientation supports code reuse and incremeragtamming.
Multiple inheritance increases the power of code reusecdnuiplicates the bind-
ing of method calls and thereby program analysis. Behalvguratyping allows
program analysis under aypen world assumptigri.e., under the assumption
that class hierarchies are extensible. However, methafirnggibn is severely re-
stricted by behavioral subtyping, and multiple inheritoften leads to conflict-
ing restrictions from independently designed superctasgas paper presents an
approach to incremental reasoning for multiple inheritganoder an open world
assumption. The approach, based on a notiolan§ behavioral subtypings
less restrictive than behavioral subtyping and fits welhwatultiple inheritance,
as itincrementally imposes context-dependent behawioratraints on new sub-
classes. We formalize the approach as a calculus, for whickhew soundness.

1 Introduction

Object-orientation supports code reuse and incrementgramming through inheri-
tance. Class hierarchies are extended over time as suekassdeveloped and added.
A class may reuse code from its superclasses but it may atsadige and adapt this
code by contributing new method definitions, possibly adémg definitions in super-
classes. This way, the class hierarchy allows programs tefresented in a compact
and succinct way, significantly reducing the need for codelidation. Late binding
is the underlying mechanism for this incremental prograngstyle; the binding of a
method call at runtime depends on the actual class of theccabject. Consequently,
the code to be executed depends on information which is atitally available. Al-
though late binding is an important feature of object-agemprogramming, this loss of
control severely complicates reasoning about objecttetéprograms.

Behavioral subtypings the most prominent solution to regain static control ¢ la
bound method calls (e.g., [1, 16, 17]). This approach aesiéncremental reasoning
with anopen world assumptign.e., class hierarchies are extensible. However, the ap-
proach restricts how methods may be redefined in subclaBsesoid reverification,
any method redefinition mupteservecertain properties of the method being redefined.
In particular, this applies to the method’s contract; tlee, pre- and postcondition for its
body. The contract can be seen as a description of the prdretavior of all imple-
mentations of the method. Unfortunately, this restrictioxders code reuse and is often
violated in practice [23]; e.g., it is not respected by tlandiard Java library definitions.

Work on behavioral reasoning about object-oriented pmogrhas mostly focused
on languages with single inheritance (e.g., [5, 20, 21]thWingle inheritance, a class

is derived from one direct superclass. Recently, we hawaxeel the behavioral sub-
typing restrictions on method redefinition in this contdgfding to a notion ofazy
behavioral subtyping10]. Given a methodn declared with preconditiop and post-
conditionq, there is no need to restrict the behavior of methods ovarith to ensure
that these adhere to this specification. Instead, it suffcpseserve the “part” op and
g used to verifithe program at the current stage. Specificallynifs used in a method
call{r} em(...) {s}, the pre- and postconditionsaainds at that call-site constitute’s
requiredbehavior. Only these weaker conditions need to be preséoweid reverifi-
cation. Behavioral subtyping is not implied by this apptoat/henmis overridden in
a clas<C, the new definition need not implement all superclass spatifins ofm, but
only the requirements made by superclasse3 wivards usage ah. Lazy behavioral
subtyping still supports incremental reasoning under anaporld assumption.

Multiple inheritance allows a class to be derived from saldirect superclasses.
This offers greater flexibility than single inheritance saseral class hierarchies can be
combined in a subclass. It also complicates language desidris often explained in
terms of complex run-time data structures such as virtuadtpotables [24]. Formal
treatments are scarce (e.g., [4,6,11,22,25]) but helgfclatricacies, thus facilitating
design and reasoning for programs using multiple inhec#aNultiple inheritance also
complicates behavioral reasoning, as name conflicts may detween methods inde-
pendently defined in different branches of the class hiasawlthough name conflicts
are often resolved through qualification or renaming [2248,it might be undesirable
to force the programmer to modify method names, making rmgrmore difficult to
understand and maintain. Name conflicts may also be seenasralfeature of mul-
tiple inheritance and resolved by imposing an ordering pesclasses [7, 9, 14].

In this paper, we extend the lazy behavioral subtyping aggitdo multiple inher-
itance class-based systems. For this purpose, we admpin@d bindingstrategy for
method calls, which resolves name conflicts based on thie stattext of each method
call. This binding strategy supports incremental reagpraind ensures that method
binding applies inside the scope of the constraints ensayréaky behavioral subtyping.
The approach is formalized as an inference system, for whk&bhow soundness.

Paper overviewSection 2 introduces late binding and multiple inheritaacel Sec-
tion 3 proof environments for behavioral reasoning. Sectigresents the inference
system for incremental reasoning. Section 5 discussegdeal#ork, and Section 6 con-
cludes the paper.

2 Late Binding and Multiple Inheritance

In an object-oriented program, classes are related by m&faingeritance in a class
hierarchy. We say that a cla€s is belowanother clas€; (and writeCy < Cp) if Cy
extendsCy, C; extends a class which is beld@, or C; andC, are the same class.
FurthermoreC; is above G if C; is belowC,. A subclasss below asuperclassSingle
inheritance class hierarchies are tree-shaped; a classwearseveral direct subclasses,
but only one direct superclaséertical name conflicts occur when a method is overrid-
den in a subclass. Thending strategyfor method calls must resolve such conflicts.

P =L {t} L::=class C extends C {T M}
M:=m (X){t} t:i=v:i=newC()|vi=p|vi=e
p i=em®) | m(E) | mE) :>C | skip | if bthent elset fi |t;t

Fig. 1. The language syntax, in whi€denotes a class nante,a method names an expression,
andb a Boolean expression. Variableare fieldsf or return. We use vector notation to denote
lists and whitespace for the list concatenation operatey, fotheandeeare lists of expressions).

Late binding, or dynamic dispatch, is a central concept ggctkorientation, already
present in Simula [8]. A method call is late boundyatual, if the method body to be
executed is selected at run-time, depending on the cabetsl class: if an object of
classC, executes a methaadefined in a superclagy and this method calls method
m defined in both classes, then the code selected for exedatassociated to thiérst
matching occurrencef m aboveCy; i.e., m of C; is selected and not the one@. If
n, however, were executed in an instanceCef the virtual invocation ofn would be
bound tom’s definition inC;. We say that a definition afiis reachablefrom C if there
is a clasdD < C such that a call ton will bind to that definition for instances @. For
instance, ifmis overridden byD, that definition is reached frof for instances oD.
Thus, for a virtual call there might be several reachablendafns.

In contrast, multiple inheritance class hierarchies foeychc directed graphs. This
means thahorizontalname conflicts may occur, as a class may have several direct su
perclasses. In the class hierarchy above a given classasefinitions of the same
method may be reached, depending on the chosen path thrioedfierarchy. More
elaborate binding strategies are needed to resolve heoailzamflicts. One solution is
explicit resolutione.g., to use qualification or renaming as in C++ [24], Eifted], and
POOL [2]. A second approach, which we follow in this papetpi€onsider horizon-
tal name conflicts as a natural feature of multiple inhedéann particular when using
libraries, the programmer cannot be expected to know (alvepspotential name con-
flicts of, e.g., auxiliary methods in the libraries. Follogi[7, 9, 14], ambiguities can be
solved by fixing the order in which inherited classes arecdest; e.g., left to right.

2.1 A Multiple Inheritance Kernel Language

An object-oriented kernel language is given in Fig. 1, baseHeatherweight Java [13].
A programP consists of a list of class definitions and a method body. A class extends
a list C of superclass names, which may tigject, with fields f and method$1. A
methodM takes parametefsand contains a statementThe sequential composition
of statements; andt; is writtents;to. The statement:= new C() creates a new object
of classC with fields instantiated to default values, and assigns tve reference to
v. In a method invocatioe.m(€), the objecte receives a call to the methad with
actual parametera The expressioe.m(€) denotes avirtual call. (For convenience,
we often writeem(€) or simplyeminstead ofv:= em(g).) The statemeni(g) :> C
denotes astatic call to m aboveC; i.e., the call occurs in a class beldvand it is
bound aboveC independent of the actual class of the called object. Thitestent
replaces the call to the superclass found in languages withesinheritanceC may

(2) cc (b)

D D
Fig. 2. Different binding strategies: (anaximal scopeand (b)restricted scopeFor a given

methodm, C is the class making a calD is the binding environment an@’ is bind(C, m),
the default binding ofmin C.

here be any superclass in the class hierarchy. Upon comp|etimethod activation
returns the value of itseturn variable. Finally, there are standard statementsiap,
conditionalsif b thent else t f£i, and assignments:= e. As usual, the pseudo-
variablethis is read-only. For simplicity, we assume given a languagdd#-sffect
free expressions and we let fields have distinct names, methods with the same na
have the same signature (i.e., no method overloading} nka®es be unique, programs
be well-typed, and we ignore the types of fields and methods.

To make the representation of class hierarchies compatdsa same is bound to
atuple(C, f,M) of type Class whereC is a list of superclass nameka set of fields,
andM a set of methods. The li§ is assumed to consist of unique names and may be
nil. The list of superclass names, field set, and method set afa tiuple are accessible
by observer functionsh, att andmtds respectively.

2.2 The Binding of Virtual and Static Calls

We consider binding strategies for multiple inheritan@sslhierarchies with horizontal
name conflicts. Le€id andMid denote types for class and method names. A call to a
methodm is bound with respect to search class Di.e., the search for a definition of
m starts inD. Except for static calls, the search class is the calleg¢isahclass.

In order to successfully bind a call to, the name conflicts must be resolved: the
binding algorithm traverses the class hierarchy in, e.deftdirst depth-first manner.
Assume thaD;, ..., Dy are the direct superclassednflf mis not defined irD, search
recursively for a definition o in the class hierarchy abow®,. If a definition is not
found aboveD1, proceed to the next supercldsds of D. By type-safety, we may as-
sume that a method definition is eventually found. This iigditrategy is illustrated in
Fig. 2(a), and defined by a partial functibimd.

Definition 1. Define bind: List[Cid] x Mid — Cid as follows:

bind(nil,m) £ 1
bind(C L,m) £ C if me C.mtds
bind(C L,m) £ bind(C.inh L, m) otherwise

For a virtual call tom on an instance ob, bind(D,m) is the default bindingof the
call. Remark that a static cath:> B is bound bybind(B, m), regardless of the object’s

actual class. Witlbind(D, m), all local virtual calls to a methorhin an instance ob
are bound to the same definition, independent of where inltfss diierarchy above
the call was initiated, as illustrated by the shaded areagpfXa).

This binding strategy above resolves horizontal as welkgsoal name conflicts at
the syntactic level, but may result in unexpected behaVitiren two class hierarchies
are merged in a common subclass, virtual calls in one hieyanay suddenly be bound
in the other, caused by unforeseen name conflicts. In oraetémd the class hierarchy
with a clasD in a controlled way, the definition of every methadn bind(D, m) must
meet the requirements imposed by all calletaboveD. This is necessary evenriiis
not defined irD, which generally means that all calls made by some classedbawist
be considered. Thus, reasoning about program behavidklgiiecomes intractable.

In order to better control method binding, we adapt the dedg@runed binding
strategy[14]; whenevem s called from a method defined in claSsthe call will, for
instances of any subclass ©f be boundbelowthe default bindingind(C, m). (We
shall refer toC as the calling class ah.) Intuitively, a call will only be bound to a
definition which explicitly redefines the method definitiomden to the programmer.
Technically, pruned binding is defined as follows:

Definition 2 (Pruned binding). Define pbind List|[Cid] x Cid x Mid — Cid by:

pbind(nil,C, m)
pbindC L,C, m)
pbind(D L,C,m) if D<CAme D.mtds
pbind(D L,C,m) = pbind(D.inh,C,m) if D < CAm¢ D.mtds
pbindD L,C,m) £ pbindL,C,m) otherwise

o -

ind(C, m)

W)

> 1> 1> >

Thus,pbind(D,C, m) searches the class hierarchy above the searchBlsa defini-
tion of min a left-first, depth-first manner. In contrastimd(D, m), the search space is
restricted by the calling cla€z If the search reach& the default bindindpind(C, m)

will be returned. Thus, the search is limited to the shaded ar Fig. 2(b). A virtual,
local call tominsideC is bound bypbind(D,C, m). Static analysis ensures the defined-
ness ohind(C,m), and thereby also gibind(D,C, m).

3 Lazy Behavioral Subtyping: Tracking Behavioral Constraints

Incremental reasoning means that extending a given classrbhy by new classes does
not require reverification of already established propsrtClearly, with late bound
methods and without any restriction on how a class hieracehybe extended, this goal
cannot be achieved. The simple reason is that a virtualaalhtethodn refers to code
which is not statically determined at compile-time (or fiedtion-time). In an open
setting the implementation referred to in the calitmay change, whemis overridden

in a newly added class. Withoutimposing any restrictioms new implementation may
be completely unrelated to the original one. Consequeatly, correctness proof for
the calling method which relies on properties of (the ord)im is worthless and must
be redone in the extended hierarchy. In summary, if the kiehat called methods is

allowed to change arbitrarily by inheritance (single iritagrce or not), old proofs about
code using those methods are invalidated when the methetavior changes.

That clearly indicates also how to get a grip on the problesstrict the way a
method’s behavior may change by overriding. A classical waglo so ishehavioral
subtypingand works as follows. Assuming that the behavior of a metisddgically
specified by its pre- and postcondition (writtemfX) : (p,q) {t}), that specification
“freezes” the behavior; i.e., it fixes the behavior for atelaimplementations. Behav-
ioral subtyping supports incremental reasoning, but isréstrictive in practice [23].
Lazy behavioral subtypinid.0] relaxes the regime regulating which properties need to
be preserved: to avoid re-verification, it suffices to presgroperties that aneeeded
when a method is used, not those announced by a method definitits pre- and
postcondition. Thus, this approach distinguishesciramitmenof a method (the pre-
and postcondition of a method definition), and the requirgsi® a method: a call-site
to a methodm, written {r} x.m(e) {s} for a virtual call imposes the specification as a
requiremento (reachable) method definitions fior

The proof method for lazy behavioral subtyping has two pdrtsonventional pro-
gram logic (e.g., [3,12,19, 20]) and, on top of that, a framewwhich tracks commit-
ments and requirements to methods as the program analgsesriantally proceeds.

Proof outlines. The proof system is presented using Hoare triglpst {q}, wherep
is the pre- andj the postcondition to the stateménThe meaning of a triplép}t{q}

is that ift starts execution in a state whewédnolds and terminates, then holds after
t. Triples can be derived in any suited program logic, sd-lgt{p}t{q} denote that
the triple {p}t{q} is derivable in the chosen program logic PL pfoof outline[19]
for a method definitiom(X){t} is an annotated methadX) : (p,q) {t} where method
calls insidet are decorated with call-site requirements. We hencefashrae that all
method bodies are decorated in this way. The derivabiligy m(X) : (p,q){t} of a
proof outline is given by-p| {p}t{q}. If pis the pre- andj the postcondition to some
method (body), we callp, q) aspecificatiorof that method (body).

Lazy behavioral subtyping for single inheritancéhe core of the method is to appro-
priately track and manipulate behavioral constraintsrduthe program analysis. This
is done in a so-calledroof environmentThe proof environment in particular contains
the constraints collected during analysis so far in the foftwo mappingsSandR.
Given a class and a method name, the two mappings specifisfioeiated commit-
ments and requirements as sets of pre- and postconditicn paey are first explained
for the single inheritance proof system.

Assume that we have verified a proof outliméx) : (p,q){t} in some clas€. If
mis directly defined inC (as opposed to inherited), the specificatipng) is added to
S(C,m). If mis inherited and not redefineth may guarantee different commitments
in the context ofC than those provided in the superclass which contaieglefinition.

In the last case§(C, m) acts as docal extensiorof the superclass commitmentsrof
containing the commitments known to be validdn

The analysis of a proof outline(x) : (p,q){t} in C imposesequirementgo the
methods called byn. For a call ton, the required specificatiofr,s) is given by an
occurrence of a Hoare triplér} n{s} in the proof outline. Two steps are taken for

N

D

Fig. 3. A small multiple inheritance class hierarchy, focusing efimdtions of methodsn andn.
The subscripts indicate the existence of a definition in #s®eiated class.

each such requirement: The requirement is analyzed withrdeg the definition oh
reached for instances & and it isrememberedn R(C,n). The first step ensures that
(r,s) is valid whenn is executed by instances ©f To ensure thatp,q) remains a valid
commitment wherm is executed by an instance of a subclas€pthe second step
imposes constraints on overridingsrofWhenn is overridden in a subclass @f the
requirements captured B§(C,n) must hold for the new definition.

Additionally, the Smapping is used during the verification process to avoidrieve
fication of specifications. Le$[(C,n) be the union ofSB,n) for all B betweerC and
the first class abov€ that defines. The verification of a requiremeiit, s) succeeds
immediately if can be concluded fro®i(C, n), denotedS|(C,n) — (r,s), where— is
the entailment relation for specifications (see Appendix.®@therwise, an additional
proof outline for(r, s) is needed. The successful analysis of this new proof outlitie
add(r,s) to S(C,n), and it may cause new requirements on methods calledibyhe
context ofC.

3.1 The Commitment Mapping for Multiple Inheritance

For single inheritance the binding of a virtual callfois unambiguous wrt. a given
search clasB, as there is a unique path frdbrto the first class abou@ that implements
m. Thus it is also unambiguous which method definition a giweal extension of the
commitment mapping refers to. This becomes ambiguous fttipteuinheritance when
the calling class is used for method binding, as illustrdmgthe following example.

Example 1 (Multiple inheritancefonsider the hierarchy in Fig. 3, where a method
is defined in classe& andB and not overridden iD. So S(A,m) and S(B,m) contain
the commitments afnin A andB, respectively. Assume next that some method defined
in D and callingm (via a self-call) is analyzed. This call is boundtdn A, starting the
search irD. If the requirement of the call leads to the analysis of a nevopoutline,
the verified commitment is captured by the local exten$tib, m). However, assume
that later analysis dD requires to verifyn of B, and tham s called from this method,
as well. That call will be bound tmin B. With single inheritance, we could then rely
on S(D, m) when analyzing the requirement of this call. However, thisa longer safe,
as S(D,m) contains local commitments afi as inherited from AFurthermore, if the
call in n leads to an analysis of a new proof outline farin B, a new commitment
should be captured by a local extensionfoHowever, we cannot distinguish the local
commitment extension fonin A from the one fomin B. a

class A{ class G{
nf..} k{...}

n{...} n{..}
} }

class C extends A G{

m (P {..{rimO{s};...}

class Bezrents Al me (0.0) Uk (W)
2t m@A : (1) {....{r 0 {s}...}

k@G : (u,v){...; {Utm(){Vv};...}

}

class D extends B,C{

)

Fig. 4. An example class hierarchy. The notatie@E : (p,q) {t} used below the line in class
indicates proof outlines af defined inE generated during the analysis@f

In order to adapt the commitments to multiple inheritance Jet the mapping take
an additional class argument, such ti$€, B, m) returns the commitments oh as
defined in Bthat are established during analysi<of

Example 2.Referring to Fig. 3, the s A, A,m) is built during the analysis o, and
similarly for B. FurthermoreS(D,A,m) andS(D, B, m) return the local extensions of
in A andB, respectively. During the analysis of a method defineD i call tom can
rely on bothS(A;A;m) and S(D,A,m), and S(D, A, m) is extended if the call requires
the analysis of a new proof outline farin A. For classB, the analysis of the call tm
from nin the contexD, can rely onS(B, B,m) andS(D, B, m), and the se§D, B, m) is
extended if a new proof outline fonin B is analyzed. a

The setSD,C,m) is only extended during analysis &f. Therefore, whenever
S(D,C,m) is non-empty, the clasB is belowC, andm is defined inC. The com-
mitment collecting functiorS{(D,C,m) is defined such tha7(D,C,m) collects the
union of §(B,C, m) for all classe® such thaD < B < C. The formal definition of this
function can be found in Appendix A.

3.2 The Requirement Mapping for Multiple Inheritance

Next we consider the tracking of method requirements fortiplel inheritance. We
start by illustrating that the requirement mapping for fnigheritance is too weak in
the presence of multiple inheritance.

Example 3.Consider the diamond-structured hierarchy in Fig. 4. Weisamn the anal-
ysis of clasC. Let (p,q) be the commitment ofry of C as indicated by the figure,
i.e., S(C,C,my) = {(p,q)}, which leads to a requiremefit,s) on n;. Assume that
(r,s) does not follow from the already established commitments af A, such that a
new proof outline is analyzed, as indicated below the lin€.ikfter this analysis, we

10

haveR(C,n1) = {(r,s)}, S(C,A,n1) = {(r,5)}, R(C,nz) = {(r',s)}, andS(C,A,np) =
{(r’,s)}. Thus, the specificatior(s,s) and(r’,s) are established wrt. the definitions of
n; andny in A. For the analysis dB, the independence & andC implies that require-
ment(r’,s) is not imposed om; in B whenB is analyzedB is not a subclass df.
This, however, leads to a potential soundness problem \Bhisnintroduced. Method
my is inherited fronC to D. Nonetheless, a call 1oy from D cannotrely or§(C,C, m)
unless(r’,s) is verified forn, in B.

To ensure soundness, we therefore have to vérifg), included in the seR(C, ny),
with respect tay,; in B whenD is introduced. However, it is unnecessary restrictive to
verify all elements oR(C, nz) againsiy in B, as illustrated by clags in Fig. 4. Assume
that a proof outline fofu} k() {v} is analyzed during analysis 6f Since there is a call
{Uu} ny() {V} in the proof outline ok, the setR(C, n,) will contain the elemenfu’, V).
For an instance db, the call ton, in G will still be bound toG, which means that the
requiremen{u’,v') should not be imposed an in B. O

For a clas<C, let commSufC) return the name of classes that are abmegethan
one class irC.inh. We say that a diamond is introduced ®yif commSufC) # 0. A
classB is in commSufC) if there are two different class&y andC; in C.inh such
thatC; < B andC; < B, and we then refer t8 as acommon superclassf C. The
above example illustrates that whene@es analyzed, it might be necessary to verify
some requirements made by classes betwand the common superclasse£ofThe
requirements that need verification are generated durialysis of a proof outline in a
common superclass. To handle this problem, the multipleritdmce definition of the
reguirement mapping is more fine-grained than for singletiiince. For two class€s
andD whereC < D, we letR(C, D, m) return the requirements towantighat are needed
during verification ofC for a calling clas®. Thus, the calls ton occur syntactically in
D. The more fine-grained requirement mapping is illustratethb following example:

Example 4.Reconsider the class hierarchy in Ex. 3. For the analysis;0h C, the
requirementr, s) is added taR(C,C, n;). Furthermore, the analysis of the proof outline
for n; adds(r’,s) to R(C,A,ny). For the analysis ofi,, we getR(C,C,k) = {(u,v)}
andR(C,G,n,) = {(U,V)}. Consequently, we can distinguit,s') as required by,
from (U',V') as required by. O

The commitments of a class are captured by differen®(C,_,_) sets, and the
requirements on which these commitments rely are captwe®(6,_,) sets. Lazy
behavioral subtyping for multiple inheritance applies thkowing strategy: in order
to ensure that the commitments of the method€ afe valid when these methods are
executed in an instance of a subclass, the requirementseddn/C must hold when
calls are bound with the subclass as search classidfoverridden by a subclass of
C, all requirements om made abové& must be verified for the new definition. This is
captured by a verification of the requirements returne®t¥s, m), which denotes the
union of all requirements tm made by classes abo@ Consider next a requirement
setR(C,D,m) of C, and assume that is not overridden by the subclaSsof C. There
is a special case whekis a common superclass 6f Calls made byD may then be
bound in a class which is neither below nor ab@ye.e., the requirements made By
was not imposed on this class when it was analyzed. The sgjamant applies to other

11

classes above, and in general we let the seteq(G, D, m) of diamond requirements
be the union ofR(C, D, m) for all suchC betweenG andD. Verification ofG leads to a
verification ofdreq(G, D, m) with regard to the definition ai to which the calls from
D are bound for instances &. We refer to Appendix A for formal definitions afreq
andRY.

Example 5.Referring to Ex. 3, the classis a common superclass Bt The require-
ment(r’,s) contained inR(C,A,ny), is returned bydreq D, A, ny), and(r’,s) is then
verified with regard ta, in B. Remark thafu’,v') in R(C, G, ny) is notindreq(D, A, ny).

3.3 Proof Environments for Multiple Inheritance Class Hierarchies
We now give the formal definition of proof environments anelitlsoundness.

Definition 3 (Proof environments for multiple inheritance). A proof environmen&
of type Env is a triplgP, S R), where P: Cid — Class is a partial mappingR and S
are total mappings of type Cid Cid x Mid — SefProp).

In an environment, P reflects the class structur§C, D, m) the set of commit-
ments ofm defined inD with respect to a subcla€s andR(C,D, m) the set of require-
ments tom from C that must be ensured by classes betawf the proof environment
of a mapping is not clear from the context, we use a subseigt;Rx.

Definition 4 (Sound environments).A sound environment satisfies the following
conditions for all GD € ‘£ and m: Mid:
Y(p,q) € Sg(C,D,m) . 3body;:(D,m) . FpL m(X) : (p,q) {body;(D,m)}
AV{r}n{s} € body.(D,m).VG <z C. S|¢(G,pbind;(G,D,n),n) — (r,s))
AV{r}n:> B{s} € body:(D,m) . S|z (C,bindg(B,n),n) — (r,s)
AV{r}xn{s} € body:(D,m) . 3E . ((x: E) € {C.at) = S|z (E,n) — (r,9)

Informally, a proof environmeri is soundif, whenever(p, q) € S¢(C,D,m), there
is a proof outline fom in D with respect to the commitmefip,q). Furthermore, for
each requiremenfr} n{s} in this proof outline and each subclassof C, (r,s) must
follow from the commitments of the method to which a call isibd for search clags.
For each external caflr} x.n{s}, the requirement must follow from the commitments
of nin D. Let S|z (C,m) abbreviateS|z (C,bindz(C,m),m), body, (D, m) return the
body ofmin D, andC € ‘£ denote thaPg(C) is defined.

Remark that the requirement mapping is not visible in Defldwever, it is needed
to show that the calculus maintains environment soundhess=c {p}t{q} denote
= {p}t{q} under the assumption that virtual callstiare bound in the context @,
and let=c m(X) : (p,q) {t} be given by=c {p}t{q}. If there are no method calls in
t and-pL {p}t{q}, then= {p}t{q} follows by the soundness of PL. Lemma 1 below
states that i p,q) € Sg(C,D,m) and a methodhn in D is executed in an instance of a
subclass o€, a sound environment guarantees tt@an) is a valid commitment:

Lemma 1. Given a sound environmefitand a sound program logieL. For allC,D :
Cid, m: Mid, and(p,q) : Prop such that CD € £ and(p,q) € Siz(C,D,m), we have

e m(x) : (p,q) {body (D, m)}.

12

Proof. By induction on the call structure of. Since(p,q) € Siz(C,D,m), there must,
by Def. 4, exist some clas® such thatC <z B <z D and(p,q) € Sz(B,D,m). In
addition, there must exist a proof outlib@dy; (D, m) for the method such thatp_
m(x) : (p,q) {body;(D,m)}.

Base caseThe executior{ p} body; (D,m){qg} does not lead to any method calls.
Thenl=c m(X) : (p,q) {body;(D,m)} follows by the soundness of PL.

Induction stepConsider a method caft } n{s} in the methodody: (D, m), and let
H = pbind;(C,D,n). Assume=c n(y) : (p,q’) {body:(H,n)} as induction hypothesis
foreach(p',d') € S|z(C,H,n). Consequently, it suffices to ensi8g:(C,H,n) — (r,s),
which follows by Def. 4. A corresponding argument appliegityn :> B{s}.

4 The Inference System

Based on the proof environments, we next present the diervsystem, given as a set
of inference rules, analyzing and manipulating the prosfremment.

4.1 Analysis Operations

In the calculus, judgments have the fofin- 4, whereZ is the proof environment and
A is a list ofanalysis operationwith the following syntax.

O ::= ¢ | analyzeMtdéM) | verify(C,m R) | analyzeOutlin€C,t) single class

| supCIgC) | supMtdC,m) | O-O
S=0|L|requirelC,m (p,q)) | SUS set of classes
4 = moduléL) | [(C: O); 5] | [e; S] | moduléL) - 4 seq. of modules

The rule system below roughly specifies an algorithm thainseely traverses a class
hierarchy and its syntactic constituents — classes, mesttstatements, etc. — accord-
ing to the principles explained in Section 3; in particutaacking commitments and
requirements. A program is given as a sequence of modulesevehmodule is a set
of classes considered ascampilation unit Programs are open in the sense that at
later stages, the class hierarchy may be extended. Hovaheach stage of the devel-
opment, the modules given so far represent a complete, tainlgiprogram. Hence,
modules are analyzed in sequential order, whereas classids ia module are simply
represented as a set. The operations above, together wittodgnvironment, steer
the algorithm through the program (which is assumed to béasyinally well-formed
and well-typed). The analysis starts with @ 4 whereE is empty and4 contains
the program as a sequence of modules. On the level of clabsesetS contains a
module’s classes. However, the inference rules ensurattiass can only be analyzed
after all its superclasses have been analyzed. The opeeatias C extends D {f M}
initiates the analysis &, and[(C : O); S| analyze<O in the context of clas€ before
operations inS are considered. The analysis of a specific class involvesrthlysis the
proof outlines for its methodd, the verification of the requirements for a method, and
collecting the proof obligations for the calls mentionesidte the method bodies (by the
operationsanalyzeMtdéM), verify(D,m R), andanalyzeOutlinéD,t)). The operation

13

require(D,m, (p,q)) applies to external calls to ensure thain D satisfies the require-
ment(p,q). Requirements are lifted outside the context of the andlyzass by this
operation, and the verification of requireméptq) for min D is shifted into the sef

of analysis operations. The remaining two operatisnpCl$D) andsupMtd D, m) are
used during analysis @, if C introduces diamonds in the class hierarchy. The opera-
tion supClg¢D) takes a list of class names and generasgaMtd D, m) for eachD € D
wherem are the names of the methods that are calle® by

Environment updatesare represented by the operatob_ : Envx Update— Eny,
where the second argument represents the update. Theheeeifferent environment
updates; loading a new class and extending the commitmetig eequirements of a
method in a class. The updates are defined as follows:

£ ®class Cextends D {f M} = (Pz[C— (D, f,M)], Sz, Rz)
£ ext3C,D.m, (p,q)) = (Pz, Se[(C,D,m) — Sx(C,D,m) U

4.2 The Inference Rules

The inference rules are given in Fig. 5 and 6. Rilevmonute) initiates the analysis of
a set of classes. Furthermorgiwciass) loads a new clas8 for analysis, the second
premise ensures that the superclagsbave already been analyzed. For each method
in C, the calculus generates an operatienfy(C,m, R), whereR is the set of require-
ments that must hold for this method. Rulegqper) and (rReoNotDer) deal with the
verification of a particular property with respect to the lerpentation. If the property
follows from the established specification of the methotk reeqper) continues with
the remaining analysis operations. Otherwise, a proof efpttoperty is required. By
(ReqNoTDER), an outline of the method property is then analyzed byiaalyzeOutline
operation. Remark thakeoNoTDEeR) IS the only rule which extends tf&mapping.

The rule (caL) analyzes a requirement to a virtual call occurring in sono®pout-
line. The rule leads extends tfiemapping and generatewarify operation to analyze
the requirement for the implementation to which the call hithd. The extension oR
ensures that future redefinitions mwfrespect the requirement; i.e., when a new imple-
mentation is considered byewmo). Rule (surcaLL) also generates\eerify operation,
but does not extenR. External calls are handled by the rulgsTreq) and (ExtcaL).

Fig. 6 contains rules for analyzing requirements from comrmperclasses when
diamondsare introduced in the environment. Ruleurmto) generates gupMtd for
each common superclass. For each of these superclassegn) generates aerify
operation for each method called by the class. If a diassintroduced by(Newciass)
whereC does not have any common superclassesip€lsoperation generated by the
rule will have an empty argument. This operation is thenatided by (nosur). Some
structural rules are left out from Fig. 5 and Fig. 6. Theselmafound in Appendix C.

Theorem 1. Let E be a sound environment ahda set of class declarations. If a proof
of £ - modulél) has‘E’ as its resulting environment, theff is also sound.

14

Tt[e; -4

—— — — (NEWM
E+ moduléL)- 4 (NEwMopuLE)

C¢E D#nil=DeE E=commSup(C)
E® (class C extends D {f M}) - [(C: analyzeMtdéM) - supCISE)); S]- 4

T F [€; class C extends D {f M} §]- 4 (NeweLAss)
£ F [(C: verify(C,m, (p.q) URI (C.inhm)) -O);] -4
L - [(C: analyzeMtdan(®) : (p.q) {t})-0); 8]- 4 oM™
STE(CDvm)_D(pyq) E '_[<C O>'5]ﬂ (REQDER)
£ +[(C: verify(D,m,(p,q))-O); $5]- 4
FpLm 2 (p,q) {body;: (D, m)}
EaextSC,D,m,(p,q)) + [(C: analyzeOutlinéD,body; (D,m))-O); S5]- 4 REONOTD
ZF[(C: verify(D,m.(p.q))-O): 5] 4 (ReaNoTDER
pbindz(C,D,m) =E
‘E@eXtR(CvD7mv (p7q)) + [<C : Verify(E7m7(p7 q)) O> ; ‘5} A c
E F [(C: analyzeOutlinéD,{p} m{q})-O); S]- 4 (ca)
bindg (B,m) = A E - [(C: verify(Am,(p,q))-O); S]- 4 .
E I [(C: analyzeOutlinéD, {p} m:> B{q})-O); S]- 4 (Supeart)
x:EelC.att EF[(C:0O);SUrequire(E,m,(p,q))]- A
E F [(C: analyzeOutlinéD, {p} x.m{q})-O); S]- 4 (ExTeaL)
CEE D:blndf(cvm) STE(CDvm)_D(pq) E}_[S’S]’q’ ExTR
E + [g; require(C,m, (p,q)) US]- 4 (ExTREQ)
Ete; 84 Er-Aa
(EMPCLASS) (EMPPACK)

EF[(C:€);8]-4 Etr[e;0-4

Fig. 5. The inference system. Henedenotes a call, including actual parameters.

Proof. The auxiliary lemmas used in this proof can be found in Apjper8l Assume
given a sound environmem. The proof is by induction over the inference rules. The
only rule that extend$z(C,D,m) is (ReoNotDer), and this rule ensures that there is a
proof outlinebody;: (D, m) of mdefined inD such that-p m(X) : (p,q) {body:(D,m)}

for each(p,q) € Sz(C,D,m) and we must hav€ <z D.

For each{r} n{s} in the proof outline we then hawec called:(D) and the rule
(cawr) will ensureRz(C,D,n) — (r,s). As the class hierarchy evolves, we then need
to ensureSiz (G, pbind; (G,D,n),n) — (r,s) for all classesG < C. This is done by
induction over the deptt of the class hierarchy belo@.

Base cased = 0, i.e.,G = C. In this case, we need to ensusé¢z (C,H,n) —
(r,s) for H = pbind;(C,D,n). When the rule(reaNotDer) is applied, including p,q)
in Sz(C,D,m), an operatioranalyzeOutlinéD, {r} n{s}) is generated and analyzed
in the context ofC. The rule (ca) will then lead to an operatiowerify(H,n, (r,s)).

15

E I [(C: supMtd D, called; (D) \C.mtdy - O); S]- 4
E [(C: supCI§D)-O); S]- 4

(SuPMTD)

E = pbindz(C,D,m) E +[(C: verify(E,m,dreq(C,D,m))-O); S]- 4
E +[{C: supMtdD,m)-O); S]- 4

(SUPREQ)

EF[C:0);5]-4
E - [(C: supCIg0)-0); S]- 4

(NoSup)

F[(C: 0); S]-4
E - [(C: supMtdD,0)-O); S]- 4

(NOSUPMTD)

Fig. 6. The extension of the inference system with rules for anatyzf requirements made by
common superclasses.

Since the operation succeeds, either releper) Or (ReoNoTDER) iS applied. The relation
Siz(C,H,n) — (r,s) must hold directly if (ReqDer) is applied. Otherwise, ifReqNoTDER)
is applied, the se6z(C,H,n) is extended withr,s). The desired relation then holds
sinceS|z(C,H,n) — S¢(C,H,n).

Induction Step: d =d' +1, i.e.,G <z C at depthd belowC. For all classe&’
at depthd’ such thatG’ <¢ C, we assumeS|z (G, pbind;(G',D,n),n) — (r,s) as the
induction hypothesis.

We consider two casen:e G.mtdsandn ¢ G.mtds

Case 1:n € G.mtds Sincepbind;(G,D,n) = G, the relationSz (G, G,n) — (r,s)
must be ensured. By Def. 6, we ha®dz (G,n) — R£(C,D,n) sinceG <¢ C <g
D. Therefore, the rulenewmro) will initiate an operatiorverify(G,n, (r,s)) which is
analyzed in the context @. This operation either succeeds R¢qDer) OF (REQNOTDER),
both ensuring the desires: (G, G,n) — (r,s).

Case 2:n¢ G.mtds LetE =Im(G.inh,D) (see Def. 8). Thus is the leftmost class
in G.inh that is belowD. Furthermore, leH = pbind;(E,D,n). We here distinguish
between two cases, depending on whethés belowC or not.

Case 2aE <« C. SinceE € G.inhandE < C, we know that is at depthd’ below
C, and may use the induction hypothesis to ass®w€E,H,n) — (r,s). By Lemma 2,
we havepbind; (G,D,n) = pbind;(E,D,m) which givespbind;(G,D,n) = H. The
desired relatiorSiz (G,H,n) — (r,s) then follows sinceSj«(E,H,n) C Sz (G,H,n)
by Def. 5.

Case 2b:E £z C. SinceE <z D, we must haveC # D. SinceG < C, there
must exist som&’ = Im(G.inh,C). SinceE £z C, we must hav& # E’. By E <z D
andE’' <z C <¢ D, we then know thab is a common superclass &, i.e.,D ¢
commSup(G). Analysis ofG will initiate a supCl§commSup(G)) operation. Appli-
cation of rule (pecomrsur) Will generate asupCl$D) operation. Since € called: (D) \
G.mtds rules (surmTo) and (pecomesurmTo) Will generate aupMtd D, n) operation. Rule
(surreq) Will then initiate averify(H,n,dreq(G,D,n)) operation. Analysis of each re-
quirement in this set either succeeds by applicationredper) Or (ReoNoTDEeR), Which
ensuresSjz(G,H,n) — dreq(G, D, n). The desired conclusio8z(G,H,n) — (r,s) fol-

16

lows by transitivity of— since R(C,D,n) — (r,s), and R¢(C,D,n) C dreqG,D,n)
by Lemma 3.

5 Related Work

Multiple inheritance is supported in, e.g., C++ [24], CLCH, [Eiffel [18], POOL [2],
and Self [7]. Horizontal name conflicts in C++, POOL, and &lifire removed by ex-
plicit resolution, after which the inheritance graph mayibearized. Multiple dispatch,
or multi-methods [9], gives a more powerful binding meclsamibut reasoning about
multi-methods and redefinition is difficult. The prototypased language Self [7] pro-
poses an elegaptioritized binding strategyEach superclass is given a priority. With
equal priority, the superclass related to the caller clagséferred. However, explicit
class priorities may cause surprises in large class higescnames may become am-
biguous through inheritance. If neither class is relatetthéocaller, binding fails.

Formalizations of multiple inheritance in the literaturaditionally use th@bjects-
as-recordsparadigm. This approach addresses subtyping issuesdétaseibclassing,
but method binding is not easily captured. In Cardelli'satational semantics of mul-
tiple inheritance [6], not even access to methods of suassek is addressed. Rossie,
Friedman, and Wand [22] formalize multiple inheritancengsubobjectsa run-time
data structure used for virtual pointer tables [15,24]sMxrk focuses on compile-time
issues and does not clarify multiple inheritance at therabson level of the program-
ming language. A natural semantics for virtual binding iffétimodels the binding
mechanism at the abstraction level of the program [4]. Ridcean operational seman-
tics and type safety proof inspired by C++ has been formdlizésabelle [25].

Work on behavioral reasoning about object-oriented prograddress languages
with single inheritance (e.g., [5, 20, 21]). For late birglidifferent variations of behav-
ioral subtyping are most common [1,16,17], as discussedalfierik and de Boer [20]
present a sound and complete reasoning system for late loalladvhich does not rely
on behavioral subtyping. This work, also for single inhanite, is based on a closed
world assumption, meaning that the class hierarchy is nehdpr incremental ex-
tensions. To support object-oriented design, proof systshould be constructed for
incremental reasoning. We are not aware of proof systems@ittiple inheritance.

6 Conclusion

Lazy behavioral subtyping supports incremental reasonimder an open world as-

sumption, where class hierarchies can be extended by fahee. The approach is
more flexible than traditional behavioral subtyping. Instipaper, we have extended
the lazy behavioral subtyping approach to a language withipteiinheritance, based

on a pruned binding strategy for virtual calls. The combarabf pruned binding and

lazy behavioral subtyping has the advantage that requiresvieom two independent

class hierarchies do not interfere with each other when ibeaitthies are combined
in a common subclass. This is essential in an incrementaf gystem. The inference

rules for incremental reasoning are essentially syntasedrand would form a good

basis for combining behavioral reasoning in a program ag@raknt environment.

17

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

P. America. Designing an object-oriented programmingylege with behavioural sub-
typing. In J. W. de Bakker, W.-P. de Roever, and G. Rozenbetgors, Foundations of
Object-Oriented Languagepages 60—90. Springer, 1991.

. P. America and F. van der Linden. A parallel object-oeentanguage with inheritance

and subtyping. In N. Meyrowitz, editoProceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOR 8tlime 25(10), pages 161—
168. ACM Press, Oct. 1990.

. K. R. Apt and E.-R. OlderogVerification of Sequential and Concurrent Systeifexts and

Monographs in Computer Science. Springer, 1991.

. |. Attali, D. Caromel, and S. O. Ehmety. A natural semanfar Eiffel dynamic binding.

ACM Transactions on Programming Languages and Syst&&{6):711-729, 1996.

. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. Oeavens, K. R. M. Leino,

and E. Poll. An overview of JML tools and applicatioriaternational Journal on Software
Tools for Technology Transfer(3):212-232, 2005.

. L. Cardelli. A semantics of multiple inheritancenformation and Computatiqn76(2-

3):138-164, 1988.

. C. Chambers, D. Ungar, B.-W. Chang, and U. Holzle. Pammmtshared parts of objects:

Inheritance and encapsulation in SELEisp and Symbolic Computatipd(3):207-222,
1991.

. 0.-J. Dahl, B. Myhrhaug, and K. Nygaard. (Simula 67) ComrBase Language. Technical

Report S-2, Norsk Regnesentral (Norwegian Computing Cgridslo, Norway, May 1968.

. L. G. DeMichiel and R. P. Gabriel. The Common Lisp Objecst8mn: An overview.

In J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, teds, European Conference
on Object-Oriented Programming (ECOOP’'8Rolume 276 ofLNCS pages 151-170.
Springer, 1987.

J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazgiehal subtyping. In J. Cuellar
and T. Maibaum, editor$2roc. 15th International Symposium on Formal Methods (FBf'0
volume 5014 oLNCS pages 52—-67. Springer, May 2008. To Appear.

C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inh&séan the Join calculuslournal
of Logic and Algebraic Programming7(1-2):23—-69, 2003.

C. A. R. Hoare. An Axiomatic Basis of Computer Prograngni@ommunications of the
ACM, 12:576-580, 1969.

A. lgarashi, B. C. Pierce, and P. Wadler. Featherweigta:Ja minimal core calculus for
Java and GJACM Transactions on Programming Languages and Syst28¢8):396—450,
2001.

E. B. Johnsen and O. Owe. A dynamic binding strategy fdtiphe inheritance and asyn-
chronously communicating objects. In F. S. de Boer, M. M. &gue, S. Graf, and W.-P.
de Roever, editorfroc. 3rd International Symposium on Formal Methods for @orrents
and Objects (FMCO 2004yolume 3657 oL NCS pages 274—-295. Springer, 2005.

S. Krogdahl. Multiple inheritance in Simula-like larages.BIT, 25(2):318-326, 1985.

G. T. Leavens and D. A. Naumann. Behavioral subtypingcifipation inheritance, and
modular reasoning. Technical Report 06-20a, Departme@bafiputer Science, lowa State
University, Ames, lowa, 2006.

B. H. Liskov and J. M. Wing. A behavioral notion of subtygi ACM Transactions on
Programming Languages and Systef(6):1811-1841, Nov. 1994.

B. Meyer.Object-Oriented Software ConstructioRrentice Hall, 2 edition, 1997.

S. Owicki and D. Gries. An axiomatic proof technique faradlel programs | Acta Infor-
matica 6(4):319-340, 1976.

18

20. C. Pierik and F. S. de Boer. A proof outline logic for olbjedented programmingTheo-
retical Computer Scien¢@43(3):413-442, 2005.

21. A. Poetzsch-Heffter and P. Miller. A programming logic$equential Java. In S. D. Swier-
stra, editor8th European Symposium on Programming Languages and Sy8&S®P’99)
volume 1576 oLNCS pages 162-176. Springer, 1999.

22. J. G. Rossie Jr., D. P. Friedman, and M. Wand. Modelingolsjebt-based inheri-
tance. In P. Cointe, editof,0th European Conference on Object-Oriented Programming
(ECOOP’96) volume 1098 of NCS pages 248-274. Springer, July 1996.

23. N. Soundarajan and S. Fridella. Inheritance: From cedse to reasoning reuse. In
P. Devanbu and J. Poulin, editofroc. Fifth International Conference on Software Reuse
(ICSR5) pages 206—215. IEEE Computer Society Press, 1998.

24. B. Stroustrup. Multiple inheritance for C+&€omputing System&(4):367-395, Dec. 1989.

25. D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An operal semantics and type safety
proof for multiple inheritance in C++. In P. L. Tarr and W. Ro@k, editors,Proceedings
of the Conference on Object-Oriented Programming, Systeamguages, and Applications,
(OOPSLA’06) pages 345-362. ACM, 2006.

A Auxiliary Functions

In the following definitions, we assunma: Mid, C,D, E : Cid, andL : List[Cid].
Definition 5 (Commitment collection).DefineS]: List[Cid] x Cid x Mid — SefProp:

Si(nil,C,m) £ 0

SH(CL,C,m) £ SC,C,m)uSJ(L,C,m)

S/(DL,C,m) £ §D,C,muUS|(D.inhL,C;m) ifD<C
SI(DL,C,m) £ S[(L,C,m) otherwise

Definition 6 (Requirement collection).DefineR]: List[Cid] x Mid — SefProp| by:

Rt (nilbm) =0
R (CL,m) £ R(C,m)URY (C.inhL,m)

whereR: Cid x Mid — Se{Prop| is defined by
R(C.m) £ req(C,C.m)
and req: Cid x List[Cid] x Mid — SefProp]| is defined by:

0
R(C,D,m)Ureq(C,D.inhL,m)

req(C, nil, m)
req(C,D L,m)

£
£
Definition 7 (Common superclassesPefine commSupCid — SefCid]:
commSufC) = com(C.inh)
where com List[Cid] — Sef{Cid| is defined by:
comnil) £0
comC L) £ (supC)NsuplL))UucomL)

19

and sup List[Cid] — Sef{Cid] is defined by:

supnil) £ 0
supC L) £ {C}usupC.inhL)

Definition 8 (Leftmost superclass).Define Im: List/Cid] x Cid — Cid as a partial
function by :

Im(nil,C) £ L
Im(DL,C) 2 D ifD<C
Im(D L,C) £ Im(L,C) otherwise

Definition 9 (Diamond requirement collection). Define dreg Cid x Cid x Mid —
SetProp| as a partial function by:

dreq'G,D,m) £ Idreq(G.inh,Im(G.inh,D),D,m)
where Idreq List[Cid] x Cid x Cid x Mid — SefProp] is defined by:

ldreq(L, L,D,m) £ L

ldreq(nil,E,D,m) 2 0

Idreq(C L,E,D,m) £ R(C,D,m)uldreq(C.inhL,E,D,m) if C<DandE £C
ldreq(C L,E,D,m) £ Idreq(L,E,D,m) otherwise

Definition 10 (Entailment). Let g denote an expression p with all occurrences of
fields f substituted by’ favoiding name capture. Lép,q) and (r,s) be specifications
and letd and ¥ denote the set§(p;, i) |1 <i < n} of specifications andl(ri,s) |1 <

i < m}. Entailments defined by

1. (p,q) = (,8) = (Vz1.p=d) = (V.1 =),

wherez; andz are the logical variables irip,q) and(r, s), respectively.
2. U—(r,9) = (A1<i<n(VZi - pi = o)) = (VZ.1 = 9).
.UV 2 A1<icm U — (ri,S).

B Auxiliary Lemmas

Lemma 2. Let D,E,G : Cid be classes such that & D, and let E= Im(G.inh,D).
Then, for any mMid such that m¢ G.mtds we have pbin@3, D, m) = pbind(E, D, m).

Proof. Follows directly from Def. 2 opbind sinceE is the leftmost class it.inhthat
is belowD andpbindbinds belowD.

Lemma 3. Let D,E,G : Cid be classes such that & D and E= Im(G.inh,D). Let
C: Cid be a class such that & C < E and E«£ C. ThenR(C,D,m) C dreq(G, D, m)
for any m: Mid.

Proof. The functiondreq(G,D, m) will in one step evaluate t&ireq(G.inh,E,D,m).
This function will traverse the class hierarchy (strictygoveG, but ignore classes that
are aboveE, or not belowD. For all other classes, the function will return the union
of R(H,D,m) for all H in the set{H : Cid| G < H < D} \ sugE). It follows from the
premises that is in this set.

20

C Structural Inference Rules

E[(C:0); 5] NORE
E | [{C: verify(D,m 0)-O); S]- 4 (9
- [<C : O> ; 5] A (NoMTDS)

E I [(C: analyzeMtdfD)-O) ; S]- 4

EF[(C:0);S]-4 t do not contain call statements
E + [(C: analyzeOutlinéD,t)-O); S]- 4

T + [(C: verify(D,mRy) - verify D,mRy)-O) ; §] - 4
E I [(C: verify(D,m R URy)-0); $]- 4

(DECOMPREQ)

E + [(C: analyzeOutlingD,t;) - analyzeOutlin€D,t5) - O) ; S]- 4
E I [(C: analyzeOutlinéD,t;;t) - O); 5] - 4

(DECOMPCALLS)

E I [(C: analyzeMtdéM;) - analyzeMtdéMy) - O) ; S]- 4
T + [(C: analyzeMtdéM; UMy)-O); S]- 4

(DECOMPMTDS)

E I [(C: supCl¢Dy) - supClIgD3)-O); §]- 4
E I [(C: supCI§D;UD3)-0); S]- 4

(DECOMPSUP)

E I [(C: supMtdD,my) - supMtd D, mp) - O) ; S]- 4
E + [{C: supMtdD,mpUMg)-O); S]- 4

(DECOMPSUPMTD)

21

