
Automated Test Driver Generation for Java

Components

Frank S. de Boer2 and Marcello M. Bonsangue1 and
Andreas Grüner1 and Martin Steffen3

1 LIACS, Leiden, The Netherlands
2 CWI Amsterdam, The Netherlands

3 University of Oslo, Norway

Whereas object-orientation is established as a major paradigm for software
development, testing methods specifically targeted towards object-oriented, class-
based languages are less common. We propose a testing framework for object-
oriented programs, based on the observable trace semantics of class components,
i.e., for black-box testing. In particular, we propose a test specification language
which allows to describe the behavior of the component under test in terms
of the expected interaction traces between the component and the tester. The
specification language is tailor-made for the programming language Java e.g.,
in that it reflects the nested call and return structure of thread-based interac-
tions at the interface. From a given trace specification, a testing environment is
automatically synthesized such that component and environment represent an
executable closed program.

The design of the specification language is a careful balance between two
goals: using programming constructs in the style of Java helps the programmer
to specify the interaction without having to learn a completely new specification
notation. On the other hand, additional expressions not provided in Java itself
allow to specify the desired trace behavior in a concise, abstract way, hiding the
intricacies of the required synchonization code at the lower-level programming
language.

In our presentation, we will propose a test specification language for describ-
ing the desired interface behavior of a component. The language is designed
under consideration of the following aspects:

– The behavior is formalized on the basis of interface traces, that is, the se-
quence of method calls and returns between the component and its envi-
ronment. The language provides interaction statements for incoming (i.e.
expected) and outgoing (i.e. committed) method calls and returns, which
can be nested to describe an expected sequence of component-environment
interactions.

– To allow specifications which correspond to possibly infinite sets of traces
we add Java-like language constructs like variable declarations, conditionals,
and while-loops.

– Certainly, there exist sequences of interactions that cannot be realized by
any component. The grammar of the language rules out most of these faulty
specifications.

Moreover, we will explain, by means of a simple example, how to automati-
cally generate Java methods from a test specification. The resulting tester classes
drive the test by checking the behavior of the component and, at the same time,
by providing the needed stimuli and collaborator objects. Thus, our approach
can be considered as a mock object framework. In contrast to existing mock ob-
ject frameworks, which do not provide a test specification language, however, we
had to tackle three main problems:

– control flow: The code at the Java-level must be contained in bodies of meth-
ods, corresponding to the incoming method-labels of the trace specification,
i.e., the test-code must be appropriately “distributed” over different method
bodies and classes. Furthermore, the order of accepting incoming commu-
nications and generating outgoing ones must be realized as given by the
specification.

– variable binding: The parameters of a specification’s incoming method call
introduce a scope that resembles the scope of a method declaration’s formal
parameter in Java. A direct translation of these scopes to Java is not possible,
however, as this would need Java to have dynamic scoping.

– realizability: It is impossible to identify all unrealizable specifications, stat-
ically. Instead, we detect at runtime if the tester expects an impossible be-
havior of the component. In these cases, the tester stops the execution and
reports a faulty specification.

Andreas Grüner received his Diplom (Master’s de-
gree) in computer science from the Christian-Albrechts-
University in Kiel, Germany. He is currently working
on his Ph.D. at the University of Leiden. His scientific
interests lie in the domain of semantics of and testing
approaches for object-oriented programming languages,
compositionality, and concurrency.

	Automated Test Driver Generation for Java Components
	 Frank S. de Boer and Marcello M. Bonsangue and Andreas Grüner and Martin Steffen

