
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copyARTICLE IN PRESS

The Journal of Logic and Algebraic Programming 78 (2008) 491–518

Contents lists available at ScienceDirect

The Journal of Logic and Algebraic Programming

j ourna l homepage: www.e lsev ie r .com/ loca te / j lap

Behavioral interface description of an object-oriented language
with futures and promises�

Erika Ábraháma, Immo Grabe c,b, Andreas Grüner d, Martin Steffen e,*

a RWTH Aachen, Germany
b Christian-Albrechts-University Kiel, Germany
c CWI Amsterdam, The Netherlands
d LIACS Leiden, The Netherlands
e University of Oslo, P.O. Box 1080 Blindern, Oslo Norway

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 24 February 2009

Keywords:

Concurrent object-oriented languages

Creol

Formal semantics

Concurrency

Futures and promises

Open systems

Observable behavior

This paper formalizes the observable interface behavior of a concurrent, object-oriented

language with futures and promises. The calculus captures the core of Creol, a language,

featuring in particular asynchronous method calls and, since recently, first-class futures.

The focus of the paper are open systems and we formally characterize their behavior

in terms of interactions at the interface between the program and its environment. The

behavior is given by transitions between typing judgments, where the absent environment

is represented abstractly by an assumption context. A particular challenge is the safe treat-

ment of promises: the erroneous situation that a promise is fulfilled twice, i.e., bound to

code twice, is prevented by a resource aware type system, enforcing linear use of thewrite-

permission to a promise. We show subject reduction and the soundness of the abstract

interface description.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

How to marry concurrency and object-orientation has been a long-standing issue; (see e.g. [19]) for an early discussion

of different design choices. The thread-based model of concurrency, prominently represented by languages like Java and

C�, has been recently criticized, especially in the context of component-based software development. As the word indicates,

componentsare (software)artifacts intended for composition, i.e., opensystems, interactingwithasurroundingenvironment.

To compare different concurrency models for open systems on a solid mathematical basis, a semantic description of the

interface behavior is needed, and this is what we provide in this work. We present an open semantics for the core of the Creol

language [37,60], an object-oriented, concurrent language, featuring in particular asynchronous method calls and, since

recently [39], first-class futures. An open semantics means, it describes the interface behavior of a program or a part of a

program, interacting with its environment.

Futures and promises

A future, very generally, represents a result yet to be computed. It acts as a proxy for, or reference to, the delayed result

from some piece of code (e.g., a method or a function body in an object-oriented, resp. a functional setting). As the consumer

� Part of this work has supported by the NWO/DFG project Mobi-J (RO 1122/9-4), the DAAD-NFR exchange project Avabi, and by the EU-project IST-33826

Credo: Modeling and analysis of evolutionary structures for distributed services. For more information, see http://credo.cwi.nl.
*
Corresponding author.

E-mail address:msteffen@ifi.uio.no (M. Steffen).

1567-8326/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2009.01.001

Author's personal copy
ARTICLE IN PRESS

492 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

of the result can proceed its own execution until it actually needs the result, futures provide a natural, lightweight, and (in

a functional setting) transparent mechanism to introduce parallelism into a language. Since their introduction in Multilisp

[52,21], futures have been used in various languages like Alice ML [64,17,79], E [41], the ASP-calculus [28], Creol, and others.

A promise is a generalization1 insofar as the reference to the result on the one hand, and the code to calculate the result on

the other, are not created at the same time; instead, a promise can be created and only later, after possibly passing it around,

be bound to the code (the promise is fulfilled).

The notion of futures goes back to functional programming languages. In that setting, futures are annotations to side-

effect-free expressions,2 that can be computed in parallel to the rest of the program. If some program code needs the result

of a future, its execution blocks until the future’s evaluation is completed and the result value is automatically fetched back

(implicit futures). An important property of future-based functional programs is, that future annotations do not change

the functionality: the observable behavior of an annotated program equals the observable behavior of its non-annotated

counterpart. This property is no longer assured in the object-oriented setting.

Interface behavior

An open program, in this setting, interacts with its environment via message exchange. Besides message passing, of

course, different communication and synchronization mechanisms exists (shared variable concurrency, multi-cast, black-

board communication, publish-and-subscribe and many more). We concentrate here, however, on basic message passing

using asynchronousmethod calls. In that setting, the interface behavior of an open program C can be characterized by the set

of all those message sequences (traces) t, for which there exists an environment E such that C and E exchange the messages

recorded in t. Thereby we abstract away from any concrete environment, but consider only environments that are compliant

to the language restrictions (syntax, type system, etc.). Consequently, interactions are not arbitrary traces C
t�⇒; instead we

consider behaviors C ‖ E
t�⇒̄
t

Ć ‖ É where E is a realizable environment and trace t̄ is complementary to t, i.e., each input is

replaced by a matching output and vice versa. The notation C ‖ E indicates that the component C runs in parallel with its

environment or observer E. To account for the abstract environment (“there exists an E s.t. . . . ”), the open semantics is given

in an assumption–commitment way:

� � C : �
t�⇒ �́ � Ć : �́,

where � (as an abstract version of E) contains the assumptions about the environment, and dually � the commitments of

the component. Abstracting away also from C gives a language characterization by the set of all possible traces between any

component and any environment.

Such a behavioral interface description is relevant and useful for the following reasons. (1) The set of possible traces given

this way is more restricted (and realistic) than the one obtained when ignoring the environments. When reasoning about

the trace-based behavior of a component, e.g., in compositional verification, with a more precise characterization one can

carry out stronger arguments. (2)When using the trace description for black-box testing, one can describe test cases in terms

of the interface traces and then synthesize appropriate test drivers from it. Clearly, it makes no sense to specify impossible

interface behavior, as in this case one cannot generate a corresponding tester. (3) A representation-independent behavior of

open programs paves the way for a compositional semantics, a two-level semantics for the nested composition of program

components. It allows furthermore optimization of components: only if two components show the same external, observable

behavior, one can replace one for the other without changing the interaction with any environment. (4) The formulation

gives insight into the semantic nature of the language, here, the externally observable consequences of futures and promises.

This helps to compare alternatives, e.g., the Creol concurrency model with Java-like threading.

Results

The paper formalizes the abstract interface behavior for concurrent object-oriented languageswith futures and promises.

The contributions are the following.

Concurrent object calculus with futures and promises. We formalize a class-based concurrent language featuring futures and

promises. The formalization is given as a typed, imperative object calculus in the style of [1] resp. one of its concurrent

extensions. The operational semantics for components distinguishes unobservable component-internal steps from external

steps which represent observable component-environment interactions. We present the semantics in a way that facilitates

comparison with Java’s multi-threading concurrency model, i.e., the operational semantics is formulated so that the multi-

threaded concurrency as (for instance) in Java and the one here based on futures are represented similarly.

1 The terminology concerning futures, promises, and related constructs is not too consistent in the literature. Sometimes, the two words are used as

synonyms. Interested in the observable differences between futures and promises, we distinguish the concepts and thus follow the terminology as used

e.g., in λfut , Alice ML, and the definition given in Wikipedia.
2 Though in e.g.Multilisp also expressionswith side-effects can be computed in parallel, but still under the restriction that the observable behavior equals

that of the sequential counterpart.

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 493

Linear type system for promises. The calculus extends the semantic basis of Creol as given for example in [39] with promises.

Promises can refer to a computation with code bound to it later, where the binding is done at most once. To guarantee such

a write-once policy when passing around promises, we refine the type system introducing two type constructors

[T]+− and [T]+.

The first one represents a reference to a promise that can still be written (and read) with result type T , the second one where

only a read-permission is available. The write permission constitutes a resource which is consumed when the promise is

fulfilled. The resource-aware type system is therefore formulated in a linear manner wrt. the write permissions. Linear type

systems [85] or linear logics [48] are, roughly speaking, instances of so-called sub-structural type systems resp. logics. In

constrast to ordinary such derivation systems, where a hypothesis can be used as many times as needed for carrying out

a proof, derivation systems built upon linear use of assumptions work differently: using an assumption in a proof step

“consumes” it. That feature allows in a natural way to reason about “resources”: In our setting, the write-permission is such

a resource, and using the corresponding type to derive well-typedness of one part of the program consumes that right such

that it is not longer available for type-checking the rest of the program, assuring the intended write-once discipline. The

type system resembles in intention the one in [72] for a functional calculus with references. Our work is more general, in

that it tackles the problem in an object-oriented setting (which, however, conceptually does not pose much complications),

and, more importantly, in that we do not consider closed systems, but open components. Also this aspect of openness is not

dealt with in [39]. Additionally, the type system presented here is simpler than in [72], as it avoids the representation of the

promise-concept by so-called handled futures.

Soundness of the abstractions. We show soundness of the abstractions, which includes

• subject reduction, i.e., preservation of well-typedness under reduction. Subject reduction is not just proven for a closed

system (as usual), but for an open system interacting with its environment. Subject reduction implies furthermore:

• absence of run-time errors like “message-not-understood”, also for open systems.

• soundness of the interface behavior characterization, i.e., all possible interaction behavior is included in the abstract

interface behavior description.

• for promises: absence of write-errors, i.e. the attempt to fulfill a promise twice.

The paper is organized as follows. Section 2 defines the syntax, the type system, and the operational semantics, split into

an internal one, and one for the interface behaviour of open systems. Section 3 describes the interface behavior. Section 4

concludes with related and future work. For more details see [2]. There is a notation index at the end of the paper.

2. Calculus

This section presents the calculus, based on a version of the Creol-language with first-class futures [39] and extended

with promises. It is a concurrent variant of an imperative, object-calculus in the style of the calculi from [1]. Our calculus

covers first-class futures, which can be seen as a generalization of asynchronous method calls and promises.

We startwith the abstract syntax in Section 2.1. After discussing the type system in Section 2.2,we present the operational

semantics in Section 2.3.

2.1. Syntax

The abstract syntax is given in Table 1. It distinguishes between user syntax and run-time syntax (the latter underlined).

The user syntax contains the phrases in which programs are written; the run-time syntax contains syntactic constituents

additionally needed to express the behavior of the executing program in the operational semantics. The latter are not found

in a program written by the user, but generated at run-time by the rules of the operational semantics.

The basic syntactic category of names n, which count among the values v, represents references to classes, to objects,

and to futures/promises. To facilitate reading, we allow ourselves to write o and its syntactic variants for names referring to

Table 1

Abstract syntax.

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F , L] | n〈t〉 | n〈•〉 component

O ::= F ,M object

M ::= l = m, . . . , l = m method suite

F ::= l = f , . . . , l = f fields

m ::= ς(n:T).λ(x:T , . . . , x:T).t method

f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n′ field

t ::= v | stop | let x:T = e in t thread

e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.

| promise T | bindn.l(
v) : T ↪→ n | v.l() | v.l := ς(s:n).λ().v

| new n | claim@(n,n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values

L ::= ⊥ | � lock status

Author's personal copy
ARTICLE IN PRESS

494 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

objects, c for classes, and nwhen being unspecific. Technically, the disambiguation between the different roles of the names

is done by the type system and the abstract syntax of Table 1 uses the non-specific n for names. The unit value is represented

by () and x stands for variables, i.e., local variables and formal parameters, but not instance variables.

A component C is a collection of classes, objects, and (named) threads, with 0 representing the empty component. The

sub-entities of a component are composed using the parallel-construct ‖. The entities executing in parallel are the named

threads n〈t〉, where t is the code being executed and n the name of the thread. In the given setting, threads are always

promises (with the exception of initial threads, see Section 2.3), with their name being the reference under which the result

value of t, if any,3 will be available. A class c[(O)] carries a name c and defines its methods and fields in O. An object o[c, F , L]
with identity o keeps a reference to the class c it instantiates, stores the current value F of its fields, and maintains a binary

lock L indicating whether any code is currently active inside the object (in which case the lock is taken) or not (in which

case the lock is free). The symbols �, resp., ⊥, indicate that the lock is taken, resp., free. From the three kinds of entities at

component level – threads n〈t〉, classes c[(O)], and objects o[c, F , L] – only the threads are active, executing entities, being the

target of the reduction rules. The objects, in contrast, store the state in their fields or instance variables, whereas the classes

are constant entities specifying the methods.

The named threads n〈t〉 are incarnations of method bodies “in execution”. Incarnations insofar, as the formal parameters

have been replaced by actual ones, especially the method’s self-parameter has been replaced by the identity of the target

object of themethod call. The term t is basically a sequence of expressions,where the let-construct is used for sequencing and

for local declarations.4 During execution, n〈t〉 contains in t the currently running code of a method body. When evaluated,

the thread is of the form n〈v〉 and the value can be accessed via n, the future reference, or future for short.

Each thread belongs to one specific object “inside” which it executes, i.e., whose instance variables it has access to. Object

locks are used to rule out unprotected concurrent access to the object states: though each object may have more than one

method body incarnation partially evaluated, at each time point at most one of those bodies (the lock owner) can be active

inside the object. In the terminology of Java, all methods are implicitly considered “synchronized”. The crucial difference

between Java’s multi-threading concurrency model and Creol’s active objects model used here is the way method calls are

issued at the caller site. In Java and similar languages,method calls are synchronous in the sense that the calling activity blocks

towait for the returnof the result and thus the control is transferred to the callee.Here,methodcalls are issuedasynchronously,

i.e., the calling thread continues executing and the code of themethod being called is computed concurrently in a new thread

located in the callee object. In that way, a method call never transfers control from one object, the caller, to another one, the

callee. In other words, no thread ever crosses the boundaries of an object, which means, the boundaries of an object are at

the same time boundaries of the threads and thus, the objects are at the same time units of concurrency. Thus, the objects

are harnessing the activities and can be considered as bearers of the activities. This is typical for object-oriented languages

based on active objects.

Thefinal construct at the component level is the ν-operator for hiding anddynamic scoping, as known from theπ-calculus.

In a component C = ν(n:T).C ′, the scope of the name n (of type T) is restricted to C ′ and unknown outside C. ν-binders are

introduced when dynamically creating new named entities, i.e., when instantiating new objects or new promises. The scope

is dynamic, i.e., when the name is communicated by message passing, it is enlarged.

Besides components, the grammar specifies the lower level syntactic constructs, in particular, methods, expressions,

and (unnamed) threads, which are basically sequences of expressions. A method ς(s:T).λ(
x:
T).t provides the method body

t abstracted over the ς-bound “self” parameter s and the formal parameters
x. For uniformity, fields are represented as

methods without parameters (with the exception of the standard self-parameter). The “body” of a field is either a value or

yet undefined. Note that the methods are stored in the classes but the fields are kept in the objects, of course. In freshly

created objects, the lock is free, and all fields carry the undefined reference ⊥c , where class name c is the (return) type of the

field.

We use f for instance variables or fields and l = ς(s:T).λ().v, resp. l = ς(s:T).λ().⊥c for field variable definition. Field access

is written as v.l() and field update as v′.l := ς(s:T).λ().v. By convention, we abbreviate the latter constructs by l = v, l = ⊥c ,

v.l, and v′.l := v. Note that the construct v.l() is used for field access only, but not for method invocation. We will also use

v⊥ to denote either a value v or a symbol ⊥c for being undefined. Note that the syntax does not allow to set a field back to

undefined. Direct access (read or write) to fields across object boundaries is forbidden by convention, and we do not allow

method update. Instantiation of a new object from class c is denoted by new c.

Expressions especially include syntax to deal with promises and futures. The expression promise T creates a new promise,

i.e., a referenceorname for a result yet to come.At thepoint of creation, only thenameexists, butno codehasbeendetermined

and attached to the reference to calculate the result. Binding code to the promise is done by bind o.l(
v) : T ↪→ n, stipulating

that the eventual result is calculated using themethod l of object owith actual parameters
v. Executing the binding operation
is also known as fulfilling the promise. Some languages do not allow to independently create a name for the eventual result,

i.e., creation and binding are done inseparately by one single command. In that situation, one does not speak of promises,

but (just) of futures, even if in the literature, sometimes no distinction is drawn between futures and promises. In a certain

way, futures and promises can be seen as two different roles of a reference n: the promise-role means, a client can write to

the name using the bind-operation, and the future-role represents the possibility to read back an eventual result using the

3 There will be no result value in case of non-terminating methods.
4 t1; t2 (sequential composition) abbreviates let x:T = t1 in t2, where x does not occur free in t2.

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 495

Fig. 1. Claiming a future.

reference. In this way, we will use both the term future and promise when referring to the same reference, depending on the

role it is playing when used.

The expression bind o.l(
v) : T ↪→ n binds amethod body to the promise n. Thus, there is a close connection to asynchronous

method calls, central to Creol’s concurrencymodel. Indeed, in comparisonwith [39], which introduces the concept of futures

(but not promises) into Creol, asynchronous calls are syntactic sugar for creating a new promise and immediately binding

o.l(
v) to it. This behaves as an asynchronousmethod call, as the one creating the promise and executing the bind can continue

without being blocked waiting for the result.

The further expressions claim, get, suspend, grab, and release deal with communication and synchronization. As men-

tioned, objects come equipped with binary locks, responsible for assuring mutual exclusion. The two basic, complementary

operations on a lock are grab and release. The first allows an activity to acquire access in case the lock is free (⊥), thereby

setting it to �, and release(o) conversely relinquishes the lock of the object o, giving other threads the chance to be executed

in its stead, when succeeding to grab the lock via grab(o). The user is not allowed to directly manipulate the object locks.

Thus, both expressions belong to the run-time syntax, underlined in Table 1, and are only generated and handled by the

operational semantics as auxiliary expressions at run-time. Instead of using directly grab and release, the lock-handling

is done automatically when executing a method body: before starting to execute, the lock has to be acquired and upon

termination, the lock is released again. Besides that, lock-handling is involved also when futures are claimed, i.e., when a

client code executing in an object, say o, intends to read the result of a future. The expression claim@(n, o) is the attempt to

obtain the result of a method call from the future n while in possession of the lock of object o. There are two possibilities

in that situation: either the value of the future has already been determined, i.e., the method calculating the result has

terminated, in which case the client just obtains the value without loosing its own lock. In the alternative case, where the

value is not yet determined, the client trying to read the value gives up its lock via release and continues executing only

after the requested value has been determined (using get to read it) and after it has re-acquired the lock. Unlike claim, the

get-operation is not part of the user-syntax. Both expressions are used to read back the value from a future and the difference

in behavior is that get unconditionally attempts to get the value, i.e., blocks until the value has arrived,whereas claim gives up

the lock temporarily, if the value has not yet arrived, as explained. This behavior is sketched in Fig. 1. Note the order in which

get and grab are executed after releasing the lock: the value is read in via get before the lock has actually been re-acquired!

That this order is acceptable rests on the fact that a future, once evaluated, does not change the value later and reading the

value in by itself has no side-effect. Reversing the order – first re-acquiring the lock and afterwards checking for availability

of the future’s value – would result in equivalent behavior but amount to busy waiting. Finally, executing suspend(o) causes

the activity to relinquish and re-grab the lock of the object o. We assume by convention, that when appearing in methods of

classes, the claim- and the suspend-command only refer to the self-parameter self , i.e., they are written claim@(n, self) and

suspend(self).

Before continuing with the type system, let us explain how and why we exclude a specific potential deadlock situation

in the semantics of the claim statement (though the language does not generally exclude the presence of deadlocks, i.e., it is

possible to write a deadlocking program in the language). Remember that if a thread is about to execute a claim statement in

an object, it always owns the object’s lock. If the claimed result is not yet available, then the claiming thread blocks. During

blocking, if we would not release the lock previously, no other thread could execute in the object, since it would require

the object’s lock. Consequently, if the computation of the claimed result needs execution in the object, the threads would

deadlock. Such deadlocks could not be easily excluded syntactically, since release and grab are only auxiliary syntax, i.e.,

they cannot be used to write programs, and we do not support checking if a thread already finished its computation. Thus

we release the lock before blocking, i.e., waiting for the claimed result, and re-grab the lock after the thread got the result.

2.2. Type system

The language is typed and the available types are given in the following grammar:

T ::= B | Unit | [T]+− | [T]+ | [l:U, . . . , l:U] | [(l:U, . . . , l:U)] | n
U ::= T × · · · × T → T

Author's personal copy
ARTICLE IN PRESS

496 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

Table 2

Typing (component level).

T-Empty
� � 0 : ()

�1,�2 � C1 : �1 �2,�1 � C2 : �2
T-Par

�1 ⊕ �2 � C1 ‖ C2 : �1,�2

� � C : �,n:T
T-Nu

� � ν(n:T).C : �

; �, c:T � [(O)] : T
T-NClass

� � c[(O)] : (c:T)

; � � c : [(TF , TM)] ; �, o:c � [F] : [TF]
T-NObj

� � o[c, F , L] : (o:c)

; �,n:[T]+ � t : T
T-NThread

� � n〈t〉 : (n:[T]+)

T-NThread′
� � n〈•〉 : (n:[T]+−)

�′ ≤ � � ≤ �′ � � C : �
T-Sub

�′ � C : �′

Besides base types B (left unspecified; typical examples are booleans, integers, etc.), Unit is the type of the unit value ().

Types [T]+− and [T]+ represent the reference to a future which will return a value of type T , in case it eventually terminates.

[T]+− indicates that the promise has not yet been fulfilled, i.e., it represents thewrite-permission to a promise, which implies

read-permission at the same time. [T]+ represents read-only permission to a future. The read/write capability ismore specific

than read-only, which is expressed by the (rather trivial) subtyping relation generated by [T]+− ≤ [T]+, accompanied by the

usual subsumption rule. Furthermore, [_]+ acts monotonely, and [_]+− invariantly wrt. subtyping. When not interested in

the access permission, we just write [T].
The name of a class serves as the type for its instances. We need as auxiliary type constructions (i.e., not as part of the

user syntax, but to formulate the type system) the type or interface of unnamed objects, written [l1:U1, . . . , lk:Uk] and the

interface type for classes, written [(l1:U1, . . . , lk:Uk)]. We allow ourselves to write
T for T1 × · · · × Tk etc. where we assume

that the number of arguments match in the rules, and write Unit → T for T1 × · · · × Tk → T when k = 0.

We are interested in the behavior of well-typed programs, only, and the section presents the type system to characterize

those. As the operational rules later, the derivation rules for typing are grouped into two sets: one for typing on the level

of components, i.e., global configurations, and secondly one for their syntactic sub-constituents (cf. also the two different

levels in the abstract syntax of Table 1).

Table 2 defines the typing on the level of global configurations, i.e., for “sets” of objects, classes, and named threads. On

this level, the typing judgments are of the form

� � C : �, (1)

where� and� are name contexts, i.e., finitemappings fromnames (of classes, objects, and threads) to types. In the judgment,

�plays the role of the typing assumptions about the environment, and� of the commitments of the component, i.e., the names

offered to the environment. Sometimes, the words required and provided interface are used to describe their dual roles. �

must contain at least all external names referenced by C and dually � mentions the names offered by C. Both contexts

constitute the static interface information. A pair � and � of assumption and commitment context with disjoint domains is

called well-formed.

The empty configuration 0 is well-typed in any context and exports no names (cf. rule T-Empty). Two configurations in

parallel can refermutually to each other’s commitments and together offer the (disjoint) union of their names (cf. rule T-Par).

Itwill bean invariantof theoperational semantics that the identities ofparallel entities aredisjointwrt. thementionednames.

Therefore, �1 and �2 in the rule for parallel composition are merged disjointly, indicated by writing �1,�2 (analogously for

the assumption contexts). Also the treatment of the assumption context requires care wrt. the write permissions. In general,

C1 and C2 can rely on the same assumptions that also C1 ‖ C2 in the conclusion uses, as it represents the environment common

to C1 ‖ C2. This, however, does not apply to the write-permissions: if C1 ‖ C2 do have write permission on a promise n, which

resides in the environment of C1 ‖ C2, this is represented as n:[T]+− in the assumptions of that parallel composition. Due to

the linear nature of thewrite permission, however, the binding n:[T]+− can occur only in the assumptions of either C1 or of C2
in the two premises of T-Par. In other words, the assumption context of C1 ‖ C2 must be split as far as the write permissions

to promises are concerned. To capture this intuition, we define:

Definition 2.1. Let the symmetric operation ⊕ on well-formed name contexts be defined as follows:

0 ⊕ � = �

n:[T]+,�1 ⊕ n:[T]+−,�2 = n:[T]+−, (�1 ⊕ �2)

n:T ,�1 ⊕ n:T ,�2 = n:T , (�1 ⊕ �2) T �= [T ′]+− for some T ′
�1 ⊕ �2 = undefined else

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 497

We omit symmetric rules (e.g. for � ⊕ 0). The contexts are considered as unordered, i.e., n:T ,� does not mean, the binding

n:T occurs leftmost in a “list”.

In combination with the rest of the rules (in particular, rule T-Bind in Table 4), this assures that a promise cannot be

fulfilled by the component and the environment at the same time.

The ν-binder hides the bound object or the name of the future inside the component (cf. rule T-Nu). In the T-Nu-rule, we

assume that the bound name n is new to � and �. Let-bound variables are stack allocated and checked in a stack-organized

variable context
 (see Tables 3 and 4). Object names created by new and future/promise names created by promise are heap

allocated and thus checked in a “parallel” context (cf. again the assumption-commitment rule T-Par). The rules for named

classes introduce the name of the class and its type into the commitment (cf. T-NClass). The code [(O)] of the class c[(O)] is
checked in an assumption context where the name of the class is available. Note also that the premise of T-NClass (like those

of T-NObj and T-NThread) is not covered by the rules for type checking at the component level, but by the rules for the lower

level entities (in this particular case, by rule T-Obj from Table 3). The judgments there use as assumption not just a name

context, but additionally a stack-organized, variable context
 in order to handle the let-bound variables. So in general, the

assumption context at that level is of the form
; �. The premise of T-NClass starts, however, with
 being empty, i.e., with

no assumptions about the type of local variables. This is written in the premise as ; �, c:T � [(O)] : T; similar for the premises

of T-NObj and T-NThread. An instantiated object will be available in the exported context � by rule T-NObj.

As we will see in the following section, promises, that are not yet fulfilled, are present in the configuration as thread

entities n〈•〉; their type [T]+− can be derived by rule T-NThread′. Fulfilled promises n〈t〉 are treated by rule T-NThread,

where the type [T]+ of the future reference n is matched against the result type T of thread t. As n is already fulfilled, its type

exports read-permission, only. As t may refer to n, it is checked in the premise by � extended by the appropriate binding

n:[T]+. The last rule is a rule of subsumption, expressing a simple form of subtyping: we allow that an object respectively a

class contains at least themembers which are required by the interface. This corresponds towidth subtyping. Note, however,

that each named object has exactly one type, namely its class.

Definition 2.2 (Subtyping). The relation ≤ on types is defined as identity for all types except for [T]+− ≤ [T]+ (mentioned

above) and object interfaces, where we have:

[(l1:U1, . . . , lk:Uk , lk+1:Uk+1, . . .)] ≤ [(l1:U1, . . . lk:Uk)].

For well-formed name contexts �1 and �2 , we define in abuse of notation �1 ≤ �2, if �1 and �2 have the same domain and

additionally �1(n) ≤ �2(n) for all names n.

The definition is applied, of course, also to name contexts �, used for the commitments. The relations ≤ are obviously

reflexive, transitive, and antisymmetric.

Next we formalize the typing for objects and threads and their syntactic sub-constituents. Again, the treatment of the

write-permissions requires care: The capability towrite to a promise is consumed by the bind-operation as it should be done

only once. This is captured by a linear type systemwhere the execution of a thread or an expressionmay change the involved

types. The judgments are of the form

; � � e : T ::
́, �́, (2)

where the change from
 and � to
́ and �́ reflects the potential consumption of write permissions when executing e.

The consumption is only potential, as the type system statically overapproximates the run-time behavior, of course. The

typing is given in Tables 3 and 4. For brevity, we write �;
 � e : T for �;
 � e : T ::
́, �́, when
́ =
 and �́ = �. Besides

assumptions about the provided names of the environment kept in �, the typing is done relative to assumptions about

occurring free variables. They are kept separately in a variable context
, a finitemapping from variables to types. Apart from

the technicalities, treating thewrite capabilities in a linear fashion is straightforward: onemust assure that the corresponding

capability is available atmost once in the programand is not duplicatedwhenpassed around. A promise is no longer available

for writing when bound to a variable using the let-construct, or when handed over as argument to a method call or a return.

Classes, objects, and methods resp. fields have no effect on � (see rules T-Class, T-Obj, T-Memb, and T-Undef). Note that

especially in T-Memb, the name context � does not change. This does not mean, that a method cannot have a side-effect by

fulfilling promises, but they are not part of the check of the method declaration here. Rule T-Class is the introduction rule

for class types, the rule of instantiation of a class T-NewC requires reference to a class-typed name. In the rules T-Memb

and T-FUpdate we use the meta-mathematical notation T .l to pick the type in T associated with label l, i.e., T .l denotes U,

when T = [. . . , l:U, . . .] and analogously for T = [(. . . , l:U, . . .)]. Rules T-Class and T-Obj check the definition of classes resp.,

of objects against the respective interface type [(l1:U1, . . . , lk:Uk)]. Note that the type of the self-parameter must be identical

to the name of the class, the method resides in. The premises of rule T-Memb check the method body in the context

appropriately extended with the formal parameters xi, resp. the context � extended by the ς-bound self-parameter (s in

the rule). T-Undef works similarly, treating the case of an uninitialized field. The terminated expression stop and the unit

value do not change the capabilities (cf. rules T-Stop and T-Unit). Note that stop has any type (cf. rule T-Stop) reflecting

Author's personal copy
ARTICLE IN PRESS

498 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

Table 3

Typing (objects and threads).

; � � c : [(l1:U1, . . . , lk :Uk)]
; � � mi : Ui mi = ς(si:c).λ(
xi:
Ti).ti
T-Class

; � � [(l1 = m1, . . . , lk = mk)] : c

; � � c : [(l1:U1, . . . , lk :Uk)]
; � � fi : Ui fi = ς(si:c).λ().v⊥
T-Obj

; � � [l1 = f1, . . . , lk = fk] : c

,
x:
T; �, s:c � t : T ′ ::
́; �́
; � � c : T T = [(. . . , l:
T → T ′ , . . .)]
T-Memb

; � � ς(s:c).λ(
x:
T).t : T .l

; �, s:c � c : [(. . . , l : Unit → c′ , . . .)]
T-Undef

; � � ς(s:c).λ().⊥c′ : c′

; � � v : c
; � � c : T
; � � v′ : T .l
T-FUpdate

; � � v.l := v′ : c

; � � c : [(T)]
T-NewC

; � � new c : c

1; �1 � e : T1 ::
2; �2
2, x:T1; �2 � t : T2 ::
3; �3
T-Let

1; �1 � let x:T1 = e in t : T2 ::
3; �3

1; �1 � v1 : T1
1; �1 � v2 : T1
1; �1 � e1 : T2 ::
2; �2
1; �1 � e2 : T2 ::
2; �2
T-Cond

1; �1 � if v1 = v2 then e1 else e2 : T2 ::
2; �2

1; �1 � v : c
1; �1 � c : [(. . . , l:Unit → T , . . .)]

1; �1 � e1 : T2 ::
2; �2
1; �1 � e2 : T2 ::
2; �2

T-Cond⊥

1; �1 � if undef(v.l()) then e1 else e2 : T2 ::
2; �2

T-Stop

; � � stop : T
T-Unit

; � � () : Unit

the fact that control never reaches the point after stop. Further constructs without side effects are the three expressions to

manipulate the monitor locks (suspension, lock grabbing, and lock release), object instantiation (T-NewC), and field update.

Wrt. field update in rule T-FUpdate, the reason why the update has no effect on the contexts is that we do not allow fields

to carry a type of the form [T]+−. This effectively prevents the passing around of write-permissions via fields. The rule T-Let

for let-bindings introduces a local scope. The change from �1 to �2 and further from �2 to �3 (and analogously for the
s)

reflects the sequential evaluation strategy: first e is evaluated and afterwards t. For conditionals, both branches must agree

on their pre- and post �-contexts, which typically means, over-approximating the effect by taking the upper bound on both

as combined effect. Note that the comparison of the values in T-Cond resp. the check for definedness in T-Cond⊥ has no

side-effect on the contexts. The rule for testing for definedness using undef (not shown) works analogously.

Table4dealswith futures, promises, andespecially the linear aspectof consumingand transmitting thewrite-permissions.

The claim-command fetches the result value from a future; hence, if the reference n is of type [T]+, the value itself carries

type T (cf. rule T-Claim). The rule T-Get for get works analogously.

The expression promise T creates a new promise, which can be read or written and is therefore of type [T]+−. Note,
however, that the context � does not change. The reason is that the new name created by promise is hidden by a ν-binder

immediately after creation and thus does not immediately extend the �-context (see the reduction rule Prom below). The

binding of a thread t to a promise n is well-typed if the type of n still allows the promise to be fulfilled, i.e., n is typed by

[T]+− and not just [T]+. The expression claim dereferences a future, i.e., it fetches a value of type T from the reference of

type [T]+. Otherwise, the expression has no effect on �, as reading can be done arbitrarily many times. As an aside: in rule

T-Claim, the type of o is not checked, as by convention, the claim-statement must be used in the form claim@(n, self) in

the user syntax, where self is the self-parameter of the surrounding methods. Reduction then preserves well-typedness so

a re-check here is not needed. Similar remarks apply to the remaining rules. The treatment of get is analogous (cf. rules

T-Claim and T-Get). For T-Bind, handing over a promise with read/write permissions as an actual parameter of a method

call, the caller loses the right to fulfill the promise. Of course, the caller can only pass the promise to amethodwhich assumes

read/write permissions, if itself has the write permission. The loss of the write-permission is specified by setting �́ and
́

to � \
v :
T resp. to
 \
v :
T . The difference-operator � \n : [T]+− removes the write-permission for n from the context �. In

T-Bind, the premise
; �,n:[T]+ �
v :
T abbreviates the following: assume
v = v1, . . . vn and
T = T1 . . . Tn and let�1 abbreviate

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 499

Table 4

Typing (objects and threads).

T-Prom

; � � promise T : [T]+−

; � � n : [T]+
; � � o:c
T-Claim

; � � claim@(n, o) : T

; � � n : [T]+
T-Get

; � � get@n : T

(x) = T
́ =
 \ x : T
T-Var

; � � x : T ::
́; �

�(x) = T �́ = � \n : T
T-Name

; � � n : T ::
; �′

; �,n:[T]+ � o : c
; �,n:[T]+ � c : [(. . . , l:
T → T , . . .)]
; �,n:[T]+ �
v :
T
́; �́ =
; � \(
v :
T)

T-Bind

; �,n : [T]+− � bind o.l(
v) : T ↪→ n : [T]+ ::
́; �́ ,n:[T]+

� � o : c
T-Suspend

; � � suspend(o) : Unit

� � o : c
T-Grab

; � � grab(o) : Unit

� � o : c
T-Release

; � � release(o) : Unit

1; �1 � t : T ::
2; �2 T ≤ T ′
T-Sub

1; �1 � t : T ′ ::
2; �2

; �,n:[T]+. Then� �
v :
T means:�i � vi : Ti and�i+1 = �i \ Ti, for all 1 ≤ i ≤ n. Note that checking the type of the callee has

no side-effect on the bindings.Mentioning a variable or a name removes thewrite permission (if present) from the respective

binding context (cf. T-Var and T-Name). The next three rules T-Suspend, T-Grab, and T-Release deal with the expressions

for coordination and lock handling; they are typed by Unit. The last rule T-Sub is the standard rule of subsumption.

2.3. Operational semantics

The operational semantics is given in two stages, component internal steps and external ones, where the latter describe

the interaction at the interface. Section 2.3.1 starts with component-internal steps, i.e., those definable without reference to

the environment. In particular, the steps have no externally observable effect. The external steps, presented afterwards in

Section 2.3.2, define the interaction between component and environment. They are defined in reference to assumption and

commitment contexts. The static part of the contexts corresponds to the static type system from Section 2.2 on component

level and takes care that, e.g., only well-typed values are received from the environment.

2.3.1. Internal steps

The internal semantics describes the operational behavior of a closed system, not interacting with its environment. The

corresponding reduction steps are shown in Table 5, distinguishing between confluent steps� and other internal transitions
τ−→, both invisible at the interface. The�-steps, on the one hand, do not access the instance state of the objects. They are

free of imperative side effects and thus confluent. The
τ−→-steps, in contrast, access the instance state, either by reading or by

writing it, andmay thus lead to race conditions. In other words, this part of the reduction relation is in general not confluent.

The first seven rules deal with the basic sequential constructs, all as �-steps. The basic evaluation mechanism is

substitution (cf. rule Red). Note that the rule requires that the leading let-bound variable is replaced only by values v.

The operational behavior of the two forms of conditionals are axiomatized by the four Cond-rules. Depending on the

result of the comparison in the first pair of rules, resp., the result of checking for definedness in the second pair, either

the then- or the else-branch is taken. In Cond2, we assume that v1 does not equal v2, as side condition. Evaluating stop
terminates the future for good, i.e., the rest of the thread will never be executed as there is no reduction rule for the future

n〈stop〉 (cf. rule Stop). The rule FLookup deals with field look-up, where F ′.l(o)() stands for ⊥c[o/s] = ⊥c , resp., for v[o/s],
where [c, F ′, L] = [c, . . . , l = ς(s:c).λ().⊥c , . . . , L], if the field is yet undefined, resp., [c, F ′, L] = [c, . . . , l = ς(s:c).λ().v, . . . , L]. In
FUpdate, the meta-mathematical notation F .l := v stands for (. . . , l = v, . . .), when F = (. . . , l = v′, . . .). There will be no

external variant of the rule for field look-up later in the semantics of open systems, as we do not allow field access across

component boundaries. The same restriction holds for field update in rule FUpdate. A new object as instance of a given class

is created by rule NewOi. Note that initially, the lock is free and there is no activity associated with the object, i.e., the object

is initially passive.

The expression promise T creates a fresh promise n′. A new thread n′〈•〉 is allocated with an “undefined” body, as so far

nothing more than the name is known. The rule Prommentions the types T and T ′. The typing system assures that the type

T is of the form [S]+− for some type S. A promise is fulfilled by the bind-command (cf. rule Bindi), in that the new thread n′ is

Author's personal copy
ARTICLE IN PRESS

500 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

Table 5

Internal steps.

n〈let x:T = v in t〉�n〈t[v/x]〉 Red

n〈let x2:T2 = (let x1:T1 = e1 in e) in t〉�n〈let x1:T1 = e1 in (let x2:T2 = e in t)〉 Let

n〈let x:T = (if v = v then e1 else e2) in t〉�n〈let x:T = e1 in t〉 Cond1

n〈let x:T = (if v1 = v2 then e1 else e2) in t〉�n〈let x:T = e2 in t〉 where (v1 �= v2) Cond2

n〈let x:T = (if undef(⊥c′) then e1 else e2) in t〉�n〈let x:T = e1 in t〉 Cond⊥
1

n〈let x:T = (if undef(v) then e1 else e2) in t〉�n〈let x:T = e2 in t〉 Cond⊥
2

n〈let x:T = stop in t〉�n〈stop〉 Stop

o[c, F , L] ‖ n〈let x:T = o.l() in t〉 τ−→ o[c, F , L] ‖ n〈let x:T = F .l(o)() in t〉 FLookup

o[c, F , L] ‖ n〈let x:T = o.l := v in t〉 τ−→ o[c, F .l := v, L] ‖ n〈let x:T = o in t〉 FUpdate

c[(F ,M)] ‖ n〈let x:c = new c in t〉�
c[(F ,M)] ‖ ν(o:c).(o[c, F ,⊥] ‖ n〈let x:c = o in t〉) NewOi

n〈let x:T ′ = promise T in t〉�ν(n′ :T ′).(n〈let x:T ′ = n′ in t〉 ‖ n′〈•〉) Prom

c[(F ′ ,M)] ‖ o[c, F , L] ‖ n1〈let x:T = bind o.l(
v) : T2 ↪→ n2 in t1〉 ‖ n2〈•〉 τ−→
c[(F ′ ,M)] ‖ o[c, F , L]‖ n1〈let x:T = n2 in t1〉

‖ n2〈let x:T2 = grab(o);M.l(o)(
v) in release(o); x〉
Bindi

n1〈v〉 ‖ n2〈let x : T = claim@(n1, o) in t〉�n1〈v〉 ‖ n2〈let x : T = v in t〉 Claim1
i

t2 �= v
Claim2

i
n2〈t2〉 ‖ n1〈let x : T = claim@(n2, o) in t′

1
〉�

n2〈t2〉 ‖ n1〈let x : T = release(o); get@n2 in grab(o); t′
1
〉

n1〈v〉 ‖ n2〈let x : T = get@n1 in t〉�n1〈v〉 ‖ n2〈let x : T = v in t〉 Geti

n〈suspend(o); t〉�n〈release(o); grab(o); t〉 Suspend

o[c, F ,⊥] ‖ n〈grab(o); t〉 τ−→ o[c, F ,�] ‖ n〈t〉 Grab

o[c, F ,�] ‖ n〈release(o); t〉 τ−→ o[c, F ,⊥] ‖ n〈t〉 Release

Table 6

Structural congruence.

0 ‖ C ≡ C C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

put together with the code to be executed and run in parallel with the rest. In the configuration after the reduction step, the

meta-mathematical notationM.l(o)(
v) stands for t[o/s][
v/
x], when the method suite [M] equals [. . . , l = ς(s:T).λ(
x:
T).t, . . .].
Upon termination, the result is available via the claim- and the get-syntax (cf. the Claim-rules and rule Geti), but not

before the lock of the object is given back again using release(o) (cf. rule Release). If the thread is not yet terminated, the

requesting thread suspends itself, thereby giving up the lock. The behavior of claim is sketched in Fig. 1. Note the types of the

involved let-bound variables: the future reference is typed by [T], indicating that the value for xwill not directly be available,

but must be dereferenced first via claim.

The two operations grab and release take, resp., give back an object’s lock. They are not part of the user syntax, i.e., the

programmer cannot directly manipulate the monitor lock. The user can release the lock using the suspend-command or by

trying to get back the result from a call using claim.

The above reduction relations are used modulo structural congruence,which captures the algebraic properties of parallel

composition and the hiding operator. The basic axioms for ≡ are shown in Table 6 where in the fourth axiom, n does not

occur free in C1. The congruence relation is imported into the reduction relations in Table 7. Note that all syntactic entities

are always tacitly understood modulo α-conversion.

For illustration of the operational semantics, we show the combination of creating a promise and binding a method body

to it. The steps in the reduction sequence below are justified by Prom, Let, and Bind, in that order. In the sequence, we

did not write the definition of the object plus the class, needed to do the last reduction step. I.e., the reduction sequence

below runs in parallel with c[(F ′,M)] ‖ o[c, F , L], where in particular the method suite M, stored in the class c of the object

o, contains the definition of the method body. That definition is needed for binding operation in the last reduction step. In

the corresponding rule Bindi, this is written as M.l(o)(
v). In the final configuration, t′ contains the result of looking up the

method body and is of the form grab(o);M.l(o)(
v). This, the overall behavior of the fulfilled promise n2, i.e., after the binding

step, is: first acquire the lock of the object, afterwards executed the method body with the formal parameters including the

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 501

Table 7

Reduction modulo congruence.

C ≡ � ≡ C ′

C�C ′

C�C ′

C ‖ C ′′�C ′ ‖ C ′′

C�C ′

ν(n:T).C�ν(n:T).C ′

C ≡ τ−→ ≡ C ′

C
τ−→ C ′

C
τ−→ C ′

C ‖ C ′′ τ−→ C ′ ‖ C ′′

C
τ−→ C ′

ν(n:T).C
τ−→ ν(n:T).C ′

self-parameter appropriately substituted. With the return value computed and remembered in z, the lock is released and

the result made available under the future reference n2:

n1〈let x:[T]+− = promise T in (let y : T2 = bind o.l(
v) : T ↪→ x in t)〉 �
ν(n2:[T]+−).(n1〈let x:[T]+− = n2 in (let y:[T]+ = bind o.l(
v) : T ↪→ x in t)〉 ‖ n2〈•〉) �
ν(n2:[T]+−).(n1〈let y:[T]+ = bind o.l(
v) : T ↪→ n2 in t[n2/x])〉 ‖ n2〈•〉) τ−→
ν(n2:[T]+−).(n1〈let y:[T]+ = n2 in t[n2/x])〉 ‖ n2〈let z:T = t′ in release(o); z〉)

Note that the overall behavior of first creating a promise and, in a next step, binding amethod body to it, corresponds exactly

to the working of an asynchronous method call. Asynchronous method calls can therefore be seen as syntactic sugar. The

introduction of promises as a separate datatype and binding as corresponding, separate operation on promises therefore

generalizes the setting with futures and asynchronous method calls, only.

In the following, we show that the type system indeed assures what it is supposed to, most importantly that a promise is

indeed fulfilledonlyonce.An importantpartof it is a standardproperty, namelypreservationofwell-typednessunder internal

reduction (subject reduction). First we characterize as erroneous situations where a promise is about to be written a second

time: A configuration C contains a write error if it is of the form C ≡ ν(�′).(C ′ ‖ n′〈let x : T = bind t1 : T1 ↪→ n in t2〉 ‖ n〈t〉).
Configurations without such write-errors are called write-error free, denoted � C : ok. In [72], an analogous condition is

called handle error.

The necessary ancillary lemmas will in general proceed by induction on the typing derivations for judgments of the form

� � C : �. From a proof-theoretical (and algorithmic) point of view, the type system as formalized in Tables 2, 3, and 4 has an

unwelcomeproperty: it is too “non-deterministic” in that it allows the non-structural subsumption rules T-Sub on the level of

threads t and on the level of components C at any point in the derivation. This liberality is unwelcome for proofs by induction

on the typing derivation as one loses knowledge about the structure of the premises of an applied rule in the derivation. We

write � �m C : � for derivations where subsumption at the level of components (by rule T-Sub from Table 2) is not used, and

subsumption from Table 4 is only used “when needed”, i.e., for adaptation. Taking for instance T-Bind and concentrating on

the premises relevant for the illustration: Given as the interface type of the class
; �,n:[T]+ �m c : [(. . . , l:
T → T , . . .)] and
furthermore
; �,n:[T]+ �m
v :
S, the minimal types
S of the
v may not directly match the expected argument type
T of the

method labeled l (as is required in the premise of the rule T-Bind). Restricting now the use of subsumption to “adapt” the
S
to
T gives the type system for minimal types (denoted by using �m instead of �). This could be explicitly done by removing

the freely applicable T-Sub and distributing its effect into the premises of structural rules, where such adaptation is needed.

In the discussed rule T-Bind, by stipulating

. . .
; �,n:[T]+ �m c : [(. . . , l:
T → T , . . .)]
; �,n:[T]+ �m
v :
S
S ≤
T
T-Bindm

; �,n : [T]+− �m bind o.l(
v) : T ↪→ n : [T]+ ::
́; �́,n:[T]+

where
S ≤
T is interpreted pointwise Si ≤ Ti, for all i. As the formulation of that type system is rather standard and straight-

forward, we omit its definition.

Lemma 2.3 (Minimal typing).

1. If � �m C : � and �′ � C : �′, then � ≤ �′ and �′ ≤ �.

2. If � �m C : � then � � C : �.

3. If �′ � C : �′, then � �m C : � with � ≤ �′ and �′ ≤ �, for some � and �.

Proof. Straightforward.

First we show that a well-typed component does not contain a manifest write-error.

Lemma 2.4. If � �m C : �, then � C : ok .

Author's personal copy
ARTICLE IN PRESS

502 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

Proof. By induction on the typing derivations for judgments on the level of components, i.e., for judgments of the form

� � C : �; the subordinate typing rules from Tables 3 and 4 on the level of threads and expressions do not play a role for

the proof. The empty component in the base case of T-Empty is clearly write-error free. The cases for the T-Nu-rules by

straightforward induction. The cases for T-NClass, T-NObj, and T-NFuture are trivially satisfied, as they mention a single,

basic component, only.

Case: T-Par

We are given �1,�2 � C1 : �1 and �2,�1 � C2 : �2 with � = �1 ⊕ �2. By induction, both C1 and C2 are write-error free. The

non-trivial case (whichwewill lead to a contradiction) iswhen one of the components attempts towrite to a promise and the

partner already has fulfilled it. So, without loss of generality assume that C1 = ν(�′
1
).(C ′

1
‖ n1〈let x : T = bind x : T ↪→ n2 in t′′〉

and C2 = ν(�′
2
).(C ′

2
‖ n2〈t2〉). Assume that n2 occurs in neither �′

1
nor �′

2
, otherwise no write error is present (since in that

case, the name n2 mentioned on both sides of the parallel refer to different entities). For C1 to be well-typed, we have

�1,�2 � n2 : [T2]+− for some type T2. For C2 to be well-typed, we have �2 � n : [T2]+ for some type T2. Thus, � � C1 ‖ C2 :
�1,�2 cannot be derived, which contradicts the assumption.

Lemma 2.5 (Subject reduction: ≡). If � �m C1 : � and C1 ≡ C2, then � �m C2 : �.

Proof. We show preservation of typing by the axioms of Table 6. Proceed by induction on the derivation of � �m C1 : �.

Case: C ‖ 0 ≡ C (idempotence)

Wearegiven� � C ‖ 0 : �. InvertingT-Par andbyT-Emptywegetas sub-goals�,� �m 0 : ()and� �m C : �,whichconcludes

the case.

Case: C ≡ C ‖ 0 (idempotence)

Immediate using T-Par and T-Empty.

Case: C1 ‖ C2 ≡ C2 ‖ C1 (commutativity)

Immediate.

Case: C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C2 and vice versa (associativity)

By straightforward induction.

Case: C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2)

where n does not occur free in C1. We are given � � C1 ‖ ν(n:T).C2 : �1,�2, where n occurs in neither �1 nor �2. Inverting

T-Par and T-Nu, we obtain as two subgoals �,�2 � C1 : �1 and �,�1 � C2 : �1,�2,n:T , and the result follows by T-Par and

the T-Nu-rule.

Case: ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C
Analogously.

The next lemma is another step towards subject reduction. Note that minimal types are not preserved by reduction.

Especially executing a bind-operation with rule Bindi changes the type of the corresponding name from [T]+− to [T]+.

Lemma 2.6 (Subject reduction:
τ−→ and�). Assume � �m C : �.

1. If C
τ−→ Ć, then � � Ć : �.

2. If C�Ć, then � � Ć : �.

Proof. The reduction rules of Table 5 are all of the form C1 ‖ n〈t1〉 τ−→ C2 ‖ n〈t2〉, where often C1 = C2 or C1 and C2 missing.

In the latter case, it suffices to show that ; �,n:[T]+ �m t1 : T implies ; �,n:[T]+ � t2 : T .

Case: Red: n〈let x : T = v in t〉�n〈t[v/x]〉
By preservation of typing under substitution.

The 5 rules for let and for conditionals are straightforward. The case for stop follows from the fact that stop has every type

(cf. rule T-Stop).

Case: Prom: n〈let x:T ′ = promise T in t〉�ν(n′:T ′).(n〈let x : T ′ = n′ in t〉 ‖ n′〈•〉)
The type system (for minimal types) assures that T ′ = [T]+−, i.e., for the left-hand side of the reduction step, we obtain as

one subgoal (inverting T-NThread′, T-Let, and T-Prom) x:[T]+−; �,n:[S]+ � t : S. The result follows from T-Nu, T-Par, T-Let,

and T-NThread′ (and weakening):

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 503

. . . x:[T]+−; �,n′:[T]+− ,n:[S]+ � t : S

; �,n′:[T]+− ,n:[S]+ � let x : [T]+− = n′ in t : S

�,n′:[T]+− � n〈let x : [T]+− = n′ in t〉 : n:[S]+ �,n:[S]+ ,n′:[T]+ � n′〈•〉 : n′:[T]+−
T-Par

� � n〈let x : [T]+− = n′ in t〉 ‖ n′〈•〉 : (n:[S]+ ,n′:[T]+−)

T-Nu

� � ν(n′:[T]+−).(n〈let x : T ′ = n′ in t〉 ‖ n′〈•〉) : (n:[S]+)

Case: Bindi n1〈t〉 ‖ n2〈•〉 = n1〈let x:T = bind o.l(
v) : T2 ↪→ n2 in t1〉 ‖ n2〈•〉 τ−→ n1〈let x:T = n2 in t1〉 ‖ n2〈let x:T2 = grab(o);
M.l(o)(
v) in release(o); x〉
The type system assures (cf. T-Bind) that T = [T2]+. By assumption, we are given � � n1〈t〉 : �, which implies � = n1:[T1]+
for some type T1. Inverting rules T-Par, T-NThread, T-Let, and T-Bind gives for the named thread n1:

; �1,n2:[T2]+ ,n1:[T1]+ �
v :
T �′′ = �′ \(
v:
T) . . .

T-Bind

; �1,n2:[T2]+− � bind o.l(
v) : T2 ↪→ n2 : T :: ; �′′
1,n2:[T2]+ x:[T2]+; �′′

1,n2:[T2]+ � t1 : T1 :: x:[T2]+; �́2,n2:[T2]+

; �1,n2:[T2]+− ,n1:[T1]+ � let x:[T2]+ = bind o.l(
v) : T2 ↪→ n2 in t1 : T1 :: ; �́1,n2:[T2]+ ,n1:[T1]+

�1,n2:[T2]+− � n1〈let x:[T2]+ = bind o.l(
v) : T2 ↪→ n2 in t1〉 : n1:[T1]+

Rule T-Bind (and T-NThread) implies that the assumption context � contains especially the binding n2:[T]+−, i.e., the
assumption � in the last conclusion is of the form �′,n2:[T2]+−.

Now to the post-configuration after the
τ−→-step. With T-Par we obtain the following two sub-goals:

�,n2:[T2]+− � n1〈let x:T = n2 in t1〉 : n1:[T1]+ �,n1:[T1]+ � n2〈let x:T2 = grab(o);M.l(o)(
v) in release(o); x〉 : n2:[T2]+−

� � n1〈let x:T = n2 in t1〉 ‖ n2〈let x:T2 = grab(o);M.l(o)(
v) in release(o); x〉 : n1:[T1]+ ,n2:[T2]+−

The left one can be derived using T-NThread, T-Let, and T-Name, where there second premise of T-Let is discharged by the
corresponding assumption from above and weakening

T-Name

�,n2:[T2]+ ,n1:[T2]+ � n2 : [T2]+ x:[T2]+ ,�;n2:[T2]+ ,n1:[T2]+ � t1 : T1
T-Let

�,n2:[T2]+ ,n1:[T2]+ � let x:T = n2 in t1 : T1

�,n2:[T2]+ � n1〈let x:[T2]+ = n2 in t1〉 : n1:[T1]+

The second premise can be derived as follows:

. . .

; �,n1:[T1]+ ,n2:[T2]+ � M.l(o)(
v) : T2

T-Var

y:T2; �,n1:[T1]+ ,n2:[T2]+ � y : T2

y:T2; �,n1:[T1]+ ,n2:[T2]+ � release(o); y : T2
T-Let

; �,n1:[T1]+ ,n2:[T2]+ � let y:T2 = M.l(o)(
v) in release(o); y : T2

; �,n1:[T1]+ ,n2:[T2]+ � let y:T2 = grab(o);M.l(o)(
v) in release(o); y : T2
T-NThread

�,n1:[T1]+ � n2〈let y:T2 = grab(o);M.l(o)(
v) in release(o); y〉 : n2:[T2]+
T-Sub

�,n1:[T1]+ � n2〈let y:T2 = grab(o);M.l(o)(
v) in release(o); y〉 : n2:[T2]+−

The premise ; �,n1:[T1]+,n2:[T2]+ � M.l(o)(
v) : T2 follows by preservation of typing by substitution. Note the use of subsump-

tion in the last step.

Lemma 2.7 (Subject reduction: ≡). If � � C1 : � and C1 ≡ C2, then � � C2 : �.

Proof. Assume � � C1 : � and C1 ≡ C2. By Lemma 2.3(3), �′ �m C1 : �′ s.t. � ≤ �′ and �′ ≤ �. By Lemma 2.5, �′ �m C2 : �′,
and hence by Lemma 2.3(2), also �′ � C2 : �′, and the result follows by subsumption (rule T-Sub).

Author's personal copy
ARTICLE IN PRESS

504 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

Table 8

Labels.

γ ::= n〈call o.l(
v)〉 | n〈get(v)〉 | ν(n:T).γ basic labels

a ::= γ? | γ ! receive and send labels

Lemma 2.8 (Subject reduction:
τ−→ and�). Assume � � C : �.

1. If C
τ−→ Ć, then � � Ć : �.

2. If C�Ć, then � � Ć : �.

Proof. As consequence of the corresponding property for minimal typing from Lemma 2.6, Lemma 2.3, and

subsumption.

Lemma 2.9 (Subject reduction). If � � C : � and C �⇒ Ć, then � � Ć : �.

Proof. A consequence of Lemma 2.7 and 2.8.

A direct consequence is that all reachable configurations are write-error free:

Corollary 2.10. If � � C : � and C �⇒ Ć, then � Ć : ok .

Proof. A consequence of Lemma 2.4 and subject reduction from Lemma 2.9.

2.3.2. External semantics

In this sectionwe introduce the external semantics that defines the interaction between component and environment.We

start by formalizing typing judgments and transitions between typing judgments, being the basic form of the external steps.

We continue with static typing assumptions for well-formed andwell-typed labels. Context updates, given next, express the

dynamic change of typing judgments for incoming and outgoing communications. Making use of the above formalisms, we

give the steps of the external semantics.

The external semantics formalizes the interaction of an open component with its environment. The semantics is given as

labeled transitions between typing judgments on the level of components (cf. Table 2), i.e., judgments of the form

� � C : �, (3)

where, as before, � represents the assumptions about the environment of the component C and � the commitments.

The assumptions require the existence of named entities in the environment (plus giving static typing information), and

dually, the commitment promises the existence of such entities in C. It is an invariant of the semantics, that the assumption

and commitment contexts are disjoint concerning their name bindings. In addition, the interface keeps information about

whether the value of a future n is already known at the interface (this is a bit of information not needed in the static

type system of Table 2). If it is, we write n:T = v as binding of the context. We write furthermore � � n = v, if � contains

the corresponding value information (and if not interested in the type) and write � � n = ⊥, if that is not the case. This

extension makes the value of a future (once successfully claimed) available at the interface. With these judgments, the

external transitions are of the form:

� � C : �
a−→ �́ � Ć : �́. (4)

Notation 2.11. We abbreviate the tuple of name contexts �,� as �. Furthermore we understand �́, �́ as �́, etc.

The labels of the external transitions represent single steps of the interface interactions (cf. Table 8).

A component exchanges information with the environment via call and get labels (by convention, referred to as γc and γg ,

for short). Interaction is either incoming or outgoing, indicated by ?, resp., !. In the labels, n is the identifier of the thread (i.e.,

also future/promise) carrying out the call resp. of being queried via claim or get. Besides that, object and future names (but

no class names) may appear as arguments in the communication. Scope extrusion of names across the interface is indicated

by the ν-binder. Given a basic label γ = ν(�).γ ′ where � is a name context such that ν(�) abbreviates a sequence of single

n:T bindings (whose names are assumed all disjoint, as usual) and where γ ′ does not contain any binders, we call γ ′ the core

of the label and refer to it by �γ �. We define the core analogously for receive and send labels. The free names fn(a) and the

bound names bn(a) of a label a are defined as usual, whereas names(a) refer to all names of a. In addition, we distinguish

between names occurring as arguments of a label, in passive position, and the name occurring as carrier of the activity, in

active position. Name n, for illustration, occurs actively and free in n〈call o.l.(
v)〉 and in n〈get(v)〉. We write fna(a) for the free

names occurring in active position, fnp(a) for the free names in passive position, etc. All notations are used analogously for

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 505

Table 9

Typechecking labels.

�́ = �́1,n:[T]+ , �́2 ; �́ �
v :
T a = n〈call or .l(
v)〉?
LT-CallI

�́ � a :
T → _

; �́ � v : T a = n〈get(v)〉?
LT-GetI

�́ � a : _ → T

basic labels γ . Note that for incoming labels, � contains only bindings to environment objects (besides future names), as the

environment cannot create component objects; dually for outgoing communication.

The steps of the operational semantics for open systems check the static assumptions, i.e., whether at most the names

actually occurring in the core of the label are mentioned in the ν-binders of the label, and whether the transmitted values

are of the correct types. This is covered in the following definition.

Definition 2.12 (Well-formedness andwell-typedness). A label a = ν(�).�a� iswell-formed,written� a, if dom(�) ⊆ names(�a�)
and if � is a well-formed name-context for object and future names, i.e., no name bound in � occurs twice. The assertion

�́ � o.l? :
T → T (5)

(“an incoming call of the method labeled l in object o expects arguments of type
T and results in a value of type T”) is given

by the following rule, i.e., implication:

; �́ � o : c ; �́ � c : [(. . . , l:
T → T , . . .)]

�́ � o.l? :
T → T

(6)

For outgoing calls, �́ � o.l! :
T → T is defined dually. In particular, in the first premise, �́ is replaced by �́. Well-typedness of

an incoming core label a with expected type
T , resp., T , and relative to the name context �́ is asserted by

�́ � a :
T → _ resp., �́ � a : _ → T , (7)

as given by Table 9. Finally, let �́0 abbreviate ;�́. Then ;�́ �
v :
T means: �́i � vi : Ti and �́i+1 = �́i \ Ti, for all 0 ≤ i ≤ n − 1.

Note that the receiver o of the call is checked using only the commitment context �́, to assure that o is a component

object. Note further that to check the interface type of the class c, the full �́ is consulted, since the argument types
T or the

result type T may refer to both component and environment classes.

The premise ; �́ �
v :
T in LT-CallI is interpreted in such a way that checking for write-permission consumes that per-

mission (analogous to the corresponding premise of T-Bind in Table 4). This is formalized in the definition of ; � �
v :
T for

well-typedness of a sequence of values, given at the end of Definition 2.12, which iterates through the sequence, potentially

removing write-permission for a vi s.t. the permission is no longer available for type cheking the rest of the sequence.

In a similar spirit: requiring that �́ is of the form �́1,n:[T]+, �́2 assures that it is not possible to transmit n with write-

permissions if n is the active thread of the label.

Besides checking whether the assumptions are met before a transition, the contexts are updated by a transition step,

especially extended by the new names, whose scope extrudes. For the binding part �′ of a label ν(�′).γ , the scope of the

references to existing objects and thread names�′ extrudes across the border. In the step,�′ extends the assumption context

� and �′ the commitment context �. Besides information about new names, the context information is potentially updated

wrt. the availability of a future value. This is done when a get-label is exchanged at the interface for the first time, i.e., when

a future value is claimed successfully for the first time. For outgoing communication, the situation is dual.

Before we come to the corresponding Definition 2.13 below, we make clear (again) the interpretation of judgments

� � C : �. Interesting is in particular the information n:[T]+−, stipulating that name n is available with write-permission

(and result type T). In case of � � n : [T]+−, the name n is assumed to be available in the environment as writable, and

conversely� � n : [T]+− asserts write permission for the component. Since read permissions, captured by types [T]+, are not
treated linearly – one is allowed to read from a future reference as many times as wished – the treatment of bindings n:[T]+
is simpler. Hence, we concentrate here on n:[T]+− and the write permissions.

As thedomainsof�and�aredisjoint, bindingsn:T ′ cannotbeavailable in theassumptioncontext�and thecommitments

� at the same time. The information T ′ = [T]+− indicates which side, component or environment, has the write permission.

If, e.g., � � n : [T]+−, then the component is not allowed to execute a bind on reference n. In the mentioned situation, the

component can execute a claim-operation on n. The same applies if � � n : [T]+. In other words, a name n can be accessed

Author's personal copy
ARTICLE IN PRESS

506 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

Fig. 2. Scenarios.

by reading by both the environment and the component once known at the interface, independent from whether it is part

of � or of �. A difference between bindings of the form n:[T]+− and n:[T]+ (and likewise n:[T]+ = v) is, that communication

can change � � n : [T]+− to � � n : [T]+− and vice versa. For names n of type [T]+, this change of side is impossible. The latter

kind of information, for instance � � n : [T]+, implies that the code has been bound to n and it is placed in the component.

Once fixed there, the reference to n may, of course, be passed around, but the thread named n itself cannot change to the

environment since the language does not support mobile code.

Now, how do interface interactions update the contexts? We distinguish two ways, the name n can be transmitted in a

label: passively,when transported as the argument of a call or a get-interaction, and actively,when mentioned as the carrier

of the activity, as the n in n〈call o.l(
v)〉 and n〈get(v)〉. As usual, such references (actively or passively) can be transmitted as

fresh names, i.e., under a ν-binder, or alternatively as an already known name. When transmitted passively and typed with

[T]+− for some type T , the write-permission to n is handed over to the receiving side and at the same time, that permission

is removed from the sender side.

Now, what about transmitting n actively? An incoming call n〈call o.l(
v)〉?, e.g., reveals at the interface that the promise

indeed has been fulfilled. As, in that situation of an incoming call, the thread, executing the call, is located at the component,

the commitment context is updated to satisfy � � n : [T]+ = ⊥ (for an appropriate type T) after the communication. Indeed,

before the step it is checked, that the environment actually haswrite permission for n, i.e., that� � n : [T]+−, or that the name

n is new. See the incoming call in Fig. 2a, where the n is fresh, resp. in Fig. 2c, where the n has been transmitted passively

and with write-permissions to the environment before the call (in the dotted arrow).

Whereas call-labelsmake public, atwhich side the thread in question resides, get-labels, on the other hand, reveal that the

computation has terminated and fix the result value (if the information about the result value had not been public interface

information before). There are two situations,where a, say, outgoing get-communication is possible. In both cases, the named

thread, representing the future, resides in the component and after the get-communication, the value is determined, i.e.,

� � n : [T]+ = v (if not already before the step). One scenario is that � � n : [T]+ = ⊥ before the step still. If, in that situation,

the get is executed by the environment, it is required that the component must have had write permission before, i.e.,

� � n : [T]+− (cf. Fig. 2b). The only way, the value for n is available for the environment now is that the promise had been

fulfilled and the corresponding thread already has terminated, and this could have been done by the component, only. In that

situation, the contexts are updated from � � n : [T]+− to � � n : [T]+ = v by the get-interaction. Alternatively, the thread

may be known to be part of the component with the promise already fulfilled (� � n : [T]+ = ⊥, as shown in Fig. 2a and c).

Finally, the value for nmight already been known at the interface, i.e., already before the step, � � n : [T]+ = v holds. In that

situation, v has been added as interface information previously by a prior get-interaction, and the situation corresponds to

the very last get in Fig. 2b and c.

Definition 2.13 (Context update). Let � be a name context and a = ν(�′).�a� an incoming label. Let �́ = � + a be defined as

follows.

Wedefine the (intermediate) contexts�′′ = � and�′′ = �,�′. Let furthermore�′′ be the set of bindingsdefinedas follows.

In case of a call label, i.e., �a� = n〈call o.l(
v)〉?, let the vector of types
T be defined by � � o.l? :
T → T according to Equation

(5) of Definition 2.12. Then �′′ consists of bindings of the form vi:[T ′
i
]+− for values vi from
v such that Ti = [T ′

i
]+−. In case of

a get label, i.e., �a� = n〈get(v)〉?, the context �′′ is v:[T]+− if �′′ � n : [[T]+−]+, and empty otherwise.

With �′′ given this way, the definitions of the post-contexts �́ and �́ distinguish between calls and get-interaction: If a

is a call label and n ∈ namesa(a), we define

�́ = (�′′ \ �′′) \n:[T]+− and �́ = �′′,�′′,n:[T]+. (8)

If a is a get label a = ν(�′).n〈get(v)〉? and n ∈ namesa(a), �́ and �́ are given by:

�́ = (�′′ \ �′′),n:[T]+ = v and �́ = �′′,�′′. (9)

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 507

For outgoing communication, the definition is applied dually.

The definition proceeds in two stages. In a first step, the assumption context � is extended with the bindings �′ carried
with the incoming label a. The second step dealswith thewrite permissions, i.e., it transfers thewrite permission transmitted

from the sender to the receiver. The binding context �′′ deals with the permissions carried by thread names transmitted

passively, i.e., as arguments of the communication. It remains to take care also of the information carried by the active thread.

There, we distinguish calls and get-labels. An incoming call (Equation (8)) with n as active thread is the sign that the thread

is now located at the component side and that the write permission has been consumed by the environment. Hence, in

Equation (8), the environment loses the write-permission and the component is extended by the binding n:[T]+. In case of

an incoming get, the transmitted value v is remembered as part of � (cf. Equation (8)).

The previous definition deals with the change of context information by communication. Apart from that, unfulfilled

promises of the form n〈•〉 also change side, if their name is exchanged together with write-permission. As notation, we will

use C(�) to denote the component n1〈•〉 ‖ · · · ‖ nk〈•〉, where the names ni correspond to all names of the context�mentioned

as ni : [Ti]+− for some type Ti.

Now to the interface behavior, given by the external steps of Table 10. Most rules have some premises in common.

In all cases of a labeled transition, the context � is updated to �́ = � + a using Definition 2.13. The rules for incoming

communicationdiffer fromthe correspondingones for outgoing communication in thatwell-typedness andwell-formedness

of the label is checked by the premises �́ � �a� :
T → _, resp. �́ � �a� : _ →
T (for calls) resp., �́ � �a� : _ → T (for get-labels),

using Definition 2.12. For outgoing communication, the check is unnecessary as starting with a well-typed component, there

is no need in re-checking now, as the operational steps preserve well-typedness (subject reduction).

When the component claims the value of a future, we distinguish two situations: the future value is accessed for the

first time across the interface or not. In the first case (rules ClaimI1 and ClaimI2), the interface does not contain the value of

the future yet, stipulated by the premise � � n′ = ⊥. In that situation it is unclear from the perspective of the component,

whether or not the value has already been computed. Hence, it is possible that executing claim is immediately successful (cf.

rule Claim1) or that the thread n trying to obtain the value has to suspend itself and try later (cf. rule Claim2). Rule Claim2

works exactly like the corresponding internal rule Claim2
i
from Table 5, except that here it is required that the queried future

n′ is part of the environment. If the future value is already known at the interface (cf. rule Claim3 and especially premise

� � n′ = v), executing claim is always successful and the value v is (re-)transmitted. get works analogously to claim, except

that get insists on obtaining the value, i.e., the alternative of relinquishing the lock and trying again as in rule Claim2, is not

available for get. The last two rules deal with the situation that the environment fetches the value.

Finally, we characterize the initial configuration. Initially, the component contains at most one initial activity and no

objects. More precisely, given that �0 � C0 is the initial judgment, then C0 contains no objects. Concerning the threads:

initially exactly one thread is executing, either at the component side or at the environment side. The distinction is made at

the interface that initially either �0 � n or �0 � n, where n is the only thread name in the system.

3. Interface behavior

Next we characterize the possible (“legal”) interface behavior as interaction traces between component and environment.

Half of the work has been done already in the definition of the external steps in Table 10: for incoming communication,

for which the environment is responsible, the assumption contexts are consulted to check whether the communication

originates from a realizable environment. Concerning the reaction of the component, no such checks were necessary. To

characterize when a given trace is legal, the behavior of the component side, i.e., the outgoing communication, must adhere

to the dual discipline we imposed on the environment for the open semantics. This means, we analogously abstract away

from the program code, rendering the situation symmetric.

3.1. Legal traces system

The rules of Table 11 specify legality of traces.Weuse the same conventions and notations as for the operational semantics

(cf. Notation 2.11). The judgments in the derivation system are of the form

� � s : trace . (10)

We write � � t : trace, if there exists a derivation according to the rules of Table 11 with an instance of L-Empty as axiom.

The empty trace is always legal (cf. rule L-Empty), and distinguishing according to the first action a of the trace, the rules

check whether a is possible. Furthermore, the contexts are updated appropriately, and the rules recur checking the tail of

the trace. The rules are symmetric wrt. incoming and outgoing communication (the dual rules are omitted). Rule L-CallI for

incoming calls works completely analogously to the CallI-rule in the semantics: the second premise updates the context �

appropriatelywith the information contained in a, premise�′ � n of L-CallI assures that the identity n of the future, carrying

out the call, is fresh and the two premises �́ � o.l? :
T → _ and �́ � �a� :
T → _ together assure that the transmitted values

are well-typed (cf. Definition 2.12); the latter two checks correspond to the analogous premises for the external semantics

Author's personal copy
ARTICLE IN PRESS

508 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

Table 10

External steps.

a = ν(�′). n〈call o.l(
v)〉? �́ = � + a (�′ � n ∨ � � n : [_]+−) �́ � o.l? :
T → T �́ � �a� :
T → _
CallI

� � C
a−→ �́ � C ‖ C(�′) ‖ n〈let x:T = grab(o);M.l(o)(
v) in release(o); x〉

a = ν(�′). n〈call o.l(
v)〉! �′ = fn(�a�) ∩ �1 �́1 = �1 \ �′ � � o �́ = � + a
CallO

� � ν(�1).(C ‖ C(�′) ‖ n〈•〉 ‖ n′〈let x:T = bind o.l(
v) : T ↪→ n in t〉) a−→ �́ � ν(�́1).(C ‖ n′〈let x : T = n in t〉)

a = ν(�′). n′〈get(v)〉? �́ = � + a � � n′ = ⊥ �́ � �a� : _ → T
ClaimI1

� � ν(�1).(C ‖ n〈let x:T = claim@(n′ , _) in t〉) a−→ �́ � ν(�1).(C ‖ C(�′) ‖ n〈let x:T = v in t〉)

� � n′ = ⊥
ClaimI2

� � ν(�1).(C ‖ n〈let x:T = claim@(n′ , o) in t〉)�� � ν(�1).(C ‖ n〈let x : T = release(o); get@n′ in grab(o); t〉)

a = n′〈get(v)〉? � � n′ = v � � �a� : _ → T
ClaimI3

� � ν(�1).(C ‖ n〈let x:T = claim@(n′ , _) in t〉) a−→ � � ν(�1).(C ‖ C(�′) ‖ n〈let x:T = v in t〉)

a = ν(�′). n′〈get(v)〉? �́ = � + a � � n′ = ⊥ �́ � �a� : _ → T
GetI1

� � ν(�1).(C ‖ n〈let x:T = get@n′ in t〉) a−→ �́ � ν(�1).(C ‖ C(�′) ‖ n〈let x:T = v in t〉)

a = n′〈get(v)〉? � � n′ = v � � �a� : _ → T
GetI2

� � ν(�1).(C ‖ n〈let x:T = get@n′ in t〉) a−→ � � ν(�1).(C ‖ C(�′) ‖ n〈let x:T = v in t〉)

a = ν(�′).n〈get(v)〉! �′ = fn(�a�) ∩ �1 �́1 = �1 \ �′ �́ = � + a
GetO1

� � ν(�1).(C ‖ C(�′) ‖ n〈v〉) a−→ �́ � ν(�́1).(C ‖ n〈v〉)

a = n〈get(v)〉! � � n = v
GetO2

� � C
a−→ � � C

in rule CallI, except that the return type of the method does not play a role here. The L-GetI-rules for claiming a value work

similarly. In particular the type checking of the transmitted value is done by the combination of the premises � � n : [T] and
�́ � �a� : _ → T . As in the external semantics, we distinguish two cases, namely whether the value of the future has been

incorporated in the interface already or not (rules L-GetI2 and L-GetI1). In both cases, the thread must be executing on the

side of the environment for an incoming get. This is checked by the premise � � n = ⊥ resp. by � � n = v. In case of L-GetI2,

where the value of the future has been incorporated as v into the interface information, the actual parameter of the get-label

must, of course, be v. If not (for L-GetI1), the transmitted argument value is arbitrary, apart from the fact that it must be

consistent with the static typing requirements.

It remains to show that the behavioral description, as given by Table 11, actually does what it claims to do, to characterize

the possible interface behavior of well-typed components. We show the soundness of this abstraction plus the necessary

ancillary lemmas such as subject reduction. Subject reduction means, preservation of well-typedness under reduction. In

the formulation of subject reduction, we make sure that the write-permissions of the environment are not available for

type-checking the component.We use ��� instead of� as assumption, were �_� replaces each binding n:[T]+− in� by n:[T]+.

Lemma 3.1 (Subject reduction). If ��� � C : � and � � C : �
s�⇒ �́ � Ć : �́, then ��́� � Ć : �́.

Proof. By induction on the number of reduction steps. That internal steps preserve well-typedness, i.e., ��� � C : � �⇒
��́� � C : �, follows from the corresponding Lemma 2.9 for internal steps. That leaves the external reduction steps of Table

10.

Case: CallI

Wearegiven ��� � C : �. Thedisjunctivepremiseof the ruledistinguishes two sub-cases: 1)�′ � n (where�′ are thebindings
carried alongwith the call-label, i.e., the thread name is transmitted freshly) or 2)� � n : [_]+− (the thread is not transmitted

freshly and the environment has write-permission before the step). Both are treated uniformly in the following argument.

For the right-hand side of the transition, we need to show ��́� � C ′ ‖ n〈let x:T = grab(o);M.l(o)(
v) in release(o); x〉 : �́, where

C ′ corresponds to C extended by new n′〈•〉-promises. According to the definition of context update (Definition 2.13), �́ =
�́, �́, where �́ = �,�′′,n:[T]+ and where �′′ contains bindings n′:[T ′]+− for those references transmitted with read-write

permission as argument of the call (see the right-hand of equation (8)). The assumption context �́ for Ć after the step (by

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 509

Table 11

Legal traces (dual rules omitted).

� � ε : trace L-Empty

a = ν(�′). n〈call o.l(
v)〉? �́ = � + a (�′ � n ∨ � � n : []+−)

�́ � o.l? :
T → _ �́ � �a� :
T → _ �́ � s : trace
L-CallI

� � a s : trace
a = ν(�′).n〈get(v)〉? �́ = � + a � � n = ⊥ �́ � �a� : _ → T �́ � s : trace

L-GetI1
� � a s : trace

a = n〈get(v)〉? � � n = v � � s : trace
L-GetI2

� � a s : trace

the left-hand of the same equation) is of the form (�,�′) \ �′′ \n:[T]+−. So for the new thread n at component side, we need

to show that

�(�,�′) \ �′′ \n:[T]+−� � C ‖ C(�′′) ‖ n〈t′〉 : �,�′′,n:[T]+ (11)

with t′ given as let x:T = grab(o);M.l(o)(
v) in release(o); x. To derive (11), using a number of instances of T-Par in the last

derivation steps, gives

�̃, ��′′�,n:[T]+ � C : � �̃,n:[T]+ , ��� � C(�′′) : �′′

�̃, ���,�′′ ,n:[T]+ � t′ : T

�̃, ���,�′′ � n〈t′〉 : n:[T]+

.

.

.

�(�,�′) \ �′′ \n:[T]+−� � C ‖ C(�′′) ‖ n〈t′〉 : �,�′′ ,n:[T]+

(12)

where �̃ abbreviates the assumption context �(�,�′) \ �′′ \n:[T]+−� from (11). Note, how the write permissions from �′′
in commitment of the conclusion at the bottom are split among the three subgoals. All write-permissions are given to the

assumptions of n〈t′〉, whereas C can assume only read-access (cf. T-Par and the definition of ⊕ from Definition 2.1). The

context � is split similarly. The left open goal can be rephrased as ���, ��′�,n:[T]+ � C : � and can be discharged using the

given ��� � C : � and weakening. The open goal in the middle follows directly from an appropriate number of instances of

T-NThread′.
Remains the right-upper subgoal �(�,�′) \ �′′ \n:[T]+−�, ���,�′′,n:[T]+ � let x:T = t′ : T (with �̃ expanded). Note that,

apart from the write-permissions, the complicated type context corresponds to �,�′,�, or more formally

�(�(�,�′) \ �′′ \n:[T]+−�, ���,�′′,n:[T]+)� = ��,�′,�� (13)

Intuitively, itmeans, t′ mustbecheckedwithall namebindingsavailable from�and�plus theones,whichscope is exchanged

in �′ as part of the label. Nowrite-permissions, however, can be used to type-check t′ except those being transmitted by the

argument of the call and which are kept in �′′ (the context �′′ is the only part of t′ typing context not being stripped off the

write-permissions by �_�).
Note that the meta-mathematical notation M.l(o)(
v) in t′ stands for tbody[o/s][
v/
x], i.e., the method body with the self-

parameter s substituted by the callee’s identity and with the formal parameter replaced by the actual ones. Now, the well-

typedness of the pre-configuration ��� � C : � togetherwith the premise �́ � o.l :?
T → T ofCallI (cf. Definition 2.12) implies

that C is of the form C ′ ‖ c[(. . . , l = ς(s:c).λ(
x :
T).tbody, . . .)], and further that ��� � C : � has
x:
T; ���,� � tbody : T as sub-

goal. From that, the remaining mentioned subgoal of derivation (12) follows by T-Let, T-Grab, preservation of typing under

substitution, T-Release, and the axiom T-Var.

Case: CallO

We are given � � ν(�1).(C ‖ n〈•〉 ‖ n′〈let x:T = bind o.l(
v) : T ↪→ n in t〉) : � before the step and �́ � ν(�́1).(C ‖ n′〈let x : T =
n in t〉) : �́ afterwards, with C = C ′ ‖ n1〈•〉 ‖ · · · ‖ nk〈•〉. By one of the premises of rule CallO we know � � o, i.e., object o

is an environment object.5 That the name o refers to an object is assured by the type system and the assumption that the

pre-configuration is well-typed. By inverting the rules T-Nu, T-Par, T-NThread, T-Let, and T-Bind, we get:

5 We do not allow cross-border instantiation in this paper, i.e., the component is not allowed to instantiate environment objects and vice versa.

Author's personal copy
ARTICLE IN PRESS

510 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

. . . �′ = ���,�1,� �́′ = �′ \(
v:
T ,n:[T]+−)

T-Bind

; ���,�1,� � bind o.l(
v) : T ↪→ n : T :: �́′ x:T; �́′ � t : T ′ :: . . .

; ���,�1, �̃,n′:[T ′]+ � let x:T = bind o.l(
v) : T ↪→ n in t : T ′

���,�1, �̃ � n′〈let x:T = bind o.l(
v) : T ↪→ n in t〉 : n′:[T ′]+
T-Par,T-Nu . . .

.

.

.

��� � ν(�1).(C ‖ n′〈let x : T = bind o.l(
v) : T ↪→ n in t〉 ‖ n〈•〉) : �

Note that t in the left-upper leaf is type-checked in the context �′, which corresponds to �′ = ���,�1, �̃,n′:[T ′]+ with

those write-permissions removed that are transmitted via the arguments of the method l (cf. rule T-Bind).

To derive well-typedness of the post-configuration, we distinguish two sub-cases, namely whether 1) the promise n

is known at the interface before the step or 2) it is hidden still. In the first case, we have � � n : T ′ with T ′ = [T]+− (as a

consequence of the fact that the configuration is well-typed), or more precisely, � = �̃′,n:[T]+−,n′:[T ′]+. The derivation of

well-typedness of the post-configuration ��́� � ν(�́1).(C
′ ‖ n′〈let x : T = n in t〉) : �́ works as follows:

; ��́�, �́1, �́ � n : T x:T; ��́�, �́1, �́ � t : T ′
T-Let

; ��́�, �́1, �́ � let x:T = n in t : T ′
T-NThread

��́�, �́1,
˜́
� � n′〈let x:T = n in t〉 : n′:[T ′]+

T-Par,T-Nu . . .
.
.
.

��́� � ν(�́1).(C′ ‖ n′〈let x : T = n in t〉) : �́

where �́ = ˜́
�,n′:[T ′]+. Using the premises of the reduction rule CallO, that relates the different binding contexts mentioned

in the step (i.e., �́1 = �1 \ �′, where �′ are the bindings mentioned in the call labels), �′ = �,�′,n:[T]+ (as stipulated by rule

CallO’s premise �́ = � + a and given by Definition 2.13, especially equation (8)). Note that (8) is formulated for incoming

communication, i.e., used dually here, and that in the considered subcase, we assume that n is known at the interface before

the step, i.e., � � n:[T]+−, as agreed upon earlier. It is straightforward to see that the combined context �,�1,� equals

�́, �́1, �́, with the exception, that the former contains n:[T]+− (as part of �) and the latter only n:[T]+ (as part of �́. Cf.

especially by (8)). Furthermore, considering ��� and ��́� instead of � and �́:

��́�, �́1, �́ = (���,�1,�) \(n:[T]+−,
v:
T) (14)

where
v:
T is given as mentioned in the left-upper leaf if the first derivation tree and as defined by the premise of T-Bind

(these bindings correspond to the �′′ used in equation (8) and represent the write-permissions transmitted by the call-label

from the component to the environment). This discharges the top-left subgoal of the derivation. The second sub-case with

�1 � n:[T]+− works analogously.

Case: Claim1

The core of the type preservation here is to assure that the claim-statement in the pre-configuration and the transmitted

value v in the post-configuration are of the same appropriate type T . Well-typedness of the pre-configuration implies with

claim@(n′, o,) of type T , that the reference n′ is of type [T]+. The third premise of ClaimI1 states �́ � �a� : _ → T , which implies

with Definition 2.12, especially rule LT-GetI of Table 9, that also v is of type T , as required.

Case: Claim2

By inverting the type rules T-Nu, T-Par, T-Let and T-Claim for the pre-configuration of the step, and by using the same typing

rules (except T-Claim) plus T-Get, T-Release, and T-Grab.

The remaining rules work similarly.

Lemma 3.2 (Soundness of abstractions). If �0 � C and �0 � C
t�⇒, then �0 � t : trace.

Proof. By induction on the number of steps in
t�⇒. The base case of zero steps (which implies t = ε) is immediate, using

L-Empty. The induction for internal steps of the form � � C �⇒ � � Ć follow by subject reduction for internal steps from

Lemma 2.9; in particular, internal steps do not change the context �. Remain the external steps of Table 10. First note the

contexts � are updated by each external step to �́ the same way as the contexts are updated in the legal trace system.

The cases for incoming communication are checked straightforwardly, as the operational rules check incoming

communication for legality, already, i.e., the premises of the operational rules have their counterparts in the rules for legal

traces.

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 511

Case: CallI

Immediate, as the premises of L-CallI coincide with the ones of CallI.

Case: Claim1 and Get1
The two cases are covered by rule L-Get1, which has the same premises as the operational rules.

Case: Claim2

Trivial, as the step is an internal one.

Case: Claim3 and Get2
The two cases are covered by L-Get2.

The cases for outgoing communication are slightly more complex, as the label in the operational rule is not type-checked

or checked for well-formedness as for incoming communication and as is done in the rules for legality.

Case: CallO

We need to check whether the premises of L-CallO, the dual to L-CallI of Table 11, are satisfied. By assumption, the

pre-configuration

� � ν(�1).(C ‖ n′〈let x:T = bind o.l(
v) : T ↪→ n in t〉) (15)

is well-typed. For thread name n this implies, it is bound either in � or in �1, more precisely, either � � n : [T]+− (it is public

interface information that the component has write-permission for n) or �1 � n : [T]+− (the name n is not yet known in the

environment before the communication). In the latter situation we obtain �′ � n : [_]+− by the premise �′ = fn(�a�) ∩ �1

of CallO. Thus, the third premise �′ � n ∨ � � n : [_]+− of L-CallO is satisfied. We furthermore need to check whether the

label is type-correct (checked by premises no. 4 and 5 or L-CallO). Its easy to check that the label is well-formed (cf. the first

part of Definition 2.12). The first premise of the check of equation (6), that the receiving object o is an environment object,

is directly given by the premise � � o of CallO. That the object o supports a method labeled l (of type
T → T) follows from

the fact that the pre-configuration of the call-step is well-typed. So this gives L-CallO’s premise �́ � o.l! :
T → T . Remains

the type check �́ � �a� :
T → _ (checking that the transmitted values
v are of the expected type
T), which again follows from

well-typedness of Eq. (15) (especially inverting T-Bind).

The remaining cases work similarly.

Remark 3.3 (Comparison with reentrant threading). In a multi-threaded setting with synchronous method calls (see for

instance [4] [80]), the definition of legal traces is more complicated. Especially, to judgewhether a trace s is possible requires

referring to the past. I.e., instead of judgments of the form of Eq. (10), the check for legality with synchronous calls uses

judgments of the form:

� � r � s : trace,

reading “after history r (and in the context�), the trace s is possible”. This differencehasoncemore todowith reentrance, resp.

with the absence of this phenomenonhere. In the threaded case,where, e.g., an outgoing call can be followed by a subsequent

incoming call as a “call-back”. To check therefore, whether a call or a return is possible as a next step involves checking the

proper nesting of the call- and return labels. This nesting requirement (also called the balance condition) degenerates here

in the absence of call-backs to the given requirement that each call uses a fresh (future) identity and that each get-label

(taking the role of the return label in the multithreaded setting) is preceded by exactly one matching preceding call. This

can be judged by � � n : [_] or � � n : [_] (depending on whether we are dealing with incoming or outgoing get-labels) and

especially, no reference to the history of interface interactions is needed.

Remark 3.4 (Monitors). The objects of the calculus act as monitors as they allow only one activity at a time inside the object.

For the operational semantics of Section 2.3, the lock-taking is part of the internal steps. In other words, the handing-over of

the call at the interface and the actual entry into the synchronized method body is non-atomic, and at the interface, objects

are input-enabled.

This formalization therefore resembles the one used for the interface description of Java-like reentrantmonitors in [3]. To

treat the interface interactionandactual lock-grabbingasnon-atomic leads toacleanseparationof concernsof thecomponent

and of the environment. In [3], this non-atomicity, however, gives rise to quite complex conditions characterizing the legal

interface behavior. In short, in the setting of [3], it is non-trivial to characterize exactly those situations, when the lock of the

object is necessarily taken by one thread which makes certain interactions of other threads impossible. This characterization

is non-trivial especially as the interface interaction is non-atomic.

Note, however, that these complications are not present in the current setting with active objects, even if the objects

act as monitors like in [3]. The reason is simple: there is no need to capture situations when the lock is taken. In Java, the

synchronization behavior of a method is part of the interface information. Concretely, the synchronized-modifier of Java,

specifies that the method’s body is executed atomically in that object without interference of other6 threads, assuming that

6 Note that a thread can “interfere” in that setting with itself due to recursion and reentrance.

Author's personal copy
ARTICLE IN PRESS

512 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

all other methods of the callee are synchronized, as well. Here, in contrast, there is no interface information that guarantees

that a method body is executed atomically. In particular, the method body can give up the lock temporarily via the suspend-
statement, but this fact is not reflected in the interface information here. This absence of knowledge simplifies the interface

description considerably.

4. Conclusion

We presented an open semantics describing the interface behavior of components in a concurrent object-oriented lan-

guagewith futures and promises. The calculus corresponds to the core of the Creol language, including classes, asynchronous

method calls, the synchronization mechanism, and futures, and extended by promises. Concentrating on the black-box

interface behavior, however, the interface semantics is, to a certain extent, independent of the concrete language and is

characteristic for the mentioned features; for instance, extending Javawith futures (see also the citations below) would lead

to a quite similar formalization (of course, low level details may be different). Concentrating on the concurrency model,

certain aspects of Creol have been omitted here, most notably inheritance and safe asynchronous class upgrades.

Related work

The general concept of “delayed reference” to a result of a computation to be yet completed is quite old. The notion of

futures was introduced by Baker and Hewitt [21], where (future e) denotes an expression executed in a separate thread, i.e.,

concurrently with the rest of the program. As the result of the e is not immediately available, a future variable (or future) is

introduced as placeholder, which will eventually contain the result of e. In the meantime, the future can be passed around,

and when it is accessed for reading (“touched” or “claimed”), the execution suspends until the future value is available,

namely when e is evaluated. The principle has also been calledwait-by-necessity [26,27]. Futures provide, at least in a purely

functional setting, an elegant means to introduce concurrency and transparent synchronization simply by accessing the

futures. They have been employed for the parallel Multilisp programming language [52].

Indeed, quite a number of calculi and programming languages have been equipped with concurrency using future-like

mechanisms and asynchronous method calls. Flanagan and Felleisen [42–44] present an operational semantics, based on

evaluation contexts, for a λ-calculus with futures. The formalization is used for analysis and optimization to eliminate

superfluous dereferencing (“touches”) of future variables. The analysis is an application of a set-based analysis and the

resulting transformation is known as touch optimization.Moreau [70] presents a semantics of Scheme equippedwith futures

and control operators. Promises is a mechanism quite similar to futures and actually the two notions are sometimes used

synonymously. They have been proposed in [67]. A language featuring both futures and promises as separate concepts, is

Alice ML [17,64,79].

Niehren et al. [72] presents a concurrent call-by-value λ-calculuswith reference cells (i.e., a non-purely functional calculus

with an imperative part and a heap) and with futures (λfut), which serves as the core of Alice ML [17,77,64]. Certain aspects

of that work are quite close to the material presented here. In particular, we were inspired by using a type system to

avoid fulfilling a promise twice (in [72] called handle error). There are some notable differences, as well. The calculus

incorporates futures and promises into a λ-calculus, such that functions can be executed in parallel. In contrast, the notion of

futures here, in an object-oriented setting, is coupled to the asynchronous execution of methods. Furthermore, the object-

oriented setting here, inspired by Creol, is more high-level. In contrast, λfut relies on an atomic test-and-set operation when

accessing the heap to avoid atomicity problems. Besides that, they formalize promises using the notion of handled futures,

i.e., the two roles of a promise, the writing- and the reading part, are represented by two different references, where the

handle to the futures represents the writing-end. Apart from that, [72] are not concerned with giving an open semantics

as here. On the other hand, the paper investigates the role of the heap and the reference cells, and gives a formal proof

that the only source of non-determinism by race conditions in their language actually are the reference cells and without

those, the language becomes (uniformly) confluent.7 Recently, an observational semantics for the (untyped) λfut-calculus has

been developed in [71]. The observational equivalence is based on may- and must-program equivalence, i.e., two program

fragments are considered equivalent, if, for all observing environments, they exhibit the same necessary and potential

convergence behavior.

Futures have also been investigated in the object-oriented paradigm. For instance, the object-oriented language Scala

[73] has recently been extended [51] by actor-based concurrency, offering futures and promises as part of the standard

library. The futures and promises are inspired by their use in Alice ML. In Java 5, futures have been introduced as part of the

java.util.concurrent package. As Java does not support futures as a coremechanism for parallelism, they are introduced in

a library. Dereferencing of a future is done explicitly via a get-method (similarly to this paper). A recent paper [86] introduces

safe futures for Java. The safe concept is intended to make futures and the related parallelism transparent and in this sense

goes back to the origins of the concept: introducing parallelism via futures does not change the program’s meaning. While

7 Uniform confluence is a strengthening of the more well-known notion of (just ordinary) confluence; it corresponds to the diamond property of the

one-step reduction property. For standard reduction strategies of a purely functional λ-calculus, only confluence holds, but not uniform confluence. However,

the non-trivial “diamonds” in the operational semantics of λfut are caused not by different redexes within one λ-term (representing one thread), but by

redexes from different threads running in parallel, where the reduction strategy per thread is deterministic (as in our setting, as well).

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 513

straightforward and natural in a functional setting, safe futures in an object-oriented and thus state-based language such

as Java require more considerations. The paper introduces a semantics which guarantees safe, i.e., transparent, futures by

deriving restrictions on the scheduling of parallel executions and uses object versioning. The futures are introduced as an

extension of Featherweight Java (FJ) [54], a core object calculus, and is implemented on top of Jikes RVM [18,25]. Pratikakis

et al. [75] present a constraint-based static analysis for (transparent) futures and proxies in Java, based on type qualifiers

and qualifier inference [45]. Also this analysis is formulated as an extension of FJ by type qualifiers. Similarly, Caromel et

al. [28–30] tackle the problem to provide confluent, i.e., effectively deterministic system behavior for a concurrent object

calculus with futures (asynchronous sequential processes, ASP, an extension of Abadi and Cardelli’s imperative, untyped

object calculus impς [1]) and in the presence of imperative features. The ASP model is implemented in the ProActive Java-

library [31]. The fact, that ASP is derived from some (sequential, imperative) object-calculus, as in the formalization here,

is more a superficial or formal similarity, in particular when being interested in the interface behavior of concurrently

running objects, where the inner workings are hidden anyway. Apart from that there are some similarities and a number of

differences between the work presented here and ASP. First of all, both calculi are centered around the notion of first-class

futures, yielding active objects. The treatment, however, of getting the value back, is done differently in [28]. Whereas here,

the client must explicitly claim a return value of an asynchronous method, if interested in the result, the treatment of the

future references is done implicitly in ASP, i.e., the client blocks if he performs a strict operation on the future (without explicit

syntax to claim the value). Apart from that, the objectmodel ismore sophisticated, in that the calculus distinguishes between

active and passive objects. Here, we simple have objects, which can behave actively or passively (reactively), depending on

the way they are used. In ASP, the units of concurrency are the explicitely activated active objects, and each passive one is

owned and belongs to exactly one active one. Especially, passive objects do not directly communicate with each other across

the boundaries of concurrent activity, all such communication between concurrent activities is mediated and served by the

active objects.

Related to that, a core feature of ASP, not present here, is the necessity to specify (also) the receptive behavior of the

active object, i.e., in which order it is willing to process or serve incoming messages. The simplest serve strategy would be

the willingness to accept all messages and treat them in a first-come, first-serve manner, i.e., a input-enabled FIFO strategy

on the input message queue. The so-called serve-method is the dedicated activity of an active object to accept and schedule

incoming method calls. Typically, as for instance in the FIFO case, it is given an an non-terminating process, but it might

also terminate, in which case the active object together with the passive objects it governs, becomes superfluous: an active

object which does no service any longer does not become a passive data structure, but can no longer react in any way.

As extension of the core ASP calculus, [28, Chapter 10] treats delegation that bears some similarities with the promises

here. By executing the construct delegate(o.l(
v)) (using our notational conventions), a thread n hands over the permission

and obligation to provide eventually a value for the future reference n to method l of object o, thereby losing that permission

itself. That corresponds to executing bind o.l(
v) : T ↪→ n. Whereas in our setting, we must use a yet-unfulfilled promise n for

that purpose, the delegation operator in ASP just (re-)uses the current future for that. Consequently, ASP does not allow the

creation of promises independently from the implicit creation when asynchronously calling a method, as we do with the

promise T construct. In this sense, the promises here are more general, as they allow to profit from delegation and have the

promise as first-class entity, i.e., the programmer can pass it around, for instance, as argument of methods. This, on the other

hand, requires a more elaborate type system to avoid write errors on promises. This kind of error, fulfilling a promise twice,

is avoided in the delegate-construct of ASP not by a type system, but by construction, in that the delegate-construct must

be used only at the end of a method, so that the delegating activity cannot write to the future/promise after it has delegated

the permission to another activity.

Further uses of futures for Java are reported in [68,62,76,83,82]. Futures are also integral part of Io [55] and Scoop (simple

concurrent object-oriented programming) [35,20,69], a concurrent extension of Eiffel. Both languages are based on the active

objects paradigm.

Benton et al. [23] present polyphonic C�, adding concurrency to C�, featuring asynchronous methods and based on the

join calculus [46,47]. Polyphonic C�allows methods to be declared as being asynchronous using the async keyword for the

method type declaration. Besides that, polyphonic C� supports so-called chords as synchronization or join pattern. With

similar goals, Java has been extended by join patterns in [56,57].

In the context of Creol, de Boer et al. [39] present a formal, operational semantics for the language and extend it by futures

(but not promises). Besides the fact, that both operational semantics ultimately formalize a comparable set of features, there

are, at a technical level, a number of differences. For once, here, we simplified the language slightly mainly in two respects

(apart from making it more expressive in adding promises, of course). We left out the “interleaving” operators ‖| and /// of

[39] which allows the user to express interleaving concurrency within one method body. Being interested in the observable

interface behavior, those operations are a matter of internal, hidden behavior, namely leading to non-deterministic behavior

at the interface. Since objects react non-deterministically anyhow, namely due to race conditions present independently of

‖| and ///, those operators have no impact on the possible traces at the interface. The operatorsmight be useful as abstractions

for the programmer, but without relevance for the interface traces, and sowe ignored them here. Another simplification, this

time influencing the interface behavior, is how the programmer can claim the value of a future. This influences, as said, the

interface behavior, since the component may fetch the value of a future being part of the environment, or vice versa. Now,

the design of the Creol-calculus in [39] ismore liberal wrt. what the user is allowed to dowith future references. In this paper,

the interaction is rather restricted: if the client requests the value using the claim-operation, there are basically only two

Author's personal copy
ARTICLE IN PRESS

514 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

Fig. 3. Claiming a future (busy wait).

reactions. If the future computation has already been completed, the value is fetched and the client continues; otherwise it

blocks until, if ever, the value is available. The bottom line is, that the client, being blocked, can never observe that the value

is yet absent. The calculus of [39], in contrast, permits the user to poll the future reference directly, which gives the freedom

to decide, not to wait for the value if not yet available. Incorporating such a construct into the language makes the absence

of the value for a future reference observable and would complicate the behavioral interface semantics to some extent. This

is also corroborated by the circumstance that the expressive power of explicit polling quite complicates the proof theory of

[39] (see also the discussion in the conclusion of [39]). This is not a coincidence, since one crux of the complete Hoare-style

proof systems such as in [39] is to internalize the (ideally observable) behavior into the program state by so-called auxiliary

variable. In particular recording the past interaction behavior in so-called history variables is, of course, an internalization of

the interface behavior, making it visible to the Hoare-assertions. As a further indication that allowing to poll a future quite

adds expressivity to the language is the observation that adding a poll-operation to ASP, destroys a central property of ASP,

namely confluence, as is discussed in [28, Chapter 11].

Apart from that, the combination of claiming a futures, the possibility of polling a future, and a general await-statement

complicates the semantics of claiming a future: in [39], this is done by busy-waiting, which in practice one intends to avoid.

So instead of the behavior described in Fig. 1, the formalization in [39] behaves as sketched in Fig. 3.

After an unsuccessful try to obtain a value of future, the requesting thread is suspended and loses the lock. In order to

continue executing, the blocked thread needs two resources: the value of the future, once it is there, plus the lock again. The

difference of the treatment in Fig. 1 and the one of Fig. 3 for [39] is the order in which the requesting thread attempts to

get hold of these two resources: our formalization first check availability of the future and afterwards re-gains the lock to

continue, whereas [39] do it vice versa, leading to busy wait. The reason why it is sound to copy the future value into the

local state space without already having the lock again (Fig. 1) is , of course, that, once arrive, the future value remains stable

and available.

In addition, our work differs also technically in the way, the operational semantics is represented. de Boer et al. [39]

formulated the (internal) operational semantics using evaluation contexts (as do, e.g. [72] for λfut), whereas we rely on a

“reduction-style” semantics, making use of an appropriate notion of structural congruence. While largely a matter of taste,

it seems to us that, especially in the presence of complicated synchronization mechanisms, for instance the ready queue

representation of [39], the evaluation contexts do not give rise to an immediatelymore elegant specification of the reduction

behavior. Admittedly, we ignored here the internal interleaving operators ‖| and ///, which quite contribute to the complexity

of the evaluation contexts. Another technical difference, if you wish, concerns the way, the futures, threads, and objects

are represented in the operational semantics, i.e., in the run-time syntax of the calculus. Different from our representation,

their semantics makes the active-objects paradigm of Creol more visible: The activities are modeled as part of the object.

More precisely, an object contains, besides the instance state, an explicit representation of the current activity (there called

“process”) executing “inside” the object plus a representation of the ready-queue containing all the activities, which have

been suspended during their execution inside the object. The scheduling between the different activities is then done by

juggling them in and out of the ready-queue at the processor release points. Here, in contrast, we base our semantics on

a separate representation of the involved semantics concepts: (1) classes as generators of objects, (2) objects carrying in

the instance variables the persistent state of the program, thus basically forming the heap, and (3) the parallel activities

in the form of threads. While this representation makes arguably the active-object paradigm less visible in the semantics,

it on the other hand separates the concepts in a clean way. Instead of an explicit local scheduler inside the objects, the

access to the shared instance states of the objects is regulated by a simple, binary lock per object. So, instead of having two

levels of parallelism – locally inside the objects and inter-object parallelism – the formalization achieves the same with just

one conceptual level, namely: parallelism is between threads (and the necessary synchronization is done via object-locks).

Additionally, our semantics is rather close to the object-calculi semantics for multi-threading as in Java (for instance as in

[58,59] or [80]). This allows to see the differences and similarities between the different models of concurrency, and the

largely similar representation could allow are more formal comparison between the interface behaviors in the two settings.

The language Cool [32,33] (concurrent, object-oriented language) is defined as an extension of C++ [81] for task-level

parallelism on shared memory multi-processors. Concurrent execution in Cool is expressed by the invocation of parallel

functions executing asynchronously. Unlike the work presented here, Cool contains future types, which correspond to the

types of the form [T] used here. Further languages supporting futures include ACT-1 [65,66], concurrent Smalltalk [87,91],

and of course the influential actor model [16,50,15], ABCL/1[88,89] (in particular the extension ABCL/f [84]).

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 515

We have characterized the behavioral semantics of open systems, similarly to the one presented here for futures and

promises, in earlier papers, especially for object-oriented languages based on Java-like multi-threading and synchronous

method calls, as in Java or C�. The work [5] deals with thread classes and [4] with re-entrant monitors. In [80] the proofs

of full abstraction for the sequential and multi-threaded cases of a class-based object-calculus can be found. Poetzsch-

Heffter and Schäfer [74] present a behavioral interface semantics for a class-based object-oriented calculus, howeverwithout

concurrency. The language, on the other hand, features an ownership-structured heap.

Future work

An obvious way to proceed is to consider more features of the Creol-language, in particular inheritance and subtyping.

Incorporating inheritance is challenging, as it renders the systemopenwrt. anewformof interaction,namely theenvironment

inheriting behavior froma set of component classes or vice versa. Also Creol’smechanisms for dynamic class upgrades should

be considered from a behavioral point of view (that we expect to be quite more challenging than dealing with inheritance).

An observational, black-box description of the system behavior is necessary for the compositional account of the system

behavior. Indeed, the legal interface description is only a first, but necessary, step in the direction of a compositional and

ultimately fully-abstract semantics, for instance along the lines of [80]. Based on the interaction trace, it will be useful to

develop a logic better suited for specifying the desired interface behavior of a component than enumerating allowed traces.

Another direction is to use the results in the design of a black-box testing framework, aswe started for Java in [38].We expect

that, with the theory at hand, it should be straightforward to adapt the implementation to other frameworks featuring

futures, for instance, to the future libraries of Java 5.

Acknowledgements

We thank Einar Broch Johnsen, Marcel Kyas, Olaf Owe, and Gerardo Schneider for stimulating discussions on the topic.

Furthermore we are thankful for the detailed comments and careful suggestions of the reviewers that helped improving the

paper.

Notation index

2.1 Syntax

Notation Page Meaning

n 493 name (in general, or thread / future / promise name

in particular)

v 493 value

o 493 object name

c 494 class name

() 494 unit value

x 494 variable

C 494 component

0 494 empty component

‖ 494 parallel operator

n〈t〉 494 thread with name n and code t

c[(O)] 494 class with name c and methods and fields defined

in O

o[c, F , L] 494 instance o of class c with fields F and lock L

�, resp., ⊥ 494 value of a taken, resp., free lock

ν 494 ν-operator for hiding

ς(s:T).λ(
x:
T).t 494 method of the abstracted object s with formal

parameters
x and body t

⊥c 494 undefined object reference

f 494 field name

l = ς(s:T).λ().v (or l = v) resp.

l = ς(s:T).λ().⊥c (or l = ⊥c)

494 field definition

v.l() (or v.l) 494 field access

v′.l := ς(s:T).λ().v (or v′.l := v) 494 field update

v⊥ 494 either a value v or a symbol ⊥c

new c 494 object creation

promise T 494 promise creation

bind o.l(
v) : T ↪→ n 494 binding code to a promise

claim, get 495 get the result of a future

suspend, grab, and release 495 lock operations

Author's personal copy
ARTICLE IN PRESS

516 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

2.2 Type system

Notation Page Meaning

B 496 base types (such as integers, etc. Left unspecified)

Unit 496 type of the unit value ()

[T]+− 496 type of a reference to a future with write permisson,

where the future will return a value of type T

[T]+ 496 type of a reference to a future with read-only

permisson, where the future will return a value of

type T

[T] 496 type of a reference to a future with write or read-

only permisson, where the future will return a value

of type T

[l1:U1, . . . , lk:Uk] 496 interface type of unnamed objects

[(l1:U1, . . . , lk:Uk)] 496 interface type for classes

T 496 T1 × . . . × Tk
Unit → T 496 T1 × . . . × Tk → T when k = 0

� 496 name context: typing assumptions about the

environment

� 496 name context: typing commitments of the

component

� � C : � 496 typing judgment

⊕ 496 symmetric operation on well-formed name contexts

 497 stack-organized variable context

n〈•〉 497 not yet fulfilled promise

≤ 497 subtyping relation on types

; � � e : T ::
́, �́ 497 judgment: type system

T .l 497 pick the type in T associated with label l

� \n : T ,
 \n : T , . . . 498 difference operator

2.3 Operational semantics

Notation Page Meaning

� 499 internal transition, confluent step

[12mm]
τ−→ 499 internal transition, other (non-confluent) step

≡ 500 structural congruence

� C : ok 501 write-error free component

� �m C : � 501 minimal typing judgment

� � n = v 504 � contains the corresponding value information

� � n = ⊥ 504 � does not contain the corresponding value

information

� � C : �
a−→ �́ � Ć : �́ 504 external transition

� 504 the tuple of name contexts �,�

γc 504 call label

γg 504 get label

γ? 504 incoming interaction label

γ ! 504 outgoing interaction label

�γ � 504 core of the label γ

fn(a) 504 free names of label a

bn(a) 504 bound names of label a

names(a) 504 all names of label a

fna(a) 504 free names occurring in active position in a

fnp(a) 504 the free names in passive position in a

� a 505 a is well-formed

�́ � o.l? :
T → T 505 an incoming call of the method labeled l in object o

expects arguments of type
T and results in a value of

type T

�́ � a :
T → _resp., �́ � a : _ → T 505 well-typedness of an incoming core label a with ex-

pected type
T , resp., T , and relative to the name

context �́

Author's personal copy
ARTICLE IN PRESS

E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518 517

2.3 Operational semantics

Notation Page Meaning

; �́ �
v :
T 505 �́0 abbreviate ; �́, then �́i � vi : Ti and �́i+1 = �́i \ Ti,
for all 0 ≤ i ≤ n − 1

�́ = � + a 506 context update

3 Interface behavior

Notation Page Meaning

� � s : trace 507 judgment: legal trace

��� 508 binding replacement

References

[1] M. Abadi, L. Cardelli, Monographs in Computer Science, Springer-Verlag, 1996.
[2] E. Ábrahám, I. Grabe, A. Grüner, M. Steffen, Behavioral Interface Description of an Object-Oriented Language with Futures and Promises, Technical

Report 364, University of Oslo, Dept. of Computer Science, October 2007.
[3] E. Ábrahám, A. Grüner, and M. Steffen, Abstract interface behavior of object-oriented languages with monitors, in: R. Gorrieri, H. Wehrheim [49], pp.

218–232.
[4] E. Ábrahám, A. Grüner, M. Steffen, Abstract interface behavior of object-oriented languages with monitors, Theory Comput. Syst. 43 (3–4) (2008)

322–361.
[5] E. Ábrahám, A. Grüner, M. Steffen, Heap-abstraction for open, object-oriented systemswith thread classes, J. Softw. Syst. Modell. (SoSyM) 7 (2) (2008)

177–208.May.
[6] ACM, Object oriented programming: systems, languages, and applications (OOPSLA)’86, 1986, in: SIGPLAN Notices, vol. 21(11).
[7] ACM, in: 23rd Annual Symposium on Principles of Programming Languages (POPL) (St. Petersburg Beach, Florida), January 1996.
[8] ACM, ACM Conference on Programming Language Design and Implementation, May 1999.
[9] ACM, Object oriented programming: systems, languages, and applications (OOPSLA)’99, 1999, in: SIGPLAN Notices.

[10] ACM, Object oriented programming: systems, languages, and applications (OOPSLA)’02 (Seattle, USA), November 2002, in: SIGPLAN Notices.
[11] ACM, eighteenth object oriented programming: systems, languages, and applications (OOPSLA)’03, 2003, in: SIGPLAN Notices.
[12] ACM, in: 31th Annual Symposium on Principles of Programming Languages (POPL), January 2004.
[13] ACM, Nineteenth object oriented programming: systems, languages, and applications (OOPSLA)’04, 2004, in: SIGPLAN Notices.
[14] ACM, Twentieth object oriented programming: systems, languages, and applications (OOPSLA)’05, 2005, in: SIGPLAN Notices.
[15] G.A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge, MA, 1986.
[16] G.A. Agha, I.A. Mason, S.F. Smith, C.L. Talcott, Towards a theory of actor computation (extended abstract), in: R. Cleaveland [34], pp. 565–579.
[17] Alice project home page, 2006. <www.ps-uni-sb.de/alice>.
[18] B. Alpern, C.R. Attanasio, J.J. Barton, A. Cocchi, S.F. Hummel, D. Lieber, T. Ngo, M. Mergen, J.C. Sheperd, S. Smith, Implementing Jalapeno in Java, in:

OOPSLA’99 [9], in: SIGPLAN Notices, pp. 313–324.
[19] P. America, Issues in the design of a parallel object-oriented language, Formal Aspects Comput. 1 (4) (1989) 366–411.
[20] V. Arslan, P. Eugster, P. Nienaltowski, S. Vaucouleur, Scoop – concurrency made easy, in: J. Kohlas et al. [63], pp. 82–102.
[21] H. Baker, C. Hewitt, The incremental garbage collection of processes, ACM Sigplan Notices 12 (1977) 55–59.
[22] G. Barthe, P. Dybjer, L. Pinto, J. Saraiva (Eds.), Applied Semantics, International Summer School, APPSEM 2000, Caminha, Portugal, September 9–15,

2000, Advanced Lectures, Lecture Notes in Computer Science, vol. 2395, Springer-Verlag, 2002.
[23] N. Benton, L. Cardelli, C. Fournet, Modern concurrency abstraction for C#, ACM Trans. Program. Lang. Syst. 26 (5) (2004) 769–804.
[24] M.M. Bonsangue, E.B. Johnsen (Eds.), Proceedings of the 8th IFIP International Conference on Formal Methods for Open Object-Based Distributed

Systems (FMOODS’07), Cyprus, Greece, Lecture Notes in Computer Science, vol. 4468, Springer-Verlag, June 2007.
[25] M.G. Burke, J.-D. Choi, S.F. Fink, D. Grove, M. Hind, V. Sarkar, M. Serranon, V.C. Sreedhar, H. Srinivasan, J. Whaley. The Jalapeno dynamic optimizing

compiler, in: Proceedings of the ACM Java Grande Conference, San Francisco, 1999, pp. 129–141.
[26] D. Caromel, Service, asynchrony and wait-by-necessity, J. Object-Oriented Program. 2 (4) (1990) 12–22.
[27] D. Caromel, Towards a method of object-oriented concurrent programming, Commun. ACM 36 (9) (1993) 90–102.
[28] D. Caromel, L. Henrio, Asynchrony – Mobility – Groups – Components, Springer-Verlag, 2005.
[29] D. Caromel, L. Henrio, B.P. Serpette, Asynchronous sequential processes, Research Report RR-4753 (version 2), INRIA Sophia-Antipolis, May 2003.
[30] D. Caromel, L. Henrio, B.P. Serpette, Asynchronous and deterministic objects, in: POPL’04 [12], pp. 123–134.
[31] D. Caromel, W. Klauser, J. Vayssière, Towards seamless computing and metacomputing in Java, Conc., Pract. Exper., 10 (11–13) (1998) 1043–1061.

ProActive available from: <www.infria.fr/oasis/proactive>.
[32] R. Chandra. The COOL Parallel Programming Language: Design, Implementation, and Performance, PhD thesis, Stanford University, April 1995.
[33] R. Chandra, A. Gupta, J.L. Hennessy, COOL: A language for parallel programming, Selected papers of the SecondWorkshop on Languages and Compilers

for Parallel Computing, Pitman Publishing, 1990, pp. 126–148.
[34] R. Cleaveland (Ed.), Third International Conference on Concurrency Theory (CONCUR’92, Stony Brook, NY), Lecture Notes in Computer Science, vol.

630, Springer-Verlag, 1992.
[35] M.J. Compton. SCOOP: An investigation of concurrency in Eiffel. Master’s thesis, Department of Computer Science, The Australian National University,

2000.
[36] Proceedings of Coordination Languages andModels (Proceedings of COORDINATION’07), LectureNotes in Computer Science, vol. 4467, Springer-Verlag,

2007.
[37] The Creol language, 2007. <http://heim.ifi.uio.no/creol>.
[38] F.S. de Boer, M.M. Bonsangue, A. Grüner, M. Steffen. Test driver generation from object-oriented interaction traces (extended abstract), in: Proceedings

of the 19th Nordic Workshop on Programming Theory (NWPT’07). University of Oslo, Dept. of Computer Science, Technical Report, vol. 366, 2007, pp.
52–54.

[39] F.S. de Boer, D. Clarke, E.B. Johnsen, A complete guide to the future, in: de Nicola [40], pp. 316–330.
[40] R. de Nicola (Ed.), ESOP’07, Lecture Notes in Computer Science, vol. 4421, Springer-Verlag, 2007.
[41] The E language, 2007. <www.erights.org>.
[42] C. Flanagan, M. Felleisen, The semantics of future, Technical Report TR94-238, Department of Computer Science, Rice University, 1994.
[43] C. Flanagan, M. Felleisen, Well-founded touch optimization of parallel scheme, Technical Report TR94-239, Department of Computer Science, Rice

University, 1994.
[44] C. Flanagan, M. Felleisen, The semantics of future and an application, J. Funct. Program. 9 (1) (1999) 1–31.
[45] J. Foster,M. Fändrich, A. Aiken, A theory of type qualifiers, in: ACMConference on Programming LanguageDesign and Implementation [8], pp. 192–203.

Author's personal copy
ARTICLE IN PRESS

518 E. Abraham et al. / Journal of Logic and Algebraic Programming 78 (2009) 491–518

[46] C. Fournet, G. Gonthier, The reflexive chemical abstract machine and the join-calculus, in: POPL’96 [7], pp. 372–385.
[47] C. Fournet, G. Gonthier, The join calculus: a language for distributed mobile programming, in: Barthe et al. [22], pp. 268–332.
[48] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1) (1987) 1–102.
[49] R. Gorrieri, H. Wehrheim (Eds.), Proceedings of the 8th IFIP International Conference on Formal Methods for Open Object-Based Distributed Systems

(FMOODS’06), Bologna, Italy, Lecture Notes in Computer Science, vol. 4037, Springer-Verlag, 2006.
[50] I.A.M. Gul, A. Agha, S.F. Smith, C.L. Talcott, A foundation for actor computation, J. Funct. Program. 7 (1) (1997) 1–72.
[51] P. Haller, M. Odersky, Actors that unify threads and events, in: COORDINATION’07 [36], A longer version is available as EPFF Technical Report, pp.

171–190.
[52] R.H. Halstead Jr., Multilisp: a language for concurrent symbolic computation, ACM Trans. Program. Languages Syst. 7 (4) (1985) 501–538.
[53] IEEE, Seventeenth Annual Symposium on Logic in Computer Science (LICS) (Copenhagen, Denmark), Computer Society Press, July 2002.
[54] A. Igarashi, B.C. Pierce, P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ, in: OOPSLA’99 [9], SIGPLAN Notices, pp. 132–146.
[55] Io, A small programming language, 2007. <www.iolanguage.com>.
[56] G.S. Itzstein, D. Kearney, Join Java: an alternative concurrency semantics for Java, Technical Report ACRC-01-001, University of South Australia, 2001.
[57] G.S. Itzstein, D. Kearney, Applications of join Java, in: Proceedings of the Australian Conferences in Research and Practice in Information Technology,

vol. 6, 2002, pp. 37–46.
[58] A. Jeffrey, J. Rathke, A fully abstract may testing semantics for concurrent objects, in: LICS’02 [53], pp. 101–112.
[59] A. Jeffrey, J. Rathke, Java Jr.: a fully abstract trace semantics for a core Java language, in: Sagiv [78], pp. 423–438.
[60] E.B. Johnsen, O. Owe, I.C. Yu, Creol: a type-safe object-oriented model for distributed concurrent systems, Theoret. Comput. Sci. 365 (1–2) (2006)

23–66.
[61] C.B. Jones, M. Broy (Eds.), Working Conference on Programming Concepts, Methods and Calculi, Sea of Gallilee, North-Holland, Israel, 1990.
[62] JSR 166, Concurrency utilities, 2007. <www.jcp.org/en/jsr/detail?id=166>.
[63] J. Kohlas, B. Meyer, A. Schiper (Eds.), Dependable Systems: Software, Computing, Networks, Research Results of the DICS Program, Lecture Notes in

Computer Science, vol. 4028, Springer, 2006.
[64] L. Kornstaedt, Alice in the landofOz–an interoperability-based implementationof a functional languageon topof a relational language, in: Proceedings

of the FirstWorkshop onMulit-Language Infrastructure and Interoperability (BABEL’01), Electronic Notes in Theoretical Computer Science, September
2001.

[65] H. Liebermann, A preview of ACT-1. AI-Memo AIM-625, Artificial Intelligence Laboratory, MIT, 1981.
[66] H. Liebermann, Concurrent object-oriented programming in ACT1, in: A. Yonezawa, M. Tokoro [90], pp. 9–36.
[67] B. Liskov, L. Shrira, Promises: linguistic support for efficient asynchronous procedure calls in distributed systems, SIGPLAN Notices 23 (7) (1988)

260–267.
[68] D.A. Manolescu, Workflow enactment with continuation and future objects, in: OOPSLA’02 [10], SIGPLAN Notices, pp. 40–51.
[69] B. Meyer, Systematic concurrent object-oriented programming, Commun. ACM 36 (9) (1993) 56–80.
[70] L. Moreau, The semantics of Scheme with future, International Conference on Functional Programming, ACM Press, 1996, pp. 146–156.
[71] J. Niehren, D. Sabel,M. Schmidt-Schauß, J. Schwinghammer, Observational semantics for a concurrent lambda calculuswith reference cells and futures,

Electron. Notes Theoret. Comput. Sci. 173 (2007) 313–337.
[72] J. Niehren, J. Schwinghammer, G. Smolka, A concurrent lambda-calculus with futures, Theoret. Comput. Sci. 64 (3) (2006) 338–356.
[73] M. Odersky, L. Spoon, B. Venners, Programming in Scala, A comprehensive step-by-step guide, Artima Developer, 2008.
[74] A. Poetzsch-Heffter, J. Schäfer, A representation-independent behavioral semantics for object-oriented components, in: M.M. Bonsangue, E.B. Johnsen

[24], pp. 157–173.
[75] P. Pratikakis, J. Spacco, M.W. Hicks, Transparent proxies for Java futures, in: OOPSLA’03 [13], SIGPLAN Notices, pp. 206–233.
[76] R.R. Raje, J.I. William, M. Boyles, An asynchronous method incocation (ARMI) mechanism for Java, in: Proceedings of the ACM Workshop on Java for

Science and Engineering Computation, 1997, pp. 1207–1211.
[77] A. Rossberg, D. Le Botlan, G. Tack, T. Brunklaus, G. Smolka, Alice through the looking glass, in: Trends in Functional Programming, vol. 5, Intellect Books,

Bristol, 2006, pp. 79–96[Chapter 6].
[78] M. Sagiv (Ed.), Proceedings of ESOP 2005, Lecture Notes in Computer Science, vol. 3444, Springer-Verlag, 2005.
[79] J. Schwinghammer, A concurrent λ-calculus with promises and futures, Diplomarbeit, Universität des Saarlandes, February 2002.
[80] M. Steffen, Object-connectivity and observability for class-based, object-oriented languages, Habilitation thesis, Technische Faktultät der Christian-

Albrechts-Universität zu Kiel, July 2006.
[81] B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986.
[82] T. Sysala, J. Janecek, Optimizing remote method invocation in Java, in: DEXA, June 2001, pp. 29–35.
[83] É. Tanter, J. Noyé, D. Caromel, P. Cointe, Partial behavioral reflection: spatial and temporal reflection of reification, in: OOPSLA’03 [11], SIGPLANNotices,

pp. 27–46.
[84] K. Taura, S. Matsuoka, A. Yoneazawa. ABCL/f: a future-based polymorphic typed concurrent object-oriented language – its design and implementation,

in DIMACS Workshop on Specification of Parallel Algorithms, American Mathematical Society, 1994, pp. 275–292.
[85] P.L. Wadler, Linear types can change the world, in: C.B. Jones and M. Broy [61], pp. 347–359.
[86] A. Welc, S. Jagannathan, A. Hosking, Safe futures in Java, in: OOPSLA’03 [14], SIGPLAN Notices, pp. 439–453.
[87] Y. Yokote, M. Tokoro, Concurrent programming in concurrent SmallTalk, in: A. Yonezawa, M. Tokoro [90], pp. 129–158.
[88] A. Yonezawa, ABCL: An Object-Oriented Concurrent System, MIT Press, 1990.
[89] A. Yonezawa, J.-P. Briot, E. Shibayama. Object-oriented concurrent programming in ABCL/1, in: OOPSLA’86 [6], SIGPLAN Notices 21(11), pp. 258–268.
[90] A. Yonezawa, M. Tokoro (Eds.), Object-oriented Concurrent Programming, MIT Press, 1987.
[91] Y. Yonezawa, E. Shibayama, T. Takada, Y. Honda, Modelling and programming in an object-oriented concurrent language ABCL 1, in: A. Yonezawa, M.

Tokoro [90], pp. 55–89.

