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Abstract

Late binding allows �exible code reuse but complicates formal reason-
ing signi�cantly, as a method call's receiver class is not statically known.
This is especially true when programs are incrementally developed by ex-
tending class hierarchies. This paper develops a novel method to reason
about late bound method calls. In contrast to traditional behavioral sub-
typing, reveri�cation is avoided without restricting method overriding to
fully behavior-preserving rede�nition. The approach ensures that when
analyzing the methods of a class, it su�ces to consider that class and its
superclasses. Thus, the full class hierarchy is not needed, and incremental

reasoning is supported. We formalize this approach as a calculus which
lazily imposes context-dependent subtyping constraints on method de�-
nitions. The calculus ensures that all method speci�cations required by
late bound calls remain satis�ed when new classes extend a class hierar-
chy. The calculus does not depend on a speci�c program logic, but the
examples in the paper use a Hoare style proof system. We show soundness
of the analysis method. The paper �nally demonstrates how lazy behav-
ioral subtyping can be combined with interface speci�cations to produce
an incremental and modular reasoning system for object-oriented class
hierarchies.

1 Introduction

Late binding of method calls is a central feature in object-oriented languages
and contributes to �exible code reuse. A class may extend its superclasses with
new methods, possibly overriding the existing ones. This �exibility comes at a
price: It signi�cantly complicates reasoning about method calls as the binding
of a method call to code cannot be statically determined; i.e., the binding at
run-time depends on the actual class of the called object. In addition, object-
oriented programs are often designed under an open world assumption: Class

∗This work was done the context of the EU project IST-33826 CREDO: Modeling and
analysis of evolutionary structures for distributed services (http://credo.cwi.nl).
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hierarchies are extended over time as subclasses are gradually developed and
added. In general, a class hierarchy may be extended with new subclasses in
the future, which will lead to new potential bindings for overridden methods.

To control this �exibility, existing reasoning and veri�cation strategies im-
pose restrictions on inheritance and rede�nition. One strategy is to ignore open-
ness and assume a closed world; i.e., the proof rules assume that the complete
inheritance tree is available at reasoning time (e.g., [44]). This severely restricts
the applicability of the proof strategy; for example, libraries are designed to be
extended. Moreover, the closed world assumption contradicts inheritance as an
object-oriented design principle, intended to support incremental development
and analysis. If the reasoning relies on the world being closed, extending the
class hierarchy requires a costly reveri�cation.

An alternative strategy is to re�ect in the veri�cation system that the world
is open, but to constrain how methods may be rede�ned. The general idea
is that in order to avoid reveri�cation, any rede�nition of a method through
overriding must preserve certain properties of the method being rede�ned. An
important part of the properties to be preserved is the method's contract; i.e.,
the pre- and postconditions for its body. The contract can be seen as a de-
scription of the promised behavior of all implementations of the method as part
of its interface description, the method's speci�cation. Best known as behav-
ioral subtyping (e.g, [36,5, 33,45]), this strategy achieves incremental reasoning
by limiting the possibilities for code reuse. Once a speci�cation is given for
a method, this speci�cation may not change in later rede�nitions. However,
behavioral subtyping has been criticized for being overly restrictive and often
violated in practice [46]; e.g., it is not respected by the standard Java library
de�nitions.

This paper relaxes the restriction to property preservation which applies
in behavioral subtyping, while embracing the open world assumption of incre-
mental program development. The basic idea is as follows: given a method m
speci�ed by a precondition p and a postcondition q, there is no need to restrict
the behavior of methods overriding m and require that these adhere to that
speci�cation. Instead it su�ces to preserve the �part� of p and q that is actually
used to verify the program at the current stage. Speci�cally, if m is used in the
program in the form of a method call {r} e.m(. . .) {s}, the pre- and postcondi-
tions r and s at that call-site constitute m's required behavior. It is in fact these
weaker conditions that need to be preserved in order to avoid reveri�cation. We
call the corresponding analysis strategy lazy behavioral subtyping. This strategy
may serve as a blueprint for integrating a �exible system for program veri�ca-
tion of late bound method calls into environments for object-oriented program
development and analysis tools (e.g., [9, 10,12]).

The paper formalizes the lazy behavioral subtyping analysis strategy using
an object-oriented kernel language, based on Featherweight Java [29], and using
Hoare style proof outlines. Formalized as a syntax-driven inference system, class
analysis is done in the context of a proof environment constructed during the
analysis. The environment keeps track of the context-dependent requirements
on method de�nitions, derived from late bound calls in the known class hierar-
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P ::=L{t}
L ::=class C extends C {f M MS}
M ::=m(x){t}
MS ::=m(x) : (p, q)

t ::=v := new C() | v := e.m(e) | v := m(e) | v := e

| skip | if b then t else t fi | t; t
v ::=f | return

Figure 1: Syntax for the language OOL, where C and m are class and method
names (of types Cid and Mid, respectively). Assignable program variables v
include �elds f and the reserved variable return for return values. Expressions
e include v, formal parameters x, the reserved variable this, and Boolean
expressions b.

chy. The strategy is incremental; for the analysis of a class C, only knowledge of
C and its superclasses is needed. We �rst present a simple form of the calculus,
previously published in [21]. In the present paper, the soundness proofs are
given for this calculus. Although this system ensures that old proofs are never
violated, external calls may result in additional proof obligations in a class which
has already been analyzed. As a consequence, it may be necessary to revisit
classes at a later stage in the program analysis. To improve this situation, we
further extend [21] by considering a re�ned version of the calculus which in-
troduces behavioral interfaces to encapsulate objects. The requirements of the
behavioral interfaces implemented by a class become proof obligations for that
class. As a result, the re�ned calculus is both incremental and modular : it is no
longer necessary to revisit a class due to requirements on calls which occur later
during the analysis of unrelated classes. In the re�ned system, subtyping applies
to the inheritance relationship on interfaces, whereas code may be reused more
freely in the class hierarchy.

Paper overview. Section 2 introduces the problem of reasoning about late
binding, Section 3 presents the lazy behavioral subtyping approach developed
in this paper, and Section 4 formalizes of the inference system. Section 5 ex-
tends the inference system with interface encapsulation. The extended system
is illustrated by an example in Section 6. Related work is discussed in Section 7
and Section 8 concludes the paper.

2 Late Bound Method Calls

2.1 Syntax for an Object-Oriented Kernel Language OOL

To succinctly explain late binding and our analysis strategy, we use an object-
oriented kernel language with a standard operational semantics (e.g., similar
to that of Featherweight Java [29]). The language is named OOL, and the
syntax is given in Figure 1. We assume a functional language of side-e�ect free
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expressions e, including �elds f . Vector notation denotes lists; e.g., a list of
expressions is written e. A program P consists of a list L of class de�nitions,
followed by a method body. A class extends a superclass, which may be Object,
with de�nitions of �elds f , methods M , and method speci�cations MS. For
simplicity, we assume that �elds have distinct names, that methods with the
same name have the same signature (i.e., method overriding is allowed but not
overloading), that programs are type-sound so method binding succeeds, and
we ignore the types of �elds and methods. For classes B and C, B ≤ C denotes
the re�exive and transitive subclass relation derived from class inheritance. If
B ≤ C, we say that B is below C and C is above B.

A method M takes formal parameters x and contains a statement t as its
method body where x are read-only. The sequential composition of statements
t1 and t2 is written t1; t2. The statement v := new C() creates a new object of
class C with �elds instantiated to default values, and assigns the new reference to
v. (In OOL, a possible constructor method in the class must be called explicitly.)
We distinguish syntactically between internal calls and external calls. For an
internal call m(e), the method m is executed on self with actual parameters e.
In an external method call e.m(e), the object e (which may be self) receives
a call to the method m with actual parameters e. The statements v := m(e)
and v := e.m(e) assign the value of the method activation's return variable
to v. If m does not return a value, or if the returned value is of no concern,
we sometimes use e.m(e) or m(e) directly as statements for simplicity. Note
that the list e of actual parameter values may be empty. There are standard
statements for skip, conditionals if b then t else t fi, and assignments
v := e. The reserved variable this for self reference is read-only. A method
speci�cation m(x) : (p, q) de�nes a pre/post speci�cation (p, q) of the method
m. For convenience, we let m(x) : (p, q){t} abbreviate the combination of
the de�nition m(x){t} and the speci�cation m(x) : (p, q). Speci�cations of a
method m may be given in the class where m is de�ned or in a subclass. Notice
that even if m is not rede�ned, di�erent subclasses may well have con�icting
speci�cations of m, since internal calls in the body of m may bind di�erently
due to late binding.

2.2 Late Binding

Late binding, or dynamic dispatch, is a central concept of object-orientation and
was already present in Simula [15]. A method call is late bound if the method
body is selected at run-time, depending on the callee's actual class. Late bound
calls are bound to the �rst implementation found above the actual class. For a
method m de�ned in class C, we say that this implementation is visible from
a subclass D if a late bound call to m on an instance of D will bind to the
implementation in C. Late binding is illustrated in Figure 2: an object of class
C2 executes an inherited method n1 de�ned in its superclass C1 and this method
issues a call to a method m de�ned in both classes. With late binding, the code
selected for execution is associated with the �rst matching m above C2; i.e., as
the calling object is an instance of class C2, the method m of C2 is selected and
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class C1 {
m() :(p1, q1) {t1}
n1() :(_,_) {. . . ; {r1} m() {s1}; . . .}
n2() :(_,_) {. . . ; {r2} m() {s2}; . . .}

}

class C2 extends C1 {
m() :(p2, q2) {t2}

}

class C3 extends C1 {
m() :(p3, q3) {t3}

}

Figure 2: Example of a class hierarchy where the method de�nitions are deco-
rated with assertions in the style of proof outlines.

not the one of C1. If, however, n1 were executed in an instance of C1, the late
bound invocation of m would be bound to the de�nition in C1. Late binding
is central for object-oriented programs, and especially underlies many of the
well-known object-oriented design patterns [24].

For an internal call to m, made by a method de�ned in class C, we say that
a de�nition of m in class D is reachable if the de�nition in D is visible from C,
or if D is a subclass of C. As m may be overridden by any subclass of C, there
may be several reachable de�nitions for a late bound call statement. For the
calls to m in class C1 in Figure 2, the de�nitions of m in C1, C2, and C3 are
all reachable. At run-time, one of the reachable de�nitions is selected based on
the actual class of the called object. Correspondingly, for an external call e.m()
where e : E, a de�nition of m in class D is reachable if the de�nition is visible
from E or if D is a subclass of E.

2.3 Proof Outlines

Apart from the treatment of late bound method calls, our initial reasoning
system follows standard proof rules [7,8] for partial correctness, adapted to the
object-oriented setting; in particular, de Boer's technique using sequences in the
assertion language addresses the issue of object creation [16]. We present the
proof system using Hoare triples {p} t {q} [25], where p is the precondition and
q is the postcondition to the statement t. The meaning of a triple {p} t {q} is
standard: if t is executed in a state where p holds and the execution terminates,
then q holds after t has terminated. The derivation of triples can be done
in any suitable program logic. Let PL be such a program logic and let `PL

{p} t {q} denote that {p} t {q} is derivable in PL. A proof outline [41] for a
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(Assign) {q[e/v]} v := e {q}
(New) {q[newC/v]} v := new C() {q}
(Skip) {q} skip {q}

(Seq)
{p} t1 {r} {r} t2 {q}

{p} t1; t2 {q}

(Cond)
{p ∧ b} t1 {q} {p ∧ ¬b} t2 {q}
{p} if b then t1 else t2 fi {q}

(Adapt)
p⇒ p1 {p1} t {q1} q1 ⇒ q

{p} t {q}

(Call)
∀i ∈ implements(classOf(e),m) · {pi} body i

m(x) {qi}
{
∧

i(pi[e/x])} v := e.m(e) {
∨

i(qi[e, v/x,return])}

Figure 3: Closed world proof rules. Let classOf(e) denote the class of object
e and p[e/v] the substitution of all occurrences of v in p by e [25], extended
for object creation following [44]. The function implements(C,m) returns all
classes where a call to m from class C may be bound, and body i

m(x) gives the
body ofm for class i (assuming that all de�nitions ofm have the same parameter
list x).

method de�nition m(x){t} is an method body decorated with assertions. For
the purposes of this paper, we are mainly interested in decorated method calls
with pre- and postconditions.

Let the notation O `PL t : (p, q) mean that O is such a proof outline proving
that the speci�cation (p, q) holds for a body t; i.e., `PL {p} O {q} holds when
assuming that the pre- and postconditions provided in O for the method calls
contained in t are correct. The pre- and postconditions for these method calls
are called requirements. Thus, for a decorated call {r} n() {s} in O, (r, s) is
a requirement for n. In order to ensure that this requirement is correct, every
reachable de�nition of n must be analyzed.

2.4 Reasoning about Late Bound Calls in Closed Systems

If the proof system assumes a closed world, all classes must be de�ned before
the analysis can begin, as the requirement to a method call is derived from the
speci�cations of all reachable implementations of that method. To simplify the
presentation in this paper, we omit further details of the assertion language and
the proof system (e.g., ignoring the representation of the program semantics �
for details see [44]). The corresponding proof system is given in Figure 3; the
proof rule (Call) captures late binding under a closed world assumption. The
following example illustrates the proof system.

Example 1 Consider the class hierarchy of Figure 2, where the methods are
decorated with proof outlines. The speci�cations of methods n1 and n2 play

6



no role in the discussion and are given a wild-card notation (_,_). Assume
O1 `PL t1 : (p1, q1), O2 `PL t2 : (p2, q2), and O3 `PL t3 : (p3, q3) for the
de�nitions of m in classes C1, C2, and C3, respectively. Consider initially the
class hierarchy consisting of C1 and C2 and ignore C3 for the moment. The proof
system of Figure 3 gives the Hoare triple {p1 ∧ p2} m() {q1 ∨ q2} for each call to
m, i.e., for the calls in the bodies of methods n1 and n2 in class C1. In order to
apply (Adapt), we get the proof obligations: r1 ⇒ p1∧p2 and q1∨q2 ⇒ s1 for n1,
and r2 ⇒ p1∧p2, and q1∨ q2 ⇒ s2 for n2. If the class hierarchy is now extended
with C3, the closed world assumption breaks and the methods n1 and n2 need
to be reveri�ed. With the new Hoare triple {p1 ∧ p2 ∧ p3} m() {q1 ∨ q2 ∨ q3} at
every call site, the proof obligations given above for applying (Adapt) no longer
apply.

3 A Lazy Approach to Incremental Reasoning

This section informally presents the approach of lazy behavioral subtyping.
Based on an open world assumption, lazy behavioral subtyping supports incre-
mental reasoning about extensible class hierarchies. The approach is oriented
towards reasoning about late bound calls and is well-suited for program devel-
opment, being less restrictive than behavioral subtyping. A formal presentation
of lazy behavioral subtyping is given in Section 4.

To illustrate the approach, �rst reconsider class C1 of Example 1. The
analysis for n1 and n2 requires that {r1} m() {s1} and {r2} m() {s2} hold for
the internal calls to m in the bodies of n1 and n2, respectively. The assertion
pairs (r1, s1) and (r2, s2) may be seen as requirements to all reachable de�nitions
of m. Consequently, for m's de�nition in C1, both {r1} t1 {s1} and {r2} t1 {s2}
must hold. Compared to Example 1, the proof obligations for method calls have
shifted from the call to the de�nition site, which allows incremental reasoning.
During the veri�cation of a class only the class and its superclasses need to be
considered, subclasses are ignored. If we later analyze subclass C2 or C3, the
same requirements apply to their de�nition of m. Thus, no reveri�cation of the
bodies of n1 and n2 is needed when new subclasses are analyzed.

Although C1 is analyzed independently of C2 and C3, its requirements must
be considered during the analysis of the subclasses. For this purpose, a proof en-
vironment is constructed and maintained during the analysis. While analyzing
C1, it is recorded in the proof environment that C1 requires both (r1, s1) and
(r2, s2) from m. Subclasses are analyzed in the context of this proof environ-
ment, and may in turn extend the proof environment with new requirements,
tracking the scope of each requirement. For two independent subclasses, the
requirements made by one subclass should not a�ect the other. Hence, the or-
der of subclass analysis does not in�uence the assertions to be veri�ed in each
class. To avoid reveri�cation, the proof environment also tracks the speci�ca-
tions established for each method de�nition. The analysis of a requirement to
a method de�nition succeeds directly if the requirement follows from the pre-
viously established speci�cations of that method. Otherwise, the requirement
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may make a new proof outline for the method necessary.

3.1 Assertions and Assertion Entailment

Consider an assertion language with expressions e de�ned by

e ::= this | return | f | x | z | ops(ē)

In the assertion language, f is a program �eld, x a formal parameter, z a logical
variable, and ops an operation on abstract data types. An assertion pair (of
type APair) is a pair (p, q) of Boolean expressions. Let p′ denote an expression
p with all occurrences of program variables f substituted by f ′, avoiding name
capture. Since we deal with sets of assertion pairs, the standard adaptation
rule of Hoare Logic given in Figure 3 is insu�cient. We need an entailment
relation which allows us to combine information from several assertion pairs.
Consequently, we lift the entailment relation to assertion pairs and to sets of
assertion pairs as follows:

De�nition 1 (Entailment.) Let (p, q) and (r, s) be assertion pairs and let U
and V denote the sets {(pi, qi) | 1 ≤ i ≤ n} and {(ri, si) | 1 ≤ i ≤ m}. Entailment
is de�ned by

1. (p, q) _ (r, s) , (∀z1 . p⇒ q′)⇒ (∀z2 . r ⇒ s′),
where z1 and z2 are the logical variables in (p, q) and (r, s), respectively.

2. U _ (r, s) , (
∧

1≤i≤n(∀zi . pi ⇒ q′i))⇒ (∀z . r ⇒ s′).

3. U _ V ,
∧

1≤i≤m U _ (ri, si).

The relation U _ (r, s) corresponds to classic Hoare style reasoning, proving
{r} t {s} from {pi} t {qi} for all 1 ≤ i ≤ n, by means of the adaptation and con-
junction rules [7]. Note that when proving entailment, program �elds (primed
and unprimed) are implicitly universally quanti�ed. Furthermore, entailment is
re�exive and transitive, and V ⊆ U implies U _ V.

Example 2 Let x and y be �elds, and z1 and z2 be logical variables. The
assertion pair (x = y = z1, x = y = z1 + 1) entails (x = y, x = y), but it does
not entail (x = z2, x = z2 + 1), since the implication

(∀z1 . x = y = z1 ⇒ x′ = y′ = z1 + 1)⇒ (∀z2 . x = z2 ⇒ x′ = z2 + 1)

does not hold. To see that, consider the program y := y + 1;x := y, which
satis�es the �rst assertion pair, but not the second.

Example 3 This example demonstrates entailment for sets of assertion pairs:
The two assertion pairs (x 6= null, x 6= null) and (y = z1, z1 = null ∨ z1 = y)
entail (x 6= null ∨ y 6= null, x 6= null ∨ y 6= null). This kind of reasoning
is relevant for reasoning about class invariants without behavioral subtyping:
when de�ning a subclass with a di�erent class invariant than the superclass,
the established knowledge of inherited methods may be used to prove the class
invariant of the subclass.
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3.2 Class Analysis with a Proof Environment

The role of the proof environment during class analyses is now illustrated
through a series of examples. The proof environment collects method speci-
�cations and requirements in two mappings S and R. Given a class name and a
method identi�er, these mappings return a set of assertion pairs. The analysis
of a class both uses and extends the proof environment.

Propagation of requirements If the proof outline O `PL t : (p, q) for a
method m(x){t} is derived while analyzing a class C, we extend S(C,m) with
(p, q). The requirements on called methods which are encountered during the
analysis of O are veri�ed for the known de�nitions of these methods that are
visible from C, and imposed on future subclasses. Thus, for each {r} n() {s} in
O, the requirement (r, s) must hold for the de�nition of n that is visible from C.
Furthermore, R(C, n) is extended with (r, s) as a restriction on future subclass
rede�nitions of n.

Example 4 Consider the analysis of class C1 in Figure 2. The speci�cation
(p1, q1) is included in S(C1,m) and the requirements (r1, s1) and (r2, s2) are
included in R(C1,m). Both requirements must be veri�ed for the de�nition of
m in C1, since this is the de�nition of m that is visible from C1. Consequently,
for each (ri, si), S(C1,m) _ (ri, si) must hold, which follows from (p1, q1) _
(ri, si).

In Example 4, the requirements made by n1 and n2 follow from the estab-
lished speci�cation of m. Generally, the requirements need not follow from the
previously shown speci�cations. In the latter case, it is necessary to provide a
new proof outline for the method.

Example 5 If (ri, si) does not follow from (p1, q1) in Example 4, a new proof
outline O `PL t1 : (ri, si) must be analyzed similarly to the proof outlines in
C1. The mapping S(C1,m) is extended by (ri, si), ensuring the desired relation
S(C1,m) _ (ri, si).

The analysis strategy must ensure that once a speci�cation (p, q) is included
in S(C,m), it will always hold when the de�nition of method m in C is executed
in an instance of any (future) subclass of C, without reverifyingm. In particular,
when a method n called by m is overridden, the requirements made by C must
hold for the new de�nition of n.

Example 6 Consider the class C2 in Figure 2, which rede�nes m. By analysis
of the proof outline O2 `PL t2 : (p2, q2), the set S(C2,m) is extended with
(p2, q2). In addition, the superclass requirements R(C1,m) must hold for the
new de�nition of m in order to ensure that the speci�cations of n1 and n2

apply for instances of C2. Hence, S(C2,m) _ (ri, si) must be ensured for each
(ri, si) ∈ R(C1,m), similar to S(C1,m) _ (ri, si) in Example 4.
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When a method m is (re)de�ned in a class C, all invocations of m from
methods in superclasses will bind to the new de�nition for instances of C. The
new de�nition must therefore support the requirements from all superclasses.
Let R↑(C,m) denote the union of R(B,m) for all C ≤ B. For each method m
de�ned in C, it is necessary to ensure the following property:

S(C,m) _ R↑(C,m) (1)

It follows that m must support the requirements from C itself; i.e., the formula
S(C,m) _ R(C,m) holds.

Context-dependent properties of inherited methods Let us now con-
sider methods that are inherited but not rede�ned. Assume that a method m
is inherited from a superclass of a class C. In this case, late bound calls to m
from instances of C are bound to the �rst de�nition of m above C. However,
late bound calls made by m are bound in the context of C, as C may rede�ne
methods invoked by m. Furthermore, C may impose new requirements on m
which were not proved during the analysis of the superclass, resulting in new
proof outlines form. In the analysis of the new proof outlines, we know that late
bound calls are bound from C. It would be unsound to extend the speci�cation
mapping of the superclass, since the new speci�cations are only part of the sub-
class context. Instead, we use S(C,m) and R(C,m) for local speci�cation and
requirement extensions. These new speci�cations and requirements only apply
in the context of C and not in the context of its superclasses.

Example 7 Let the following class extend the class hierarchy of Figure 2:

class C4 extends C1 {
n() :(_,_) {. . . ; {r3} m() {s3}; . . .}

}

Class C4 inherits the superclass implementation of m. The analysis of n's proof
outline yields {r3} m() {s3} as requirement, which is included in R(C4,m)
and veri�ed for the inherited implementation of m. The veri�cation succeeds
if S(C1,m) _ (r3, s3). Otherwise, a new proof outline O4 `PL t1 : (r3, s3) is
analyzed under the assumption that late bound calls are bound in the context
of C4. When analyzed, (r3, s3) becomes a speci�cation of m and it is included
in S(C4,m). This mapping acts as a local extension of S(C1,m) and contains
speci�cations of m that hold in the subclass context.

Assume that a de�nition of a method m in a class A is visible from C.
When analyzing a requirement {r} m() {s} in C, we can then rely on S(A,m)
and the local extensions of this mapping for all classes between A and C. We
assume that programs are type-safe and de�ne a function S ↑ recursively as
follows: S↑(C,m) , S(C,m) if m is de�ned in C and S↑(C,m) , S(C,m) ∪ S↑
(B,m) otherwise, where B is the immediate superclass of C. We can now revise
Equation 1 to account for inherited methods:

S↑(C,m) _ R↑(C,m) (2)
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Thus, each requirement in R(B,m), for some class B above C, must follow from
the established speci�cations of m in context C. Especially, for each (p, q) ∈
R(C,m), (p, q) must either follow from the superclass speci�cations or from the
local extension S(C,m). If (p, q) follows from the local extension S(C,m), we
are in the case when a new proof outline has been analyzed in the context of C.
Note that Equation 2 reduces to Equation 1 if m is de�ned in C.

Analysis of class hierarchies A class hierarchy is analyzed in a top-down
manner, starting with Object and an empty proof environment. Classes are
analyzed after their respective superclasses, and each class is analyzed without
knowledge of its possible subclasses. Methods are speci�ed in terms of assertion
pairs (p, q). For each method m(x){t} de�ned in a class C, we analyze each
(p, q) occurring either as a speci�cation of m, or as an inherited requirement in
R↑(C,m). If S(C,m) _ (p, q), no further analysis of (p, q) is needed. Otherwise
a proof outline O needs to be provided such that O `PL t : (p, q), after which
S(C,m) is extended with (p, q). During the analysis of a proof outline, decorated
internal calls {r} n() {s} yield requirements (r, s) on reachable implementations
of n. The R(C, n) mapping is therefore extended with (r, s) to ensure that
future rede�nitions of n will support the requirement. In addition, (r, s) is
analyzed with respect to the implementation of n that is visible from C; i.e.,
the �rst implementation of n above C. This veri�cation succeeds immediately
if S↑(C, n) _ (r, s). Otherwise, a proof outline for n needs to be analyzed in the
context of C, which again extends S(C, n) by (r, s). Each call statement in this
proof outline is analyzed in the same manner. For external calls {r} x.m() {s},
where x refers to an object of class C ′, we require that (r, s) follows from the
requirements R↑(C ′,m) of m in C ′.

Intuitively, the mapping S re�ects the de�nition of methods; each lookup
S(C,m) returns a set of speci�cations for a particular implementation of m. In
contrast, the mapping R re�ects the use of methods and may impose require-
ments on several implementations.

Lazy behavioral subtyping Behavioral subtyping in the traditional sense
does not follow from the analysis method outlined above. Behavioral subtyp-
ing enforces the property that whenever a method m is rede�ned in a class C,
its new de�nition must implement all superclass speci�cations for m; i.e., the
method would have to satisfy S(B,m) for all B above C. For example, be-
havioral subtyping would imply that m in both C2 and C3 in Figure 2 must
satisfy (p1, q1). Instead, the R mapping identi�es the requirements imposed by
late bound calls. Only these assertion pairs must be supported by overriding
methods to ensure that the execution of code from its superclasses does not
have unexpected results. Thus, only the behavior assumed by the late bound
call statements is ensured at the subclass level. In this way, requirements are
inherited by need, resulting in a lazy form of behavioral subtyping.

Example 8 Consider a class A de�ned by
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class A {
int n(int y) : (true, return = 5y) {return := 5*y}
int m(int x) : (x ≥ 0, return ≥ 2x) {return := n(x)}

}

By the analysis of method n, the mapping S(A,n) is extended with the
speci�cation (true, return = 5y). For the analysis of m, the speci�cation (x ≥
0, return ≥ 2x) is included in S(A,m), and let (y ≥ 0, return ≥ 2y) be the
requirement imposed on the internal call to n in the proof outline for m. This
requirement is included in the mapping R(A,n). Furthermore, the requirement
is veri�ed with regard to the visible de�nition of n, which succeeds by S(A,n) _
R(A,n), i.e.,

(true, return = 5y) _ (y ≥ 0, return ≥ 2y)

Next, consider the following extension of A:

class B extends A {
int n(int y) : (true, return = 2y) {return := 2*y}
int m(int x) : (true, return = 2x)

For class B, we include (true, return = 2y) in S(B,n), and the inherited re-
quirement R(A,n) is veri�ed with regard to the new implementation of n. This
analysis succeeds by S(B,n) _ R(A,n), i.e.,

(true, return = 2y) _ (y ≥ 0, return ≥ 2y)

Note that behavioral subtyping does not apply to the overriding implementation
of n, as the speci�cation S(A,n) cannot be proved for the new implementation.
Even though the overriding does not support behavioral subtyping, the veri�ed
speci�cation of method m still holds at the subclass level because the require-
ment imposed by the call to n in the proof outline for m is satis�ed by the
overriding method.

Class B provides a new speci�cation (true, return = 2x) of m, which is
included in S(B,m). Analysis of the speci�cation leads to the following require-
ment: (true, return = 2y) ∈ R(B,n), which follows directly from the speci�ca-
tion S(B,n). Note that (true, return = 2x) is given as a local extension of the
inherited speci�cation of m. Especially, the extension relies on the fact that the
internal call to n is bound in the context of class B; the requirement imposed
by the call cannot be proven with regard to the implementation of n in A.

4 An Assertion Calculus for Program Analysis

The incremental strategy outlined in Section 3 is now formalized as a calculus
LBS (PL) which tracks speci�cations and requirements for method implementa-
tions in an extensible class hierarchy, given a sound program logic PL. Given
a program, the calculus builds an environment which re�ects the class hierar-
chy and captures method speci�cations and requirements. This environment
forms the context for the analysis of new classes, possibly inheriting previously
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bindE(nil, m) , nil

bindE(C, m) , if m ∈ PE(C).mtds then C else bindE(PE(C).inh, m)

S↑E(nil,m) , ∅
S↑E(C,m) , if m ∈ PE(C).mtds then SE(C,m)

else SE(C,m) ∪ S↑E(PE(C).inh,m)

R↑E(nil,m) , ∅
R↑E(C,m) , RE(C,m) ∪ R↑E(PE(C).inh,m)

bodyE(C,m) , PE(bindE(C, m)).mtds(m).body

C ≤E D , C = D ∨ PE(C).inh ≤E D

Figure 4: Auxiliary function de�nitions

analyzed ones. The proof environment is formally de�ned in Section 4.1, the
operations used by LBS (PL) are de�ned in Section 4.2, and LBS (PL) is given as
a set of inference rules in Section 4.3. The soundness of LBS (PL) is established
in Section 4.4.

4.1 The Proof Environment of LBS (PL)

A class is represented by a tuple 〈D, f,M〉 from which the superclass identi-
�er D, the �elds f , and the methods M are accessible by observer functions
inh, att, and mtds, respectively. Class names are assumed to be unique, and
method names to be unique within a class. The superclass identi�er may be nil,
representing no superclass (for class Object).

De�nition 2 (Proof environments.) A proof environment E of type Env is
a tuple 〈PE , SE ,RE〉, where PE : Cid→ Class is a partial mapping and SE ,RE :
Cid×Mid→ Set[APair] are total mappings.

In a proof environment E , the mapping PE re�ects the class hierarchy, SE(C,m)
the set of speci�cations for m in C, and RE(C,m) a set of requirements to m
from C. For the empty environment E∅, PE∅(C) is unde�ned and SE∅(C,m) =
RE∅(C,m) = ∅ for all C : Cid and m : Mid.

Some auxiliary functions on proof environments E are now de�ned. Let
M.body = t for a method de�nition M = m(x){t}. Denote by M(m) the
de�nition of method with name m in M , by m ∈ M that m is de�ned in M ,
by t′ ∈ t that the statement t′ occurs in the statement t, and by C ∈ E that
PE(C) is de�ned. The function bindE(C, m) : Cid × Mid → Cid returns the
�rst class above C in which the method m is de�ned. Assuming type safety,
this function will never return nil for well-typed programs. Let the recursively
de�ned functions S↑E(C,m) and R↑E(C,m) : Cid×Mid→ Set[APair] return all
speci�cations of m above C and below bindE(C, m), and all requirements to m
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that are made by all classes above C in the proof environment E , respectively.
Finally, bodyE(C,m) : Cid × Mid → Stm returns the implementation of m in
bindE(C, m). Let ≤E : Cid×Cid→ Bool be the re�exive and transitive subclass
relation on E . The de�nitions of these functions are given in Figure 4.

A sound environment re�ects that the analyzed classes are correct. If an
assertion pair appears in SE(C,m), there must be a veri�ed proof outline O in
PL for the corresponding method body, i.e., O `PL bodyE(C,m) : (p, q). Let
n be a method called by m, and let x be the formal parameters of n. For all
internal calls {r′} v := n(e) {s′} in the proof outline O, (r, s) must be included in
RE(C, n), where r′ = r[e/x], and s′ = s[e, v/x,return]. Thus, all requirements
made by the proof outline are in the R mapping. For external calls {r′} v :=
e.n(e) {s′} in O, where e is of typeD, the requirement (r, s) must follow from the
requirements of n in the context of D. Note that D may be independent of C;
i.e., neither above nor below C. Finally, method speci�cations must entail the
requirements (see Equation 2 of Section 3.2). Sound environments are de�ned
as follows:

De�nition 3 (Sound environments.) A sound environment E satis�es the
following conditions for all C : Cid and m : Mid:

1. ∀(p, q) ∈ SE(C,m) . ∃O . O `PL bodyE(C,m) : (p, q)
∧ ∀{r′} v := n(e) {s′} ∈ O . RE(C, n) _ (r, s)
∧ ∀{r′} v := e.n(e) {s′} ∈ O . e : D ⇒ R↑E(D,n) _ (r, s)

2. S↑E(C,m) _ R↑E(C,m)

Note that in Condition 1 of De�nition 3, the method implementation bodyE(C,m)
need not be in C itself; the proof outline O may be given for an inherited method
de�nition.

Reveri�cation is avoided by incrementally extending SE(C,m). If a late
bound call requires a veri�ed speci�cation, it is found in SE(C,m). Thus, the
avoidance of reveri�cation can be seen as a dual to the �rst condition of Def-
inition 3: If O `PL bodyE(C,m) : (p, q) for some proof outline O such that
requirements to the method calls in bodyE(C,m) follow from the requirement
mapping, then the speci�cation (p, q) is added to SE(C,m).

Let |=C {p} t {q} denote |= {p} t {q} under the assumption that internal
calls in t are bound in the context of C, and that each external call in t is bound
in the context of the actual class of the called object. Let |=C m(x) :(p, q) {t}
be given by |=C {p} t {q}. If there are no method calls in t and `PL {p} t {q},
then |= {p} t {q} follows by the soundness of PL. The following property holds
for sound environments:

Lemma 1 Given a sound environment E and a sound program logic PL. For
all classes C : Cid, methods m : Mid, and assertion pairs (p, q) : APair such
that C ∈ E and (p, q) ∈ S↑E(C,m), we have |=D m(x) :(p, q) {bodyE(C,m)} for
each D ≤E C.
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Proof. By induction on the call structure of m. Since (p, q) ∈ S↑E (C,m),
it follows from the de�nition of S↑ in Figure 4 that there exist some class B
such that C ≤E B, bindE(C, m) = bindE(B, m), and (p, q) ∈ SE(B,m). Thus,
bodyE(C,m) = bodyE(B,m). Since (p, q) ∈ SE(B,m), there must, by De�ni-
tion 3, Condition 1, exist some proof outline O such that O `PL bodyE(B,m) :
(p, q).

In this proof outline, each method call is decorated with pre- and postcon-
ditions; i.e., the outline is on the form

{p}t0{r1}call1{s1}t1{r2}call2{s2} . . . {rn}calln{sn}tn{q}

assuming no method calls in the statements t0, . . . , tn. For the di�erent ti,
soundness of PL then gives |=D {p} t0 {r1}, |=D {si} ti {ri+1}, and |=D

{sn} tn {q}, for 1 ≤ i ≤ n − 1. Each call statement is on the form v := n(e)
or v := e.n(e). For internal calls, we must establish |=D {ri} v := n(e) {si} as
these are bound in context D by lemma assumptions. For external calls, given
e : G, we must ensure |=G′ {ri} v := e.n(e) {si} for any G′ ≤E G.

Base case: The execution of bodyE(C,m) does not lead to any method calls.
Then |=D m(x) :(p, q) {bodyE(C,m)} follows by the soundness of PL.

Induction step: For each call to some method n in the body of m, bound in
context E, assume as induction hypothesis that for all (g, h) ∈ S↑E (E,n), we
have |=E n(y) :(g, h) {bodyE(E,n)}. Internal and external calls are considered
separately.

Consider a method call {r′} v := n(e) {s′} in O, and let r′ = r[e/y] and
s′ = s[e, v/y,return]. By the assumptions of the Lemma, the call is bound
in the context of class D ≤E C, which means that the induction hypothesis
reduces to for all (g, h) ∈ S↑E(D,n), we have |=D n(y) :(g, h) {bodyE(D,n)}. By
De�nition 3, Condition 1, we have RE(B,n) _ (r, s). Then |=D {r} n {s} fol-
lows since S↑E(D,n) _ R↑E(D,n) by De�nition 3, Condition 2, which especially
means S↑E(D,n) _ RE(B,n).

Consider a method call {r′} v := e.n(e) {s′} in O, and let r′ = r[e/y],
s′ = s[e, v/y,return], and e : E. From De�nition 3, Condition 1, we have
R↑E(E,n) _ (r, s). The call can be bound in the context of any class E′ below
E. From De�nition 3, Condition 2, we have S↑E (E′, n) _ R↑E (E′, n), which
especially means S↑E(E′, n) _ (r, s). The conclusion |=E′ {r} n {s} then follows
by the induction hypothesis. �

In a minimal environment E , the mapping RE only contains requirements
that are caused by some proof outline; i.e., there are no super�uous require-
ments. Minimal environments are de�ned as follows:

De�nition 4 (Minimal Environments.) A proof environment E is minimal
i�

∀(r, s) ∈ RE(C, n) . ∃ p, q,m,O .
(p, q) ∈ SE(C,m) ∧O `PL bodyE(C,m) : (p, q) ∧ {r′} v := n(e) {s′} ∈ O.
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4.2 The Analysis Operations of LBS (PL)

An open program may be extended with new classes, and there may be mutual
dependencies between the new classes. For example, a method in a new class
C can call a method in another new class D, and a method in D can call a
method in C. In such cases, a complete analysis of one class cannot be carried
out without consideration of mutually dependent classes. We therefore choose
modules as the granularity of program analysis, where a module consists of a
set of classes. Such a module is self-contained with respect to an environment
E if all method calls inside the module can be successfully bound inside that
module or to classes represented in E .

In the calculus, judgments have the form E ` M, where E is the proof
environment andM is a list of analysis operations on the class hierarchy. The
analysis operations have the following syntax:

O ::= ε | anReq(M) | anSpec(MS) | verify(m,R) | anCalls(t) | O · O
L ::= ∅ | L | require(C,m, (p, q)) | L ∪ L
M ::= module(L) | [〈C : O〉 ; L] | [ε ; L] | M ·module(L)

These analysis operations may be understood as follows. The module opera-
tion module(L) starts the analysis of the classes in the set L. Classes are as-
sumed to be syntactically well-formed and well-typed. Inside a module, the
classes are analyzed in some order, captured by the set L. The operation
class C extends D {f M MS} initiates the analysis of class C . The opera-
tion [〈C : O〉 ; L] performs the analysis operations O in the context of class C
before operations in L are considered. Upon completion, the analysis yields a
term of the form [ε ; L]. The analysis of a speci�c class C may involve the follow-
ing operations, all inside the context of that class. For each method de�ned in
C, the operation anReq(M) initiates the analysis of the requirements imposed
by the superclasses of C. The operation anSpec(MS) analyzes the speci�cations
given by C with regard to the visible implementations of the speci�ed methods.
The operation verify(m,R) veri�es the set R of assertion pairs with respect to
the visible implementation of method m. The operation anCalls(t) analyzes the
method calls in the statement t. Since the operation only occurs in the context
of a class C, late bound calls are bound in this context.

The operation require(D,m, (p, q)) applies to external calls to ensure that m
in D satis�es the requirement (p, q). Requirements to external calls are lifted
outside the context of the calling class C by this operation, and the veri�cation
of requirement (p, q) for m in D is shifted into the set of analysis operations L.

4.3 The Inference Rules of LBS (PL)

Program analysis is initiated by the judgment E∅ ` module(L), where L is
a module that is self-contained in the empty environment. Subsequent mod-
ules are analyzed in sequential order, such that each module is self-contained
with respect to the environment resulting from the analysis of previous mod-
ules. The analysis of an individual module is carried out by manipulation of the
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module(L) operation according to the inference rules explained below. During
the analysis of a module, the proof environment is extended in order to keep
track of the currently analyzed class hierarchy and the associated method spec-
i�cations and requirements. When the analysis of a module is completed, the
resulting environment represents a veri�ed class hierarchy. New modules may
introduce subclasses of classes which have been analyzed in previous modules.
The calculus is based on an open world assumption in the sense that a module
is analyzed in the context of previously analyzed modules, but it is independent
of subsequent modules.

There are three di�erent environment updates; the loading of a new class
L into the environment and the extension of the speci�cation and requirement
mappings with an assertion (p, q) for a given method m and class C. These are
denoted extP(C,D, f,M), extS(C,m, (p, q)) and extR(C,m, (p, q)), respectively.
Environment updates are represented by the operator ⊕ : Env × Update →
Env, where the �rst argument is the current proof environment and the second
argument is the environment update, de�ned as follows:

E ⊕ extP(C,D, f,M) , 〈PE [C 7→ 〈D, f,M〉], SE ,RE〉
E ⊕ extS(C,m, (p, q)) , 〈PE , SE [(C,m) 7→ SE(C,m) ∪ {(p, q)}],RE〉
E ⊕ extR(C,m, (p, q)) , 〈PE , SE ,RE [(C,m) 7→ RE(C,m) ∪ {(p, q)}]〉

Note that the method speci�cationsMS of a given class need not be remem-
bered as a part of the class de�nition by means of the P mapping, as the class
analysis will extend the S mapping with these speci�cations.

The inference rules of the assertion calculus are given in Figure 5. Note that
M represents a list of modules which will be analyzed later, and which may be
empty. Rule (NewModule) initiates the analysis of a new module module(L).
The analysis continues by manipulation of the [ε ; L] operation that is generated
by this rule. For notational convenience, we let L denote both a set and list of
classes.

Rule (NewClass) selects a new class from the current module, and initiates
the analysis of the class in the current proof environment. The premises ensure
that a class cannot be introduced twice and that the superclass has already
been analyzed. The class hierarchy is extended with the new class and the
analysis continues by analyzing the speci�cations of the class by means of the
anSpec(MS) operation, and the requirements imposed on methods de�ned in
the class by means of the anReq(M) operation. Note that at this point in the
analysis, the class has no subclasses in the proof environment. Rule (NewSpec)

initiates analysis of a method speci�cation with regard to the visible implemen-
tation of the method, and rule (NewMtd) generates a set of requirement assertion
pairs for a method implementation. The requirement set is constructed from
the superclass requirements to the method.

The rules (ReqDer) and (ReqNotDer) address the veri�cation of a particu-
lar requirement with respect to a method implementation. If the requirement
follows from the speci�cations of the method, rule (ReqDer) proceeds with the
remaining analysis operations. Otherwise, rule (ReqNotDer) must be applied
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E ` [ε ; L] · M
E ` module(L) · M

(NewModule)

C /∈ E D 6= nil⇒ D ∈ E
E ⊕ extP(C,D, f,M) ` [〈C : anSpec(MS) · anReq(M)〉 ; L] · M

E ` [ε ; {class C extends D {f M MS}} ∪ L] · M
(NewClass)

E ` [〈C : verify(m, (p, q)) · O〉 ; L] · M
E ` [〈C : anSpec(m(x) : (p, q)) · O〉 ; L] · M

(NewSpec)

E ` [〈C : verify(m,R↑E(PE(C).inh,m)) · O〉 ; L] · M
E ` [〈C : anReq(m(x){t}) · O〉 ; L] · M

(NewMtd)

S↑E(C,m) _ (p, q) E ` [〈C : O〉 ; L] · M
E ` [〈C : verify(m, (p, q)) · O〉 ; L] · M

(ReqDer)

O `PL bodyE(C,m) : (p, q)

E ⊕ extS(C,m, (p, q)) ` [〈C : anCalls(O) · O〉 ; L] · M
E ` [〈C : verify(m, (p, q)) · O〉 ; L] · M

(ReqNotDer)

E ` [〈C : O〉 ; L] · M t does not contain call statements

E ` [〈C : anCalls(t) · O〉 ; L] · M
(Skip)

E ⊕ extR(C,m, (p, q)) ` [〈C : verify(m, (p, q)) · O〉 ; L] · M
E ` [〈C : anCalls({p′} v := m(e) {q′}) · O〉 ; L] · M

(IntCall)

e : D E ` [〈C : O〉 ; L ∪ {require(D,m, (p, q))}] · M
E ` [〈C : anCalls({p′} v := e.m(e) {q′}) · O〉 ; L] · M

(ExtCall)

C ∈ E R↑E(C,m) _ (p, q) E ` [ε ; L] · M
E ` [ε ; {require(C,m, (p, q))} ∪ L] · M

(ExtReq)

Figure 5: The inference system, whereM is a (possibly empty) list of analysis
operations. To simplify the presentation, we let p′ and q′ denote p[e/x] and
q[e, v/x,return], respectively.
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and a proof of the requirement is needed. In this case a proof outline O for
the considered method de�nition must be provided, such that O establishes the
given speci�cation (p, q); i.e., one must prove O `PL t : (p, q) in PL, where
t is the method body. The analysis then continues by considering the deco-
rated call statements in O by means of an anCalls(O) operation. Remark that
(ReqNotDer) is the only rule which extends the S mapping and which requires
a new proof in the program logic PL. The considered requirement leads to
a new speci�cation for m with respect to C, and the speci�cation itself is as-
sumed when analyzing the method body. This captures the standard approach
to reasoning about recursive procedure calls [26].

Rule (Skip) applies to statements which are irrelevant to the anCalls anal-
ysis. Rule (IntCall) analyzes the requirement of an internal call occurring in
some proof outline. The rule extends the R mapping and generates a verify
operation which analyzes the requirement with respect to the implementation
bound from the current class. The extension of the R mapping ensures that
future rede�nitions of m must respect the new requirement; i.e., the require-
ment applies whenever future rede�nitions are considered by (NewMtd). Rule
(ExtCall) handles external calls on the form v := e.m(e). The requirement to
the external method is removed from the context of the current class and propa-
gated as a require operation in the module operations L. The class of the callee
is found by type analysis of e, expressed by the premise e : D. Rule (ExtReq)

can �rst be applied after the analysis of the callee class is completed, and the
requirement must then follow from the requirements of this class.

In addition, there are lifting rules concerned with the analysis of set and
list structures, and trivial cases. These are given in Figure 6 and explained
as follows. Rule (EmpClass) concludes the analysis of a class when all analysis
operations have succeeded in the context of the class. The analysis of a module is
completed by the rule (EmpModule). Thus, the analysis of a module is completed
after the analysis of all the module classes and external requirements made by
these classes have succeeded.

The rules (NoReq), (NoMtds), and (NoSpec) apply to the empty requirement
set, the empty method list, and the empty speci�cation set, respectively. These
rules simply continue the analysis with the remaining analysis operations. Fi-
nally, the rules (DecompMtds), (DecompReq), (DecompSpec), and (DecompCalls)

�atten (non-empty) methods lists, requirements sets, method speci�cation sets,
and statements into separate analysis operations. Note that a proof of E `
module(L) has exactly one leaf node E ′ ` [ε ; ∅]; we call E ′ the environment
resulting from the analysis of module(L).

Let LBS (PL) denote the reasoning system for lazy behavioral subtyping
based on a (sound) program logic PL, which uses a proof environment E : Env
and the inference rules given in Figure 5 and Figure 6.

4.4 Properties of LBS (PL)

Although the individual rules of the inference system do not preserve soundness
of the proof environment, the soundness of the proof environment is preserved
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E ` [ε ; L] · M
E ` [〈C : ε〉 ; L] · M

(EmpClass)
E ` M

E ` [ε ; ∅] · M
(EmpModule)

E ` [〈C : O〉 ; L] · M
E ` [〈C : verify(m, ∅) · O〉 ; L] · M

(NoReq)

E ` [〈C : O〉 ; L] · M
E ` [〈C : anReq(∅) · O〉 ; L] · M

(NoMtds)

E ` [〈C : O〉 ; L] · M
E ` [〈C : anSpec(∅) · O〉 ; L] · M

(NoSpec)

E ` [〈C : verify(m,R1) · verify(m,R2) · O〉 ; L] · M
E ` [〈C : verify(m,R1 R2) · O〉 ; L] · M

(DecompReq)

E ` [〈C : anCalls(t1) · anCalls(t2) · O〉 ; L] · M
E ` [〈C : anCalls(t1; t2) · O〉 ; L] · M

(DecompCalls)

E ` [〈C : anReq(M1) · anReq(M2) · O〉 ; L] · M
E ` [〈C : anReq(M1 M2) · O〉 ; L] · M

(DecompMtds)

E ` [〈C : anSpec(MS1) · anSpec(MS2) · O〉 ; L] · M
E ` [〈C : anSpec(MS1 MS2) · O〉 ; L] · M

(DecompSpec)

Figure 6: The inference system: Lifting rules decomposing list-like structures
and handling trivial cases. HereM is a (possibly empty) list of analysis opera-
tions.

by the successful analysis of a module. This allows us to prove that the proof
system is sound for module analysis.

Theorem 1 Let E be a sound environment and L a set of class declarations. If
a proof of E ` module(L) in LBS (PL) has E ′ as its resulting proof environment,
then E ′ is also sound.

Proof. Assume given a sound environment E . We consider each condition in
De�nition 3 by itself.

Condition 1 of De�nition 3 applies to each element (p, q) of SE(C,m). The
proof is by induction over the inference rules, and it su�ces to consider rule
(ReqNotDer) which is the only rule that extends the S mapping. If (p, q) is in-
cluded in SE(C,m), this rule ensures the existence of a proof outline O such that
O `PL bodyE(C,m) : (p, q). The analysis then continues with the anCalls(O)

20



operation. For each requirement {r′} v := n(e) {s′} in O, rule (IntCall) extends
RE(C, n) with (r, s), where r′ = r[e/y], s′ = s[e, v/y,return], and y are the
formal parameters of n. The relation RE(C, n) _ (r, s) is thereby established,
as required by De�nition 3. For each requirement {r′} v := e.n(e) {s′} in O
where e : D, rule (ExtCall) generates an operation require(D,n, (r, s)), where
r′ = r[e/y], s′ = s[e, v/y,return], and y are the formal parameters of n. Ap-
plication of rule (ExtReq) thereby establishes R↑E(D,n) _ (r, s), as required by
De�nition 3.

Condition 2 of De�nition 3 requires S↑E (C,m) _ R↑E (C,m) for each m
and C. The condition can be proved by induction on the height h of the class
hierarchy, starting with classes without superclasses.

Base case: Consider a class C ∈ E such that PE(C).inh = nil, i.e., class
C is at height h = 0. The mapping RE(C,m) is initially empty so if (p, q)
is in RE(C,m), the rule (IntCall) must have been applied adding the analy-
sis operation verify(m, (p, q)) within the context of C. Since this operation
succeeds, either (ReqDer) or (ReqNotDer) is applied. The desired relation
S↑E(C,m) _ (p, q) must hold if (ReqDer) is applied. If (ReqNotDer) is applied,
the mapping SE(C,m) is extended with (p, q), ensuring S↑E(C,m) _ (p, q).

Induction step: We consider a class C ∈ E of height h+ 1. As the induction
hypothesis, we get S↑E (C ′,m) _ R↑E (C ′,m) for all classes C ′ ∈ E of height
≤ h. Let B be the immediate superclass of C, i.e., B = PE(C).inh. Since
B is at height h, we may assume S↑E (B,m) _ R↑E (B,m) by the induction
hypothesis. There are two cases, depending on whether m is de�ned in C or
not. If m /∈ PE(C).mtds then S↑E(B,m) ⊆ S↑E(C,m), giving S↑E(C,m) _ R↑E
(B,m) by the induction hypothesis. Ifm ∈ PE(C).mtds, the method is analyzed
with the rule (NewMtd), leading to a verify operation on each requirement in
R↑E (B,m). The analysis of these verify operations ensures SE(C,m) _ R↑E
(B,m). Consequently, we have S ↑E (C,m) _ R ↑E (B,m) also in this case
since S ↑E (C,m) = SE(C,m). In both cases we additionally need to ensure
S↑E(C,m) _ RE(C,m). This proof is similar to the base case. �

Theorem 2 (Soundness) If PL is a sound program logic, then LBS (PL) con-
stitutes a sound proof system.

Proof. It follows directly from the de�nition of sound environments that
the empty environment is sound. Theorem 1 and Lemma 1 guarantee that the
environment remains sound during the analysis of class modules. �

Furthermore, the inference system preserves minimality of proof environ-
ments; i.e., only requirements needed by some proof outline are recorded in the
RE mapping.

Lemma 2 If E is a minimal environment and L is a set of class declarations
such that a proof of E ` module(L) leads to the resulting environment E ′, then
E ′ is also minimal.

Proof. By induction over the inference rules. For a class C and method
m, the rule (IntCall) is the only rule that extends RE(C,m). In order for the
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rule to be applied, an operation anCalls({p} v := m(e) {q}) must be analyzed
in the context of C for some requirement (p, q) to m. This operation can only
have been generated by an application of (ReqNotDer), which guarantees that
the requirement is needed by some analyzed proof outline. �

Finally we show that the proof system supports veri�cation reuse in the
sense that speci�cations are remembered.

Lemma 3 Let E be an environment and L a list of class declarations. Whenever
a proof outline O such that O `PL bodyE(C,m) : (p, q) is veri�ed during analysis
of some class C in L, the speci�cation (p, q) is included in SE(C,m).

Proof. By induction over the inference rules. The only rule requiring the
veri�cation of a proof outline is (ReqNotDer), so it su�ces to consider this rule.
From the premises of (ReqNotDer) it follows that SE(C,m) is extended with
(p, q) whenever O `PL bodyE(C,m) : (p, q) is veri�ed in PL. �

5 External Speci�cation by Interfaces

In the approach presented so far, each class C provides some speci�cations of
the available methods, inherited or de�ned, in the form of assertion pairs. These
are kept in the S part of the proof environments. Their veri�cation generates R
requirements for the late bound internal calls occurring in the class, which are
imposed on subclass rede�nitions of the called methods. In a subclass, rede�ned
methods are allowed to violate the S speci�cations of a superclass, but not the
R requirements.

A weakness of LBS (PL) concerns the treatment of external calls (as opposed
to internal calls): Reasoning about e.m(e) where e explicitly refers to a callee of
type D, must follow from the R requirements to m that have been established
for the class D. Those R requirements, however, are generated from internal
calls and may not in general provide suitable external properties. This situation
can be improved by letting a class provide R requirements such that reasoning
about external calls can be based on those. This means a programmer should be
aware of the distinction between S and R requirements, and is able to provide
both. Furthermore, mutually dependent classes rely on the require operations,
which enable delayed reasoning. However, if a require operations fails, one must
change the provided speci�cations used and redo the analysis. It is therefore
interesting to consider other ways of reasoning about external requirements.

In this section we suggest the use of behavioral interfaces as a means to
specify and reason about requirements on external method calls. A behavioral
interface describes the visible methods of a class and their speci�cations, and
inheritance may be used to form new interfaces from old ones. An advantage
of seeing all classes through interfaces is that explicit hiding constructs become
super�uous. A class may then be speci�ed by a number of interfaces. If all ob-
ject variables (references) are typed by interfaces, one may let the inheritance
hierarchies of interfaces and classes be independent. In particular, one need
not require that a subclass of C inherits (nor respects) the behavioral interfaces
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L ::= class C extends C implements I {f M MS}
| interface I extends I {MS}

Figure 7: Syntax for the language IOOL, extending the syntactic category L
of OOL (see Figure 1) with interfaces. The other syntactic categories remain
unchanged. Here, I denotes interface names of type Iid.

speci�ed for C: Static type checking of an assignment x := e must then ensure
that the expression e denotes an object supporting the declared interface of the
object variable x. In this setting, the substitution principle for objects can be
reformulated as follows: For an object variable x with declared interface I, the
actual object referred to by x at run-time will satisfy the behavioral speci�ca-
tion I. As a consequence, a subclass may freely reuse and rede�ne superclass
methods, since it is free to violate the behavioral speci�cation of superclasses.
Reasoning about an external call e.m(e) can then be done by relying on the
behavioral interface of the object expression e, simplifying the (ExtCall) rule
presented above to simply check interface requirements. In this way, require
operations are no longer needed in the proof system.

In Section 5.1, we de�ne the programming language IOOL, which extends
OOL with interfaces. In Section 5.2 we de�ne proof environments of type IEnv
where interface information is accounted for, and in Section 5.3 we de�ne the
calculus LBSI (PL) for reasoning about IOOL programs.

5.1 Behavioral Interfaces

We now consider the programming language IOOL (see Figure 7), which is given
by extending OOL with interfaces. A behavioral interface consists of a set of
method names with signatures and semantic constraints on the use of these
methods. In Figure 7, an interface I may extend a list I of superinterfaces,
and declare a set MS of method signatures, where behavioral constraints are
given as (pre, post) speci�cations. An interface may declare signatures of new
methods not found in its superinterfaces, and it may declare additional speci-
�cations of methods declared in the superinterfaces. The relationship between
interfaces is restricted to a form of behavioral subtyping. An interface may ex-
tend several interfaces, adding to its superinterfaces new syntactic and semantic
constraints. In the sequel, it is assumed that the interface hierarchy conforms
to these requirements. The interfaces thus form a type hierarchy: if I ′ extends
I, then I ′ is a subtype of I and I is a supertype of I ′. Let � denote the re�exive
and transitive subtype relation, which is given by the nominal extends-relation
over interfaces under the assumption above. Thus, I ′ � I if I ′ equals I or if I ′

(directly or indirectly) extends I.
An interface I exports the methods declared in I or in the superinterfaces of

I, with the associated constraints (or requirements) on method use. An object
supports an interface I if the object provides the methods declared in I and
adheres to the speci�cations imposed by I on these methods. Fields are typed
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mids(∅) , ∅
mids(m(x) : (p, q) MS) , {m} ∪mids(MS)

publicE(nil) , ∅
publicE(I) , mids(KE(I).mtds) ∪ publicE(KE(I).inh)
publicE(I I) , publicE(I) ∪ publicE(I)

specs(∅,m) , ∅
specs(n(x) : (p, q) MS,m) , if n = m then {(p, q)} ∪ specs(MS,m)

else specs(MS,m) �

specE(nil,m) , ∅
specE(I,m) , specs(KE(I).mtds,m) ∪ specE(KE(I).inh,m)
specE(I I,m) , specE(I,m) ∪ specE(I,m)

nil �E J , false

I �E J , I = J ∨KE(I).inh �E J
(I I) �E J , I �E J ∨ I �E J

Figure 8: Auxiliary function de�nitions, using space as the list separator.

by interfaces; if an object supports I (or a subtype of I) then the object may
be referenced by a �eld typed by I. A class implements an interface if its code
is such that all instances support the interface. The analysis of the class must
ensure that this requirement holds. Objects of di�erent classes may support
the same interface, corresponding to di�erent implementations of the interface
behavior. Only the methods exported by I are available for external invocations
on references typed by I. The class may implement additional auxiliary methods
for internal use. The interface supported by instances of a class is given by the
implements clause in the class de�nition (see Figure 7).

5.2 A Proof Environment with Interfaces

As before, classes are analyzed in the context of a proof environment. Let
Interface denote interface tuples 〈I,MS〉, and IClass denote class tuples 〈D, I, f ,M〉.
The list of superinterfaces I and method speci�cations MS of an interface tu-
ple are accessible by the observer functions inh and mtds, respectively. The
supported interface of a class is accessible by the observer function impl. Envi-
ronments of type IEnv are de�ned as follows.

De�nition 5 (Proof environments with interfaces.) A proof environment
E of type IEnv is a tuple 〈PE ,KE , SE ,RE〉 where PE : Cid→ IClass, KE : Iid→
Interface are partial mappings and SE ,RE : Cid ×Mid → Set[APair] are total
mappings.
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For an interface I, let I ∈ E denote that KE(I) is de�ned, and let public(I)
denote the set of method identi�ers exported by I; thus, m ∈ public(I) if m
is declared by I or by a supertype of I. A subtype cannot remove methods
declared by a supertype, so public(I) ⊆ public(I ′) if I ′ � I. If m ∈ public(I),
the function spec(I,m) returns a set of type Set[APair] with the behavioral
constraints imposed on m by I, as declared in I or in a supertype of I. The
function returns a set as a subinterface may provide additional speci�cations
of methods inherited from superinterfaces; if m ∈ public(I) and I ′ � I, then
spec(I,m) ⊆ spec(I ′,m). These functions are de�ned in Figure 8.

The de�nition of sound environments is revised to account for interfaces. In
Condition 1, the requirement to an external call must now follow from the inter-
face speci�cation of the called object. Consider a requirement stemming from
the analysis of an external call e.m(e) in some proof outline, where e : I. As the
interface hides the actual class of the object referenced by e, the call is analyzed
based on the interface speci�cation of m. A requirement (r, s) must follow from
the speci�cation of m given by type I, expressed by spec(I,m) _ (r, s). Fur-
thermore, a third condition is introduced, expressing that a class satis�es the
speci�cations of the implemented interface. If C implements an interface I, the
class de�nes (or inherits) an implementation of each m ∈ public(I). For each
such method, the behavioral speci�cation declared by I must follow from the
method speci�cation in the class; i.e., S↑(C,m) _ spec(I,m).

De�nition 6 (Sound environments.) A proof environment E of type IEnv
is sound if it satis�es the following conditions for each C : Cid and m : Mid.

1. ∀(p, q) ∈ SE(C,m) . ∃O . O `PL bodyE(C,m) : (p, q)
∧ ∀{r′} v := n(e) {s′} ∈ O . RE(C, n) _ (r, s)
∧ ∀{r′} v := e.n(e) {s′} ∈ O . e : I ⇒ specE(I, n) _ (r, s)

2. S↑E(C,m) _ R↑E(C,m)

3. ∀n ∈ publicE(I) . S↑E(C, n) _ specE(I, n), where I = PE(C).impl

Lemma 1 is adapted to the setting of interfaces as follows:

Lemma 4 Given a sound environment E : IEnv and a sound program logic PL.
For all classes C : Cid, methods m : Mid, and assertion pairs (p, q) : APair such
that C ∈ E and (p, q) ∈ S↑E(C,m), we have |=D m(x) :(p, q) {bodyE(C,m)} for
each D ≤E C.

Proof. The proof is similar to the proof for Lemma 1, except for the treat-
ment of external calls in the induction step. Let O be a proof outline such that
O `PL bodyE(B,m) : (p, q), where C ≤E B, bindE(C, m) = bindE(B, m), and
(p, q) ∈ SE(B,m). Assume as the induction hypothesis that for any external
call to n in O, possibly bound in context E and for all (g, h) ∈ S↑E(E,n), that
|=E n(y) :(g, h) {bodyE(E,n)}.

Consider a method call {r′} v := e.n(e) {s′} in O, and let r′ = r[e/y],
s′ = s[e, v/y,return], and e : I. From De�nition 6, Condition 1, we have
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specE(I, n) _ (r, s). Consider some class E where PE(E).impl = J . From
De�nition 6, Condition 3, we have S↑E (E,n) _ specE(J, n). If the call to n
can bind in context E, then type safety ensures J �E I, giving specE(I, n) ⊆
specE(J, n). We then have S↑E(E,n) _ specE(J, n) _ specE(I, n) _ (r, s). By
the induction hypothesis, we then arrive at |=E {r} n {s}. �

Let I ∈ E denote that KE(I) is de�ned. We de�ne an operation to update a
proof environment with a new interface, and rede�ne the operation for loading
a new class:

E ⊕ extP(C,D, I, f ,M) , 〈PE [C 7→ 〈D, I, f ,M〉],KE , SE ,RE〉
E ⊕ extK(I, I,MS) , 〈PE ,KE [I 7→ 〈I,MS〉], SE ,RE〉

5.3 The Calculus LBSI (PL) for Lazy Behavioral Subtyping
with Interfaces

In the calculus for lazy behavioral subtyping with interfaces, judgments have
the form E ` M, where E is the proof environment and M is a sequence of
interfaces and classes. As before, we assume that superclasses appear before
subclasses. This ordering ensures that requirements imposed by superclasses
are veri�ed in an incremental manner on subclass overridings. Furthermore, we
assume that an interface appears before it is used. More precisely, we assume
that whenever a class is analyzed, then the supported interface is already part
of the environment, and for each external call statement v := e.m(e) in the class
where e : I, the interface I is in the environment. These assumptions ensure
that the analysis of a class will not be blocked due to a missing superclass or
interface.

As the requirements of external calls are now veri�ed against the interface
speci�cations of the called methods, a complete analysis of a class can be per-
formed without any consideration of other classes. For the revised calculus, it
therefore su�ces to consider individual classes and interfaces as the granularity
of program analysis. The module layer of Section 4 is therefore omitted. The
syntax for analysis operations is given by:

M ::= P | 〈C : O〉 · P O ::= ε | anReq(M) | anSpec(MS) | anCalls(t)
P ::= K | L | P · P | verify(m,R) | intSpec(m) | O · O

The new operation intSpec(m) is used to analyse the interface speci�cations of
methods m with regard to implementations found in the considered class.

For IOOL, we de�ne a calculus LBSI (PL), consisting of a (sound) program
logic PL, a proof environment E : IEnv, and the inference rules listed in Figure 9.
In addition to the rules in Figure 9, LBSI (PL) contains the rules in Figure 5 and
Figure 6, except the rules (NewClass), (ExtCall), (NewModule), (EmpModule)

and (ExtReq). Rules (NewClass) and (ExtCall) are modi�ed as shown in
Figure 9, and rule (ExtReq) is super�uous as the requirements from external
calls are analyzed in terms of interface speci�cations. Rules (NewModule) and
(EmpModule) are not needed as modules are removed. For the remaining rules
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I /∈ E I 6= nil⇒ I ∈ E E ⊕ extK(I, I,MS) ` P
E ` (interface I extends I {MS}) · P

(NewInt)

I ∈ E C /∈ E D 6= nil⇒ D ∈ E
E ⊕ extP(C,D, I, f ,M) `

〈C : anSpec(MS) · anReq(M) · intSpec(publicE(I))〉 · P
E ` (class C extends D implements I {f M MS}) · P

(NewClass′)

e : I I ∈ E specE(I,m) _ (p, q) E ` 〈C : O〉 · P
E ` 〈C : anCalls({p′} v := e.m(e) {q′}) · O〉 · P

(ExtCall′)

S↑E(C,m) _ specE(PE(C).impl,m) E ` 〈C : O〉 · P
E ` 〈C : intSpec(m) · O〉 · P

(IntSpec)

E ` 〈C : intSpec(m1) · intSpec(m2) · O〉 · P
E ` 〈C : intSpec(m1 ∪m2) · O〉 · P

(DecompInt)

Figure 9: The extended inference system, where P is a (possibly empty) se-
quence of classes and interfaces. Rules (NewClass′) and (ExtCall′) replace
(NewClass) and (ExtCall). The other rules of Figure 6 and Figure 5 are un-
changed.

in Figure 5 and Figure 6, we assume that module operations are removed as
illustrated by (NewClass′) and (ExtCall′).

Focusing on the changes from Figure 5 and Figure 6, the calculus rules
are outlined in Figure 9. Rule (NewInt) extends the environment with a new
interface. No analysis of the interface is needed at this point, the speci�cations
of the interface will later be analyzed with regard to each class that implements
the interface. (Recall that interfaces are assumed to appear in the sequence P
before they are used.) The rule (NewClass′) is similar to the rule from LBS (PL),
except that an operation intSpec is introduced which is used to analyze the
speci�cations of the implemented interface. Rule (ExtCall′) handles the analysis
of external calls; here, the requirement of the call is analyzed with regard to the
interface speci�cation of the callee. Rule (IntSpec) is used to verify interface
speci�cations, and rule (DecompInt) is used to �atten the argument of intSpec
operations.

In LBSI (PL), the di�erent method speci�cations play a more active role
when analyzing classes. Method speci�cations are used to establish interface
properties, which again are used during the analysis of external calls. Thus,
requirements to external calls are no longer analyzed based on knowledge from
the R mapping of the callee. The R mapping is only used during the analysis
of internal calls.

Soundness For soundness of LBSI (PL), Theorem 1 is modi�ed as follows.
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Theorem 3 Let PL be a sound program logic, E:IEnv a sound environment,
and L be an interface or a class de�nition. If a proof of E ` L in LBSI (PL)
has E ′ as its resulting proof environment, then E ′ is also sound.

Proof. The analysis of a new interface maintains soundness as interfaces are
assumed to be loaded in the environment before they are used. For the analysis
of a class C, we consider each condition of De�nition 6 by itself. The proof of
Condition 2 is unchanged from Theorem 1 and it is therefore omitted.

Condition 1 of De�nition 6 applies to each element (p, q) of SE(C,m). The
proof is by induction over the inference rules, and it su�ces to consider rule
(ReqNotDer) which is the only rule that extends the S mapping. If (p, q) ∈
SE(C,m), this rule ensures the existence of a proof outline O such that O `PL

bodyE(C,m) : (p, q). The analysis then continues with an anCalls(O) operation.
For each decorated external call {r′} v := n(e) {s′} in O, rule (IntCall) extends
RE(C, n) with (r, s), where r′ = r[e/y], s′ = s[e, v/y,return], and y are the
formal parameters of n. The relation RE(C, n) _ (r, s) is thereby established, as
required by De�nition 6. For each requirement {r′} v := e.n(e) {s′} in O where
e : I, rule (ExtCall′) ensures specE(I, n) _ (r, s) as required by De�nition 6,
where r′ = r[e/y], s′ = s[e, v/y,return], and y are the formal parameters of n.

Condition 3 of De�nition 6 concerns the interface I implemented by C, i.e.,
PE(C).impl = I. For each m ∈ publicE(I), the relation S↑E(C,m) _ specE(I,m)
must hold. When class C is loaded for analysis by rule (NewClass′), an operation
intSpec(publicE(I)) is scheduled for analysis in the context of C. For each m ∈
publicE(I), an intSpec(m) operation is thereby analyzed by rule (IntSpec). Since
the analysis succeeds, the desired relation S↑E(C,m) _ specE(I,m) holds. �

6 Example

In this section we illustrate our approach by a small bank account system im-
plemented by a class PosAccount and its subclass FeeAccount. The example
illustrates how interface encapsulation and the separation of class inheritance
and subtyping facilitate code reuse. Class FeeAccount reuses the implementa-
tion of PosAccount, but the type of PosAccount is not supported by FeeAccount.
Thus, FeeAccount does not represent a behavioral subtype of PosAccount.

A system of communicating components can be speci�ed in terms of the
observable interaction between the di�erent components [11, 27]. In an object-
oriented setting with interface encapsulation, the observable interaction of an
object may be described by the communication history, which is a sequence of
invocation and completion messages of the methods declared by the interface
(ignoring outgoing calls). At any point in time, the communication history
abstractly captures the system state. Previous work [20] illustrates how the
observable interaction and the internal implementation of an object can be con-
nected. Expressing pre- and postconditions to methods declared by an interface
in terms of the communication history allows abstract speci�cations of objects
supporting the interface. For this purpose, we assume an auxiliary variable h
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of type Seq[Msg], where Msg ranges over invocation and completion (return)
messages to the methods declared by the interface. However, for the example
below it su�ces to consider only completion messages, so a history h will be
constructed as a sequence of completion messages by the empty (ε) and right
append (·) constructor. In [20], the communication messages are sent between
two named objects, the caller and the callee. However, for the purposes of this
example, it su�ces to record only the completed method identity and its param-
eters, where this is implicitly taken as the callee. Furthermore, the considered
speci�cations are independent of the actual callers. We may therefore represent
completion messages by 〈m(e, r)〉, where m is a method name, e are the actual
parameter values for this method call, and r is the returned value. For reasoning
purposes, such a completion message is implicitly appended to the history as a
side e�ect of each method termination. As the history accumulates information
about method executions, it allows abstract speci�cation of objects in terms of
previously executed method calls.

6.1 Class PosAccount

Let an interface IPosAccount support three methods deposit, withdraw , and
getBalance. The deposit method deposits an amount on the bank account as
speci�ed by the parameter value and returns the current balance after the de-
posit. The getBalance method returns the current balance. The withdraw

method returns true if the withdrawal succeeded, and false otherwise. A with-
drawal succeeds only if it leads to a non-negative balance. The current balance
of the account is abstractly captured by the function Val(h) de�ned by induction
over the local communication history as follows:

Val(ε) , 0
Val(h · 〈deposit(x, r)〉) , Val(h) + x

Val(h · 〈withdraw(x, r)〉) , if r then Val(h)− x else Val(h) �
Val(h · others) , Val(h)

In this de�nition, othersmatches all completion messages that are not captured
by any of the above cases. In the interface, the three methods are required to
maintain Val(h) ≥ 0.

interface IPosAccount {
int deposit(nat x) : (Val(h) ≥ 0, return = Val(h) ∧ return ≥ 0)
bool withdraw(nat x) :

(Val(h) ≥ 0 ∧ h = h0, return = Val(h0) ≥ x ∧Val(h) ≥ 0)
int getBalance() : (Val(h) ≥ 0, return = Val(h) ∧ return ≥ 0)

}

As before, h0, b0, . . . denote logical variables. The interface IPosAccount is im-
plemented by a class PosAccount, given below. In this class, the balance is
maintained by a variable bal, and a class invariant expresses that the balance
equals Val(h) and remains non-negative. The class invariant of a class expresses
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properties in terms of the local �elds and communication history. The class
invariant must be established by the initial state and be maintained by each
public method. Thus, the notation inv I below expresses that the assertion
pair (I, I) is added to S(C,m) for each public method m in the class. The
invariant bal = Val(h) connects the internal state of PosAccount objects to
their observable behavior, and is needed in order to ensure the postconditions
declared in the interface.

class PosAccount implements IPosAccount {
int bal = 0;
int deposit(nat x) : (true, return = bal) {
update(x); return := bal

}
bool withdraw(nat x) : (bal = b0, return = b0 ≥ x) {
if (bal >= x) then update(-x); return := true

else return := false fi
}
int getBalance() : (true, return = bal) {return := bal}
void update(int v): (bal = b0 ∧ h = h0, bal = b0 + v ∧ h = h0) {
bal := bal + v

}
inv bal = Val(h) ∧ bal ≥ 0

}

Notice that the update method is hidden by the interface. This means that
the method is not available to objects in the environment, but only for internal
calls. The following simple de�nition of withdraw maintains the invariant of the
class as it preserves bal = Val(h) and does not modify the balance:

bool withdraw(int x) {return := false}

However, this implementation does not meet the pre/post speci�cation of withdraw ,
which requires that the method must return true if the withdrawal can be per-
formed without resulting in a non-negative balance. Next we consider the veri-
�cation of the PosAccount class.

Pre- and postconditions The pre- and postconditions given in the PosAccount
class lead to the inclusion of the following speci�cations in the S mapping:

(true, return = bal) ∈ S(PosAccount,deposit) (3)

(bal = b0, return = b0 ≥ x) ∈ S(PosAccount,withdraw) (4)

(true, return = bal) ∈ S(PosAccount, getBalance) (5)

(bal = b0 ∧ h = h0, bal = b0 + v ∧ h = h0) ∈ S(PosAccount, update) (6)

These speci�cations are easily veri�ed for the method bodies of their respective
methods. For deposit and withdraw , these speci�cations do not lead to any
requirements on update.
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Invariant analysis The class invariant is analyzed as a pre/post speci�cation
for each public method, i.e., for the methods deposit, withdraw , and getBalance.
As a result, the S mapping is extended such that

(bal = Val(h) ∧ bal ≥ 0, bal = Val(h) ∧ bal ≥ 0) ∈ S(PosAccount,m), (7)

for m ∈ {deposit,withdraw , getBalance}. The methods deposit and withdraw

make internal calls to update, which result in the two following requirements:

R(PosAccount, update) =
{ (bal = Val(h) ∧ bal ≥ 0 ∧ v ≥ 0, bal = Val(h) + v ∧ bal ≥ 0),

(bal = Val(h) ∧ v ≤ 0 ∧ bal + v ≥ 0, bal = Val(h) + v ∧ bal ≥ 0) }
(8)

These requirements follow by entailment from Speci�cation (6).

Interface speci�cations The implementation of each method exported through
interface IPosAccount must satisfy the corresponding interface speci�cation, ac-
cording to rule (IntSpec). For getBalance, it can be proved that the method
speci�cation, as given by Speci�cations (5) and (7), entails the interface speci-
�cation

(Val(h) ≥ 0, return = Val(h) ∧ return ≥ 0).

The veri�cation of the other two methods follows the same outline, which con-
cludes the veri�cation of class PosAccount.

6.2 Class FeeAccount

The interface IFeeAccount resembles IPosAccount, as the same methods are
supported. However, IFeeAccount takes an additional fee for each successful
withdrawal, and the balance is no longer guaranteed to be non-negative. For
simplicity we take fee as a (read-only) parameter of the interface and of the class
(which means that it can be used directly in the de�nition of Fval below). As
before, the assertion pairs of the methods are expressed in terms of functions
on the local history. De�ne the allowed overdrafts predicate AO(h) by means
of a function Fval(h) over local histories h as follows:

AO(h) , Fval(h) ≥ −fee
Fval(ε) , 0
Fval(h · 〈deposit(x, r)〉) , Fval(h) + x

Fval(h · 〈withdraw(x, r)〉) , if r then Fval(h)− x− fee else Fval(h) �
Fval(h · others) , Fval(h)

The interface IFeeAccount is declared by

interface IFeeAccount(nat fee) {
int deposit(nat x): (AO(h), return = Fval(h) ∧AO(h))
bool withdraw(nat x): (AO(h) ∧ h = h0, return = Fval(h0) ≥ x ∧AO(h))
int getBalance(): (AO(h), return = Fval(h) ∧AO(h)) }
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Note that IFeeAccount is not a behavioral subtype of IPosAccount: a class that
implements IFeeAccount will not implement IPosAccount. Informally, this can
be seen from the postcondition of withdraw . For both interfaces, withdraw
returns true if the parameter value is less or equal to the current balance, but
IFeeAccount charges an additional fee in this case.

Given that the implementation provided by the PosAccount class is avail-
able, it might be desirable to reuse the code from this class when implementing
IFeeAccount. In fact, only the withdraw method needs reimplementation. The
class FeeAccount below implements IFeeAccount and extends the implementa-
tion of PosAccount.

class FeeAccount(int fee)
extends PosAccount implements IFeeAccount {

bool withdraw(nat x): (bal = b0, return = b0 ≥ x) {
if (bal >= x) then update(-(x+fee)); return := true

else return := false fi
}
inv bal = Fval(h) ∧ bal ≥ −fee

}

Remark that the interface supported by the superclass is not supported
by the subclass. Typing restrictions prohibit that methods on an instance of
FeeAccount are called through the superclass interface IPosAccount.

Pre- and postconditions As the methods deposit and getBalance are in-
herited without rede�nition, the speci�cations of these methods still hold in the
context of the subclass. Especially, Speci�cations (3), (5), and (6) above remain
valid. For withdraw , the declared speci�cation can be proved:

(bal = b0, return = b0 ≥ x) ∈ S(FeeAccount,withdraw) (9)

Invariant analysis The subclass invariant can be proved for the inherited
methods deposit and getBalance as well as for the new de�nition of the withdraw
method. From the proof outline for deposit, the following requirement on update
is included in the requirement mapping:

(bal = Fval(h) ∧ bal ≥ −fee ∧ v ≥ 0, bal = Fval(h) + v ∧ bal ≥ −fee) ∈
R(FeeAccount, update)

This requirement follows from Speci�cation (6) of update. The analysis of
withdraw gives the following requirement on update, which also follows from
Speci�cation (6):

(bal = Fval(h) ∧ bal + v ≥ −fee, bal = Fval(h) + v ∧ bal ≥ −fee) ∈
R(FeeAccount, update)

The invariant analysis leads to the inclusion of the invariant as a pre/post
speci�cation in the sets S(FeeAccount, deposit), S(FeeAccount,withdraw), and
S(FeeAccount, getBalance), similar to Speci�cation (7).
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Interface speci�cation Now reconsider the method getBalance. After an-
alyzing the subclass invariant, the speci�cation set for the method is given as
follows:

S↑(FeeAccount, getBalance) =
{(bal = Val(h) ∧ bal ≥ 0, bal = Val(h) ∧ bal ≥ 0),

(true, return = bal),
(bal = Fval(h) ∧ bal ≥ −fee, bal = Fval(h) ∧ bal ≥ −fee)}.

(10)

This speci�cation set that can be assumed to prove the interface speci�cation

(Fval(h) ≥ −fee, return = Fval(h) ∧ Fval(h) ≥ −fee) (11)

Speci�cation (11) follows by entailment from Speci�cation (10), using (IntSpec).
Note that the superclass invariant is not established by the precondition of
Speci�cation (11), which means that the inherited invariant cannot be assumed
when establishing the postcondition of Speci�cation (11). The other inherited
speci�cation is also needed, expressing that return equals bal. The veri�cation
of the interface speci�cations for deposit and withdraw follows the same outline.

7 Related and Future Work

Object-orientation poses several challenges to program logics; e.g., inheritance,
late binding, recursive and re-entrant method calls, aliasing, and object creation.
In the last years, several programming logics have been proposed, addressing
various of these challenges. For example, object creation has been addressed by
means of specialized allocation predicates [1] or by encoding heap information
into sequences [16]. Numerous proof methods, veri�cation condition generators,
and validation environments for object-oriented languages have been developed,
including [1,3,23,40,39,28,30,10]. Java in particular has attracted much interest,
with advances being made for di�erent, mostly sequential, aspects and sublan-
guages of that language. In particular, most such formalizations concentrate on
closed systems.

A recent state-of-the-art survey of challenges and results for proof systems
and veri�cation in the �eld of sequential object-oriented programs is given
in [32], which also provides further pointers into the literature. In that sur-
vey, overloading, dynamic method invocation, and inheritance are mentioned
as challenges but are otherwise dealt with rather cursorily; i.e., they are not
covered further, although these features are undoubtedly central to today's
object-oriented languages. For an overview of veri�cation tools based on the
Java modeling language JML, see [12].

Proof systems especially studying late bound methods have been shown to
be sound and complete by Pierik and de Boer [44], assuming a closed world. See
also [43] for a discussion of (relative) completeness in connection with behavioral
subtyping. While proof-theoretically satisfactory, the closed world assumption
is unrealistic in practice and necessitates costly reveri�cation when the class
hierarchy is extended (as discussed in Section 1).
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In order to better support object-oriented design, proof systems should be
constructed for incremental (or modular [19]) reasoning. Most prominent in
that context are di�erent variations of behavioral subtyping [36, 46, 33]. The
underlying idea is quite simple: subtyping in general is intended to capture
�specialization� and in object-oriented languages, this may be interpreted such
that instances of a subclass can be used where instances of a superclass are
expected. To generalize this subsumption property from types (such as method
signatures) to behavioral properties is the step from standard to behavioral sub-
typing. The notion of behavioral subtyping dates back to America [4] and Liskov
and Wing [35,36], and is also sometimes referred to as Liskov's substitutability
principle. The general idea has been explored from various angles. For in-
stance, behavioral subtyping has been characterized model-theoretically [34,18]
and proof-theoretically [6, 36].

Speci�cation inheritance is used to enforce behavioral subtyping in [19],
where subtypes inherit speci�cations from their supertypes (see also [48] which
describes speci�cation inheritance for the language Fresco). Virtual meth-
ods [45] similarly allow incremental reasoning by committing to certain abstract
properties about a method, which must hold for all its implementations. Al-
though sound, the approach does not generally provide complete program logics,
as these abstract properties would, in non-trivial cases, be too weak to obtain
completeness without over-restricting method rede�nition from the point of view
of the programmer. Virtual methods furthermore force the developer to com-
mit to speci�c abstract speci�cations of method behavior early in the design
process. This seems overly restrictive and lead to less reasoning modularity
than the approach as such suggests. In particular, the veri�cation platforms for
Spec] [9] and JML [12] rely on versions of behavioral subtyping. Wehrheim [47]
investigates behavioral subtyping not in a sequential setting but for active ob-
jects. Dynamic binding in a general sense, namely that the code executed is
not statically known, does not only arise in object-oriented programs. For in-
stance, Clifton and Leavens [14] use ideas from behavioral subtyping to support
modular reasoning in the context of aspect-oriented programs.

The fragile base class problem emerges when seemingly harmless superclass
updates lead to unexpected behavior of subclass instances [38]. Many variations
of the problem relate to imprecise speci�cations and assumptions made in super-
or subclasses. By making method requirements and assumptions explicit, our
calculus can detect many issues related to the fragile base class problem. Sub-
classes can only rely on requirements made explicit in the requirement property
set of the class. Updates in the superclass must respect these assumptions.

Recently incremental reasoning, both for single and multiple inheritance, has
been considered in the context of separation logic [13,42,37]. These approaches
distinguish �static� speci�cations, given for each method implementation, from
�dynamic� speci�cations used to verify late-bound calls. The dynamic speci�ca-
tions are given at the declaration site, in contrast to our work on lazy behavioral
subtyping in which late-bound calls are veri�ed based on call-site requirements.
As in lazy behavioral subtyping, the goal is �modularity�; i.e., the goal is to
avoid reveri�cation when incrementally developing a program. Complementing
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the results presented in this paper, we have shown how lazy behavioral subtyp-
ing can be used in the setting of multiple inheritance in [22], in which strategies
for method binding in multiple inheritance class hierarchies are related to lazy
behavioral subtyping.

We currently integrate lazy behavioral subtyping in a program logic for
Creol [31,17], a language for dynamically reprogrammable active objects, devel-
oped in the context of the European project Credo. This integration requires a
generalization of the analysis to multiple inheritance and concurrent objects, as
well as to Creol's mechanism for class upgrades. Creol's type system is purely
based on interfaces. Interface types provide a clear distinction between internal
and external calls. As shown in this paper, the separation of interface level sub-
typing from class level inheritance allows class inheritance to exploit code reuse
quite freely based on lazy behavioral subtyping, while still supporting incremen-
tal reasoning techniques. Classes in Creol may implement several interfaces,
slightly extending the approach presented in this paper. It is also possible to let
interfaces in�uence the reasoning for internal calls in a more �ne-grained man-
ner, with the aim of obtaining even weaker requirements to rede�nitions. We
are currently investigating the combination of lazy behavioral subtyping with
class upgrades. This combination allows class hierarchies to not only evolve
by subclass extensions, but also by restructuring the previously analyzed class
hierarchy in ways which control the need for reveri�cation.

8 Conclusion

This paper presents lazy behavioral subtyping, a novel strategy for reasoning
about late bound method calls. The strategy is designed to support incremental
reasoning and avoid reveri�cation in an open setting, where class hierarchies
can be extended by inheritance. To focus the presentation, we have abstracted
from many features of object-oriented languages and presented lazy behavioral
subtyping for an object-oriented kernel language based on single inheritance.
This re�ects the mainstream object-oriented languages today, such as Java and
C].

Behavioral subtyping has the advantage of providing incremental and modu-
lar reasoning for open object-oriented systems, but severely restricts code reuse
compared to programming practice. Lazy behavioral subtyping also provides
incremental reasoning, but supports signi�cantly more �exible reuse of code. In
addition lazy behavioral subtyping provides modularity when combined with in-
terfaces, separating the interface and class hierarchies to provide both subtyping
and �exible code reuse. This paper presents both systems with soundness proofs.
An extended example of typical code reuse in the banking domain demonstrates
how incremental reasoning is achieved by lazy behavioral subtyping in a setting
where behavioral subtyping does not apply. Lazy behavioral subtyping appears
as a promising framework for controlling a range of desirable changes in the
development of object-oriented class hierarchies.
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