
Executable interface specifications

for testing asynchronous Creol components⋆

Immo Grabe1, Marcel Kyas2, Martin Steffen2, and Arild B. Torjusen2

1 Christian-Albrechts University Kiel, Germany
2 University of Oslo, Norway

Abstract. We propose and explore a formal approach for black-box
testing asynchronously communicating components in open environments.
Asynchronicity poses a challenge for validating and testing components.
We use Creol, a high-level, object-oriented language for distributed sys-
tems and present an interface specification language to specify compo-
nents in terms of traces of observable behavior.
The language enables a concise description of a component’s behavior, it
is executable in rewriting logic and we use it to give test specifications for
Creol components. In a specification, a clean separation between interac-
tion under control of the component or coming from the environment is
central, which leads to an assumption-commitment style description of
a component’s behavior. The assumptions schedule the inputs, whereas
the outputs as commitments are tested for conformance with the specifi-
cation. The asynchronous nature of communication in Creol is respected
by testing only up-to a notion of observability. The existing Creol inter-
preter is combined with our implementation of the specification language
to obtain a specification-driven interpreter for testing.

1 Introduction

To reason about open distributed systems and predicting their behavior is intrin-
sically difficult. A reason for that is the inherent asynchronicity and the resulting
non-determinism. It is generally accepted that the only way to approach com-
plex systems is to “divide-and-conquer”, i.e., consider components interacting
with their environment. Abstracting from internal executions, their black-box
behavior is given by interactions at their interface. In this paper we use Creol
[20], a programming and modeling language for distributed systems based on
concurrent, active objects communicating via asynchronous method calls.

To describe and test Creol components, we introduce a concise specification
language over communication labels. The expected behavior is given as a set of
traces at the interface. Both input and output interactions are specified but play
quite different roles. As input events are not under the control of the object, but

⋆ Part of this work has been supported by the EU-project IST-33826 Credo: Modeling
and analysis of evolutionary structures for distributed services and the German-
Norwegian DAAD-NWO exchange project Avabi (Automated validation for behav-
ioral interfaces of asynchronous active objects).

http://www.cwi.nl/projects/credo/
http://www.ifi.uio.no/avabi/

2

of the environment, input is considered as assumptions about the environment
whereas output describes commitments of the object. For input interactions, we
ensure that the specified assumptions on the environment are fulfilled by schedul-
ing the incoming calls in the order specified, while for output events, which are
controlled by the component, we test that the events occur as specified. An
expression in the specification language thus gives an assumption-commitment
style specification[10] for a component by defining the valid observable output be-
havior under the assumption of a certain scheduling of the input. Scheduling and
testing of a component is done by synchronizing the execution of the component
with the specification. As a result, the scheduling is enforced in the execution
of the component and the actual outgoing interactions from the component are
tested against the output labels in the specification. This gives a framework for
testing whether an implementation of a component conforms with the interface
specification. Incorrect or nonconforming behavior of the component under a
given scheduling is reported as an error.

It is important in the specification, to carefully distinguish between the in-
teractions which are scheduled and those for which the component is responsible
and which are checked for conformance. We do so by formalizing well-formedness
conditions on specifications. Well-formedness enforces a syntactic distinction be-
tween input and output specifications and, in addition, assures that only “mean-
ingful” traces, i.e., those corresponding to possible behavior, can be specified.
Besides that, the specification language captures two crucial features of the in-
terface behavior of Creol objects. First, Creol allows to dynamically create ob-
jects and threads (via asynchronous method calls), which gives rise to dynamic
scoping. This is reflected in the interface behavior by scope extrusion and the
specification language allows to express freshness of communicated object and
thread references. Second, due to the asynchronous nature of the communication
model, the order in which outgoing messages from a component are observed
by an external observer does not necessarily reflect the order in which they
where actually sent. We take this asynchronous message passing into account by
only considering trace specifications up-to an appropriate notion of observational
equivalence.

Contributions The paper contains the following contributions: We formalize the
interface behavior of a concurrent, object-oriented, language plus a correspond-
ing behavioral interface specification language in Sect. 2 and Sect. 3. This gives
the basis for testing active Creol objects, where a test environment can be simu-
lated by execution of the specifications. Sect. 4 explains how to compose a Creol
program and a specification and how to use this for testing. Furthermore, the ex-
isting Creol interpreter is extended with the implementation of the specification
language. This yields a specification-driven interpreter for testing asynchronous
Creol components. The implementation is described in Sect. 5

3

2 The Creol language

Creol [9,20] is a high-level object-oriented language for distributed systems, fea-
turing active objects and asynchronous method calls. Concentrating on the core
features, we elide inheritance, dynamic class upgrades, etc. They would compli-
cate the interface description, but not alter the basic ideas presented here.

The Creol-language features active objects and its communication model is
based on exchanging messages asynchronously. This is in contrast with object-
oriented languages based on multi-threading, such as Java or C#, which use “syn-
chronous” message passing in which the calling thread inside one object blocks
and control is transferred to the callee. Exchanging messages asynchronously
decouples caller and callee, which makes that mode of communication advanta-
geous in a distributed setting. On the receiver side, i.e., at the side of the callee,
each object possesses an input “queue” in which incoming messages are waiting
to be served by the object. To avoid uncontrolled interference, each object acts
as a monitor, i.e., at most one method body is executing at each point in time.
The choice, which method call in the input queue is allowed to enter the object
next is non-deterministic.

After presenting the abstract syntax in the next section, we sketch the op-
erational semantics, concentrating on the external behavior, i.e., the message
exchange with the environment.

2.1 Syntax

The abstract syntax of the calculus, which is in the style of standard object
calculi [1], is given in Tab. 1. It distinguishes between user syntax and run-
time syntax, the latter underlined. The user syntax contains the phrases in
which programs are written; the run-time syntax contains syntactic material
additionally needed to express the behavior of the executing program in the
operational semantics.

The basic syntactic category of names n, which count among the values v,
represents references to classes, to objects, and to threads. To facilitate reading,
we allow ourselves to write o and its syntactic variants for names referring to
objects, c for classes, and n when being unspecific. Technically, the disambigua-
tion between the different roles of the names is done by the type system and
the abstract syntax of Tab. 1 uses the non-specific n for names. The unit value
is represented by () and x stands for variables, i.e., local variables and formal
parameters, but not instance variables.

A component C is a collection of classes, objects, and (named) threads, with
0 representing the empty component. The sub-entities of a component are com-
posed using the parallel-construct ‖. The entities executing in parallel are the
named threads n〈t〉, where t is the code being executed and n the name of the
thread. The name n of the thread is, at the same time, the future reference
under which the result value of t, if any, will be available. In this paper, when
describing the interface behavior, we restrict ourselves to the situation where
the component consists of one object only, plus arbitrary many threads/method

4

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F, L] | n〈t〉 component

O ::= F, M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n′ field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.

| v@l(~v) | v.l() | v.l := ς(s:n).λ().v
| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | ⊤ lock status

Table 1. Abstract syntax

bodies under execution. A class c[(O)] carries a name c and defines its methods
and fields in O. An object o[c, F, L] with identity o keeps a reference to the
class c it instantiates, stores the current value F of its fields, and maintains a
binary lock L indicating whether any code is currently active inside the object
(in which case the lock is taken) or not (in which case the lock is free). The sym-
bols ⊤ and ⊥ indicate that the lock is taken or free respectively. Of the three
kinds of entities at the component level—threads n〈t〉, classes n[(O)], and objects
o[c, F, L]—only the threads are active, executing entities, being the target of the
reduction rules. The objects, in contrast, store the state in their fields or instance
variables, whereas the classes are constant entities specifying the methods.

The named threads n〈t〉 are incarnations of method bodies “in execution”.
Each thread belongs to one specific object “inside” which it executes, i.e., whose
instance variables it has access to. Object locks are used to rule out unprotected
concurrent access to the object states: Though each object may have more than
one method body incarnation partially evaluated, at each time point at most one
of those bodies (the lock owner) can be active inside the object. Method calls in
Creol are issued asynchronously, i.e., the calling thread continues executing and
the code of the method being called is computed concurrently in a new thread
located in the callee object. The ν-operator is used for hiding and dynamic
scoping, as known from the π-calculus [23]. In a component C = ν(n:T).C′, the
scope of the name n (of type T) is restricted to C′ and unknown outside C. ν-
binders are introduced when dynamically creating new named entities, i.e., when
instantiating new objects or new threads. The scope of a ν-binder is dynamic,
when the name is communicated by message passing, the scope is enlarged.

Besides components, the grammar specifies the lower level syntactic con-
structs, in particular, methods, expressions, and (unnamed) threads, which are

basically sequences of expressions. A method ς(s:T).λ(~x:~T).t provides the method
body t abstracted over the ς-bound “self” parameter, here s, and the formal pa-
rameters ~x. For uniformity, fields are represented as methods without parameters

5

o[c, F, L] ‖ n〈let x:T = o.l() in t〉
τ
−→ o[c, F, L] ‖ n〈let x:T = F.l(o)() in t〉 FLookup

o[c, F, L] ‖ n〈let x:T = o.l := v in t〉
τ
−→ o[c, F.l := v, L] ‖ n〈let x:T = o in t〉 FUpdate

n〈let x : T = o@l(~v) in t〉
τ
−→

ν(n′:T)(n〈letx : T = n′ in t〉 ‖ n′〈let x : T = o.l(~v) in stop〉) CallOi

Table 2. Internal steps

(except self), with a body being either a value or yet undefined. Note that the
methods are stored in the classes but the fields are kept in the objects. In freshly
created objects, the lock is free, and all fields carry the undefined reference ⊥c,
where class name c is the (return) type of the field.

We use f for instance variables or fields and l = ς(s:T).λ().v, resp. l =
ς(s:T).λ().⊥c for field variable definition (l is the label of the field). Field access
is written as v.l() and field update as v′.l := ς(s:T).λ().v. By convention, we
abbreviate the latter constructs by l = v, l = ⊥c, v.l, and v′.l := v. Note that
the construct v.l() is used for field access only, but not for method invocation.
We also use v⊥ to denote either a value v or a symbol ⊥c for being undefined.
Direct access to fields across object boundaries is forbidden by convention, and
we do not allow method update. Instantiation of a new object from class c is
denoted by new c.

The expression o@l(~v) denotes an asynchronous method call, where the caller
creates a new thread/future reference and continues its execution. The further
expressions claim, get, suspend, grab, and release deal with synchronization. They
take care of releasing and acquiring the lock of an object appropriately. As they
work pretty standard and as lock-handling is not visible at the interface (and
thus does not influence the development), we omit describing them in detail here
and refer to the longer version [15].

2.2 Operational semantics

The operational semantics of a program being tested is given in two stages: steps
internal to the program, and those occurring at the interface. The two stages
correspond to the rules of Tab. 2 and 4. The internal rules deal with steps not
interacting with the object’s environment, such as sequential composition, con-
ditionals, field lookup and update, etc. The rules are standard and most are
omitted here. We also omit the definition of structural congruence here, spec-
ifying standard structural properties such as associativity, commutativity, and
basic facts about scoping. The elided rules can be found in the long version [15].
The communication labels, the basic building blocks of the interface interactions,
are given in Tab. 3. A component or object exchanges information with the en-
vironment via call - and return-labels, and the interactions is either incoming
or outgoing (marked ? resp. !). The basic label n〈call o.l(~v)〉 represents a call

6

of method l in object o. In that label, n is a name identifying the thread that
executes the method in the callee and is therefore the (future) reference under
which the result of the method call will be available (if ever) for the caller. The
incoming label n〈return(v)〉? hands the value from the corresponding call back
to the object, which renders it ready to be read. Its counterpart, the outgoing
return, passes the value to the environment. Besides that, labels can be prefixed
by bindings of the form ν(n:T) which express freshness of the transmitted name,
i.e., scope extrusion. As usual, the order of such bindings does not play a role

Given a basic label γ = ν(Ξ).γ′ where Ξ is a name context such that ν(Ξ)
abbreviates a sequence of single n:T bindings and where γ′ does not contain
any binders, we call γ′ the core of the label and refer to it by ⌊γ⌋. We define
the core analogously for receive and send labels. The free names fn(a) and the
bound names bn(a) of a label a are defined as usual, whereas names(a) refer to
all names of a.

The interface behavior is given by the 4 rules of Tab. 4, which correspond to
the 4 different kinds of labels. The external steps are given as transitions of the
form Ξ ⊢ C

a
−→ Ξ́ ⊢ Ć, where Ξ and Ξ́ represents the assumption/commitment

contexts of C before and after the step, respectively. In particular, the con-
text contains the identities of the objects and threads known so far, and the
corresponding typing information. This information is checked in incoming com-
munication steps, and updated when performing a step (input or output). These
two operations are captured by the following notation

Ξ ⊢ a : T and Ξ + a (1)

which constitute part of the rules’ premises in Tab. 4. Intuitively, they mean the
following: label a is well-formed and well-typed wrt. the information Ξ and refers
to an asynchronous call which results in a value of type T . If not interested in the
type, we write Ξ ⊢ a : ok , instead. The right-hand notation of (1) extends the
binding context Ξ by the bindings transmitted as part of label a appropriately.
For lack of space, we omit the formal definitions here. Intuitively, they make
sure that only well-typed communication can occur and that the context is kept
up-to date during reduction. Rule CallI deals with incoming calls, and basically
adds the new thread n (which at the same time represents the future reference
for the eventual result) in parallel with the rest of the program. In the configura-
tion after the reduction step, the meta-mathematical notation M.l(o)(~v) stands

for t[o/s][~v/~x], when the method suite [M] equals [. . . , l = ς(s:T).λ(~x:~T).t, . . .].
Note that the step is only possible, if the lock of the object is free (⊥); after the
step, the lock is taken (⊤). An outgoing call (cf. CallO) is issued by executing

γ ::= n〈call n.l(~v)〉 | n〈return(n)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! input and output labels

Table 3. Communication labels

7

a = ν(Ξ ′). n〈call o.l(~v)〉? Ξ ⊢ a : T Ξ́ = Ξ + a
CallI

Ξ ⊢ C ‖ o[c, F,⊥]
a
−→ Ξ́ ⊢ C ‖ o[c, F,⊤] ‖ n〈let x:T = M.l(o)(~v) in release(o); x〉

a = ν(Ξ ′). n〈call o.l(~v)〉! Ξ ′ = fn(⌊a⌋) ∩ Ξ1 Ξ́1 = Ξ1 \Ξ ′ ∆ ⊢ o Ξ́ = Ξ + a
CallO

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = o.l(~v) in t〉)
a
−→ Ξ́ ⊢ ν(Ξ́1).(C)

a = ν(Ξ ′). n〈return(v)〉? Ξ ⊢ a : ok Ξ́ = Ξ + a
RetI

Ξ ⊢ C
a
−→ Ξ́ ⊢ C ‖ n〈v〉

a = ν(Ξ ′). n〈return(v)〉! Ξ ′ = fn(⌊a⌋) ∩ Ξ1 Ξ́1 = Ξ1 \Ξ ′ Ξ́ = Ξ + a
RetO

Ξ ⊢ ν(Ξ1).(C ‖ n〈v〉)
a
−→ Ξ́ ⊢ ν(Ξ́1).C

Table 4. External steps

o.l(~v). Furthermore, the binding context Ξ is updated and, additionally, previ-
ously private names mentioned in Ξ1 might escape by scope extrusion, which is
calculated by the second and third premise. Remember, that an asynchronous
call, as given in CallOi from Tab. 2 does not immediately lead to an interface
interaction, but is an internal step, which only afterwards (asynchronously) leads
to the interface interaction as specified in CallO here. Rules RetI and RetO

deal with returning the value at the end of a method call.

We write Ξ1 ⊢ C1
t

=⇒ Ξ2 ⊢ C2 if Ξ1 ⊢ C reduces in a number of internal
and external steps to Ξ2 ⊢ C2, exhibiting t as the trace of the external steps.

3 Behavioral interface specification language

The behavior of an object (or a component consisting of a set of objects, for
that matter) at the interface is described by a sequence of labels as given by
Tab. 3. The black-box behavior of a component can therefore be described by
a set of traces, each consisting of a finite sequence of labels. To specify sets of
label traces, we employ a simple trace language with prefix, choice and recursion.
Table 5 contains its syntax. The syntax of the labels in the specification language,
naturally, quite resembles the labels of Tab. 3. Comparing Tabs. 3 and 5, there are

γ ::= x〈call x.l(~x)〉 | x〈return(x)〉 | ν(x:T).γ | (x:T).γ basic labels
a ::= γ? | γ! input and output labels
ϕ ::= X | ǫ | a.ϕ | ϕ + ϕ | rec X.ϕ specifications

Table 5. Specification language

8

two differences: first, instead of names or references n, the specification language
here uses variables. Second, the labels here allow a binding of the form (x:T).γ,
which has no analog in Tab. 3; the form ν(x:T).γ corresponds to ν(n:T).γ, of
course. Both binding constructs act as variable declarations, with the difference
that ν(x:T).γ not just introduces a variable (together with its type T), but in
addition asserts that the names represented by that variable must be fresh. The
binding (x:T).γ corresponds to a conventional variable declaration, introducing
the variable x which represents arbitrary values (of type T), either fresh or
already known.

In the specification, it is important to distinguish between input and output
interactions, as input messages are under the control of the environment, whereas
the outputs are to be provided by the object as specified. This splits the specifi-
cation into an assumption part under the responsibility of the environment, and
a commitment part, controlled by the component. Hence, the input interactions
are the ones being scheduled, whereas the outputs are not; they are used for test-
ing that the object behaves correctly. To specify non-deterministic behavior, the
language supports a choice operator, and we distinguish between choices taken
by the environment—external choice—and those the object is responsible for—
internal choice. Especially, we do not allow so-called mixed choice, i.e., choices
are either under control of the object itself and concerns outgoing communica-
tion, or under control of the environment and concerns incoming communication.
These restrictions are formalized next as part of the well-formedness conditions.

3.1 Well-formedness

The grammar given in Tab. 5 allows to specify sets of traces. Not all specifica-
tions, however, are meaningful, i.e., describe traces actually possible at the inter-
face of a component. We therefore formalize conditions to rule out such ill-formed
specification where the main restrictions are: Typing: Values handed over must
correspond to the expected types for that methods. Scoping: Variables must be
declared (together with their types) before their use. Communication patterns:
No value can be returned before a matching outgoing call has been seen at the
interface. Specifications adhering to these restrictions are called well-formed.

Well-formedness is given straightforwardly by structural induction by the
rules of Tab. 6. The rules formalize a judgment of the form

Ξ ⊢ ϕ : wf p (2)

which stipulates ϕ’s well-formedness under the assumption context Ξ. The meta-
variable p (for polarity) stands for either ?, !, or ?!, where ?! indicates the polarity
for an empty sequence or for a process variable, and ? and ! indicate well-formed
input and output specifications respectively. As before, Ξ contains bindings from
variables and class names to their types. The class names are considered as con-
stants and also, the context Ξ will remain unchanged during the well-formedness
derivation, since all classes are assumed to be known in advance and class names
cannot be communicated. This is in contrast to the variables, which represent

9

WF-Emtpy
Ξ ⊢ ǫ : wf ?!

Ξ ⊢ X
WF-Var

Ξ ⊢ X : wf ?!

a = ν(Ξ ′).n〈call o.l(~v)〉? Ξ ⊢ a : ok Ξ́ = Ξ + a Ξ́ ⊢ ϕ : wf p

WF-CallI
Ξ ⊢ a.ϕ : wf ?

a = ν(Ξ ′).n〈return(v)〉? Ξ ⊢ a : ok Ξ́ = Ξ + a Ξ́ ⊢ ϕ : wf p

WF-RetI
Ξ ⊢ a.ϕ : wf ?

Ξ ⊢ ϕ1 : wf p Ξ ⊢ ϕ2 : wf p

WF-Choice
Ξ ⊢ ϕ1 + ϕ2 : wf p

Ξ, X ⊢ ϕ : wf p

WF-Rec
Ξ ⊢ rec X.ϕ :wf p

Table 6. Well-formedness of trace specifications

object references and references to future variables (resp. thread names). Besides
that, the context also stores process variables X . The rules work as follows: The
empty trace is well-formed (cf. rule WF-Empty), and a process variable X
is well-formed, provided it had been declared before (written Ξ ⊢ X , cf. rule
WF-Var). We omit the rules WF-CallO and WF-RetO for outgoing calls,
resp. outgoing get-labels, as they are dual to WF-CallI and WF-RetI.

3.2 Observational blur

Creol objects communicate asynchronously and the order of messages might not
be preserved during communication. Thus, an outside observer or tester can not
see messages in the order in which they had been sent, and we need to relax the
specification up-to some appropriate notion of observational equivalence, denoted
by ≡obs and defined by the rules of Tab. 7. Rule Eq-Switch captures the asyn-
chronous nature of communication, in that the order of outgoing communication
does not play a role. The definition corresponds to the one given in [29] and also
of [18], in the context of multi-threading concurrency. Rule Eq-Plus allows to
distribute an output over a non-deterministic choice, provided that it’s a choice
itself over outputs, as required by the well-formed condition in the premise.
Rule Eq-Req finally expresses the standard unrolling of recursive definitions.
We omit further standard equivalence rules, such as defining commutativity and
associativity of + and neutrality of ǫ.

Next we state that well-formedness is preserved under the given equivalence.

Lemma 1. If Ξ ⊢ ϕ : wf p and ϕ ≡obs ϕ′, then Ξ ⊢ ϕ′ : wf p.

Given the equivalence relation, the meaning of a specification is given op-
erationally by the rather obvious reduction rules of Tab. 8. The next lemmas

10

Eq-Switch
ν(Ξ).γ1!.γ2!.ϕ ≡obs ν(Ξ).γ2!.γ1!.ϕ

⊢ (ϕ1 + ϕ2) : wf !

Eq-Plus
γ!.(ϕ1 + ϕ2) ≡obs γ!.ϕ1 + γ!.ϕ2

rec X.ϕ ≡obs ϕ[rec X.ϕ/X] Eq-Rec

Table 7. Observational equivalence

Ξ́ = Ξ + a
R-Pref

Ξ ⊢ a.ϕ
a
−→ Ξ́ ⊢ ϕ

Ξ ⊢ ϕ1

a
−→ Ξ́ ⊢ ϕ′

1

R-Plus1

Ξ ⊢ ϕ1 + ϕ2

a
−→ Ξ́ ⊢ ϕ′

1

ϕ ≡obs ϕ′ Ξ ⊢ ϕ′ a
−→ Ξ ⊢ ϕ′′

R-Equiv
Ξ ⊢ ϕ

a
−→ Ξ ⊢ ϕ′′

Table 8. ϕ rules

express simple properties of the well-formedness condition, connecting it to the
reduction relation.

Lemma 2. Assume Ξ ⊢ ϕ : wf .

1. Exactly one of the three conditions holds: Ξ ⊢ ϕ : wf ?!, Ξ ⊢ ϕ : wf ?, or
Ξ ⊢ ϕ : wf !

2. If ϕ
a
−→ with a an input, then Ξ ⊢ ϕ : wf ?. Dually for outputs.

3. If Ξ ⊢ ϕ : wf ?, then ϕ
a
−→ with a an input. Dually for outputs.

Lemma 3 (Subject reduction). Ξ ⊢ ϕ : wf and Ξ ⊢ ϕ
a
−→ Ξ́ ⊢ ϕ́, then

Ξ́ ⊢ ϕ́ : wf .

Lemma 4. Assume Ξ ⊢ C. If Ξ ⊢ C
t

=⇒, then Ξ ⊢ ϕt : wf (where ϕt is the
trace t interpreted to conform to Tab. 5, i.e., the names of t are replaced by
variables).

4 Scheduling and asynchronous testing of Creol objects

Next we put together the (external) behavior of an object (Sect. 2) and its
intended behavior specified as in Sect. 3. Table 9 defines the interaction of the
interface description with the component, basically by synchronous parallel com-
position. Both ϕ and the component must engage in corresponding steps, which,
for incoming communication schedules the order of interactions with the com-
ponent whereas for outgoing communication the interaction will take place only

11

Ξ ⊢ C
τ
−→ Ξ ⊢ Ć

Par-Int
Ξ ⊢ C ‖ ϕ −→ Ξ ⊢ Ć ‖ ϕ

Ξ ⊢ ϕ : wf ?

Par-Error
Ξ ⊢ ν(Ξ ′).(C ‖ n〈let x:T = o.l(~v) in t〉 ‖ ϕ) −→

Ξ1 ⊢ C
a
−→ Ξ́1 ⊢ Ć Ξ1 ⊢ ϕ

b
−→ Ξ́2 ⊢ ϕ́ ⊢ a .σ b

Par
Ξ1 ⊢ C ‖ ϕ −→ Ξ́1 ⊢ Ć ‖ ϕ́σ

Table 9. Parallel composition

if it matches an outgoing label in the specification and an error is raised if in-
put is required by the specification. The component can proceed on its own via
internal steps (cf. rule Par-Int). Rule Par requires that, in order to proceed,
the component and the specification must engage in the “same” step, where ϕ’s
step b is matched against the step a of the component. The matching is not
simple pattern matching as it needs to take into account in particular the two
different kinds of bindings in the specification language, ν(x:T) as the freshness
assertion and (x:T) representing standard variable declarations . Here ⊢ a .σ b
states that there exist a substitution σ such that the label a produced by the
component and the label b specified by the interface description can be matched.
We omit the details of the matching and refer to the longer version [15]. Rule
Par-Error reports an error if the specification requires an input as next step
and the object however could do an output. In the rule indicates the ocurrence
of an error. Note that the equivalence relation, according to rule Eq-Switch,
allows the reordering of outputs, but not inputs.

Example 1. To illustrate the testing we sketch the well-known example of a travel
agency. A client asks the travel agent for a cheap flight and the travel agent finds
the cheapest flight by asking the flight companies. To test an implementation of
the travel agent program we give a specification modeling the behavior of the
client and the flight companies and specifying the expected behavior of the travel
agent. The client sends two messages. First a start message and then the request.
The travel agent tries to get the price information from the flight companies and
then reports the result to the client.

ϕb = nc1〈call b.start()〉? . nc1〈return()〉! . nc2〈call b.getPrice(x)〉? .
n1〈call p1.l(x)〉! . n2〈call p2.l(x)〉! .
n1〈return(v1)〉? . n2〈return(v2)〉? . nc2〈return(minv)〉!

12

5 Implementing a specification-driven Creol interpreter

The operational semantics of the object-oriented language Creol [20] is formal-
ized in rewriting logic [22] and executable on the Maude rewriting engine [8].
To obtain a specification-driven interpreter for testing Creol objects, we have
formalized our behavioral interface specification language in rewriting logic, too.
In the combined implementation we synchronize communication between speci-
fication terms and objects. The specification generates the required input to the
object and tests whether the output behaviour of the object conforms to the
specification. The original Creol interpreter consists of 21 rewrite rules and the
extension adds 20 more.

We have argued that specified method calls should not be placed into the
callee’s input queue, but the call should be answered immediately. I.e., if an
incoming call is specified and the lock of the object is free, the corresponding
method code should start executing immediately. In the current version of the
interpreter the incoming messages are generated from the specification, which
amounts to the same as only allowing scheduled calls to interact with the object.

A Creol state configuration is a multiset of objects, classes, and messages.
The rewrite rules for state transitions are on the form rl Cfg => Cfg’, effec-
tively evolving the state of one object by executing a statement. Some statements
generate new messages. Finally, some rules are concerned with scheduling pro-
cesses and receiving messages. For the scheduling interpreter we introduce terms
Spec for specifications and add rules on the form (Spec || O) Cfg => (Spec’

|| O’) Cfg’ to test the object O with respect to Spec, where || represents the
synchronous parallel composition. Each rule evolves the state of a specification
and the state of an object in a synchronized manner: any interaction only takes
place when it matches a complementary label in the specification. For example,
the Par rule in Tab. 9 is implemented by several Maude rules, of which we
show Par-incoming-call and Par-remote-async-call, that handle the cases
of synchronized incoming and outgoing calls; we also show the Par-Error rule
in Tab. 10. The rules are conditional rewrite rules, in which conditions of the
form Var:=term bind term to the variable Var. Parts of the term that are not
changed, like attributes, are represented by “. . . ”.

The rule Par-incoming-call combines the R-Pref rule in Tab. 8 for the
specification with the CallI rule in Tab. 4 for interface behavior via the Par

rule. The rule only applies if the process, Pr of the object <O:C | ...> is idle

(i.e., the lock is free). The specification for O, <call(T,R,M,P)? . sp>(O), starts
with an incoming call label with thread name T, receiver R, method name M, and
parameters P, and could by R-Pref reduce to sp. The careful reader might
expect that the receiver mentioned in the specification should be the same as
the object identifier O. However since a specification can contain variables, the
receiver R might be identical to O but it may also be a variable, which will
be matched with O in the procLab function. The function procLab (process
label) generates concrete values from the variables in the specification label;
builds an invoc message, i.e. a term representing a method call; and returns the
message and a mapping of the variables to the values. The message and the

13

crl <call(T,R,M,P)?.sp>(O) || <O:C | ..., Pr:idle, ...> Cfg

=> <app(getS(Res),sp)>(O) || <O:C | ..., Pr:synch, ...> getM(Res) Cfg

if Res:=procLab(O , call(T,R,M,P)?) [label Par-incoming-call] .

crl <call(T,R,M,P)!.sp>(O) || <O:C | ...,Pr:{L | call(A;E;Q;EL);SL},...> Cfg

=> <app(Sub,sp)>(O) || <O:C | ...,Pr:{insert(A,Lab,L) | SL},...> Cfg

(invoc(O,Lab,Q,Args) from O to Rcv)

if Lab:=label(O,N) ∧ Rcv:=evalGuard(E,(S::L),noMsg) ∧
Args:=evalGuardList(EL,(S::L),noMsg) ∧
Sub:=matchCall(Lab,Rcv,Q,Args,call(T,R,M,P)) ∧ noMismatch(Sub)

[label Par-remote-async-call] .

crl <inSp>(O) || <O:C | ...,Pr:{L | call(A;E;Q;EL);SL},...> Cfg

=> <epsilon>(O) || <O:C | ...,Pr:{L | call(A;E;Q;EL);SL},...> Cfg

errorMsg("ERROR") if E=/="this" [label Par-Error] .

Table 10. Sample Maude rules

substitution are extracted by the functions getM and getS, respectively. The
message is placed into the configuration and the substitution is applied to sp

using the app function. Method binding and the rules for executing the bound
code are specified by equations in the Creol interpreter. Since equations will be
applied before any other rewrite rules this ensures that the execution of the code
resulting from the call starts before any other invoc message can interfere.

In the Par-remote-async-call rule the object is in a state where the next
step in the executing process is an outgoing call and the specification starts
with a call out. The matchCall function tries to match the concrete values de-
rived from the object’s state against the variables in the label. The condition
noMismatch(Sub) blocks the conditional rule if no match is possible, otherwise
the outgoing call takes place and the substitution Sub is applied to the remainder
of the specification. The last rule implements the Par-Error rule. The distinc-
tion between input and output specifications is enforced by different subsorts:
the variable inSp matches all specifications of incoming messages. When the
next step of the executing process is a call statement, then this leads to an error,
as expected.

Here we focus on the run-time behavior of specifications. Hence, we simply
assume well-formedness and don’t give the Maude formalization.

6 Conclusion

We have presented a formalization of the interface behavior of Creol together
with a behavioral interface specification language. We have formally described
how to use this specification language for black-box testing of asynchronously
communicating Creol components and we have presented our rewriting logic
implementation of the testing framework.

14

Related work Systematic testing is indispensable to assure quality of software
and systems (cf. [25,27,14,4,3], amongst others). [7] presents an approach to
integrate black-box and white-box testing for object-oriented programs. Equiv-
alence is based on the idea of observably equivalent terms and fundamental pairs
as test cases, but not in an asynchronous setting (and as in [2] [12] [11] [13]).
In the approach, pairs of (ground) terms are used for the test cases. Testing
for concurrent object-oriented programs based on synchronization sequences is
investigated in [6], using Petri nets and OBJ as foundation. Long in his thesis
[21] presents ConAn (“concurrency analyser”), which generates test drivers from
test scripts. The method allows to specify sequences of component method calls
and the order in which the calls should be issued. It can be seen as an extension
of the testing method for monitors from [5]. For scheduling the intended order,
an external clock is used, which is introduced for the purpose of testing, only. In
the context of C#, [17] presents model-based analysis and model-based testing,
where abstract models of object-oriented programs are tested. The approach,
however, does not target concurrent programs.

Even if not specifically targeting Creol, [19] pursues similar goals as this
paper, validating component interfaces specified in rewriting logic. In contrast
to here, the interface behavior is specified by first-order logic over traces, where
from a given predicate an assumption part and a guarantee part can be derived.
Our approach is more specific in that we schedule incoming calls to a component,
and test the output behavior. In [28], the authors target Creol as language and
investigate how different schedulings of object activity restrict the behavior of a
Creol object, thus leading to more specific test scenarios. The focus, however, is
on the intra-object scheduling, and the test purposes are given as assertions on
the internal state of the object. This is in contrast to the setting here, focusing
on the interface communication. The testing methodologies are likewise different.
We execute the behavioral trace specification directly in composition with the
implementation being tested. They use a scheduling strategy and a model for an
object implementation to generate test cases which then are used afterwards to
test for compliance with an implemented Creol object.

Future work We plan to extend the theory to components under test instead of
single objects. This leads to complex scheduling policies and complex specifica-
tions. Furthermore, there are several interesting features of the Creol language
which may be added, including first-class futures, promises, processor release
points, inheritance and dynamic class updates. For the specification language
we want to investigate how to extend it with assertion statements on labels,
which leads to scheduling policies sensitive to the values in the communication
labels. Natural further steps for the implementation is to extend it to include a
check for well-formedness according to Tab. 6, and also to modify the matching
algorithm to distinguish between fresh and already known names . The genera-
tion of Creol messages from specifications can also be made more sophisticated
to achieve better test coverage. It is also interesting to combine the approach we
describe here with model checking and abstraction. By using the built-in search

15

functionality of Maude, model checking of invariants can be done easily. We plan
to additionally use Maude’s LTL model checker with our testing framework.

Acknowledgement We thank Andreas Grüner for giving insight to the field
of testing of (concurrent) object-oriented languages, the members of the PMA
group for valuable feedback and the anonymous referees for insightful and con-
structive criticism.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer-Verlag, 1996.

2. G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based on formal specifi-
cations. IEEE Software Engineering Journal, 6(6):387–405, Nov. 1991.

3. A. Bertolino. Software testing research: Achievements, challenges, dreams. In
Proceedings of Future of Software Engineering at ICSE 2007, pages 85–103, May
2007.

4. R. V. Binder. Testing Object-Oriented Systems, Models, Patterns, and Tools.
Addison-Wesley, 2000.

5. P. Brinch Hansen. Reproducible testing of monitors. Software – Practice and
Experience, 8(223–245), 1978.

6. H. Y. Chen, Y. X. Sun, and T. H. Tse. A strategy for selecting synchronization
sequences to test concurrent object-oriented software. In Proceedings of the 27th
International Computer Software and Application Conference (COMPSAC 2003),
Los Angeles, California. IEEE Computer Science Press, 2003.

7. H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In black and white: An
integrated approach to class-level testing of object-oriented program. ACM Trans-
actions of Software Engineering and Methodology, 7(3):250–295, 1998.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In Nieuwenhuis [26], pages 76–87.

9. The Creol language. http://heim.ifi.uio.no/creol , 2007.
10. W.-P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,

and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, 2001.

11. R.-K. Doong and P. G. Frankl. Case studies on testing object-oriented programs.
In Proceedings of the 4th Annual Symposium on Software Testing, Analysis, and
Verification (TAF 4), pages 165–177, 1991.

12. R.-K. Doong and P. G. Frankl. The ASTOOT approach to testing object-oriented
programs. ACM Transactions on Software Engineering and Methodology, 3(2):101–
130, 1994.

13. P. G. Frankl and R.-K. Doong. Tools for testing object-oriented programs. In
Proceedings of the 8th Northwest Conference on Software Quality, pages 309–324,
1990.

14. M.-C. Gaudel. Testing can be formal, too. In Mosses et al. [24], pages 82–96.
15. I. Grabe, M. Kyas, M. Steffen, and A. B. Torjusen. Executable interface specifica-

tions for testing asynchronous Creol components. Technical Report 375, University
of Oslo, Dept. of Computer Science, July 2008. A shorter version has been sub-
mitted for conference proceedings.

http://heim.ifi.uio.no/creol

16

16. IEEE. Seventeenth Annual Symposium on Logic in Computer Science (LICS)
(Copenhagen, Denmark). Computer Society Press, July 2002.

17. J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-Based Software Testing
and Analysis with C♯. Cambridge University Press, 2008.

18. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In LICS’02 [16], pages 101–112.

19. E. B. Johnsen, O. Owe, and A. B. Torjusen. Validating behavioral component
interfaces in rewriting logic. Fundamenta Informaticae, 82(4):341–359, 2008.

20. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66,
Nov. 2006.

21. B. Long. Testing Concurrent Java Components. PhD thesis, University of Queens-
land, July 2005.

22. J. Meseguer. Conditional rewriting as a unified model of concurrency. Theoretical
Computer Science, pages 73–155, 1992.

23. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Information and Computation, 100:1–77, Sept. 1992.

24. P. D. Mosses, M. Nielsen, and M. I. Schwarzbach, editors. TAPSOFT ’95: The-
ory and Practice of Software Development, 6th International Joint Conference
CAAP/FASE, volume 915 of LNCS. Springer, 1995.

25. G. J. Myers. The Art of Software-Testing. John Wiley & Sons, New York, 1979.
26. R. Nieuwenhuis, editor. Proceedings of the 14th International Conference on

Rewriting Techniques and Applications (RTA 2003), volume 2706 of LNCS.
Springer, June 2003.

27. R. Patton. Software Testing. SAMS, second edition, July 2005.
28. R. Schlatte, B. Aichernig, F. de Boer, A. Griesmayer, and E. B. Johnsen. Test-

ing concurrent objects with application-specific schedulers. In J. Fitzgerald and
A. Haxthausen, editors, International Colloquium on Theoretical Aspects of Com-
puting (ICTAC), volume 5160 of LNCS. Springer, 2008.

29. M. Steffen. Object-Connectivity and Observability for Class-Based, Object-Oriented
Languages. Habilitation thesis, Technische Faktultät der Christian-Albrechts-
Universität zu Kiel, July 2006.

	Executable interface specifications for testing asynchronous Creol components
	Immo Grabe, Marcel Kyas, Martin Steffen, and Arild B. Torjusen

