
Model Testing Asynchronously Communicating
Objects using Modulo AC Rewriting

Olaf Owe, Martin Steffen, and Arild B. Torjusen?

University of Oslo, Norway

1 Motivation

Systematic testing [13] is indispensable to assure reliability and quality of soft-
ware and systems. Hosts of different testing approaches and frameworks have
been proposed and put to (good) use over the years. Traditionally testing has
been perceived as a non-formal activity by many theoreticians, since it is based
on executing code, rather than on formal reasoning. More recently there is an
increasing tendency to see testing and formal methods as complementary [9].
Formal methods has proven valuable to render testing practice a more formal,
systematic discipline (cf. e.g. [7,1]) and formal approaches to testing have gained
momentum in recent years, as for instance witnessed by the trend towards model-
based or specification-based testing [6,2], where an explicit formal model or spec-
ification of the behavior of the system is central. The formal model is used to
generate test cases and as an oracle to evaluate output resulting from executing
the test cases. In previous work [8] we presented a formal approach for black-
box specification-based testing of asynchronously communicating components in
open environments together with an implementation of a testing framework. In
this paper we show how to extend the approach to verification of components
and present experimental results that show the usefulness of our approach.

Creol Creol [5,11] is a high-level, object-oriented modelling language for dis-
tributed systems. Object-orientation is a natural choice, as object modelling is
the fundamental approach to open distributed systems as recommended by RM-
ODP [10]. In contrast with object-oriented languages based on multi-threading,
such as Java or C], Creol features active objects. The unit of activity is the object;
every process belongs to an object, and activity does not cross object borders.
Communication is based on exchanging messages asynchronously. This commu-
nication model is advantageous as it decouples caller and callee thus avoiding
unnecessary waiting for method returns. On the downside, asynchronicity makes
verifying and testing programs more challenging, communication delays due to
the network or to queuing may lead to message overtaking and the resulting
non-determinism leads to a state space explosion.

? Corresponding author, and the one presenting the paper.



2

Specification-based testing Abstracting from internal executions, the black-
box behavior of Creol components is given by interactions at their interface.
We use a concise language over communication labels to specify components (cf.
[8]). In the specification language, a clean separation of concerns between inter-
action under the control of the component or coming from the environment is
central. This leads to an assumption-commitment style specification of a com-
ponent’s behavior by defining the valid observable output behavior, assuming a
certain scheduling of the input. For input interactions, we ensure that the spec-
ified assumptions on the environment are fulfilled by scheduling the incoming
calls in the order specified, while for output events, which are controlled by the
component, we test that the events occur as specified.

The operational semantics of Creol is formalized in rewriting logic [12] and
executable on the Maude rewriting engine [3]. We have developed an executable
framework for testing Creol components which includes: an executable behav-
ioral interface specification language; a method for composing Creol components
and specifications for the purpose of testing; and a rewriting logic implementa-
tion of the method. Scheduling and testing of a component are done by synchro-
nizing the communication between specification terms and objects. As a result,
the scheduling is enforced in the execution of the object and the actual out-
going interactions from the object are tested against the output events in the
specification. This gives a framework for testing whether an implementation of
a component conforms to the interface specification. Incorrect or nonconforming
behavior of the component under a given scheduling is reported as an error by
the testing framework.

Due to message delays and overtaking, the order in which outgoing messages
from a component are observed by an external observer does not necessarily
reflect the order in which they were actually sent. Testing is based on behavior
observable at the interface, and the order of outgoing communication should
therefore not affect the test results. The operational semantics of the specification
language takes this into account by treating certain reorderings of output events
as observationally equivalent. This leads to a large increase in the reachable
state space for the test cases. Reordering of output events can be expressed
by defining sequences of output events as associative and commutative (AC).
We argue that our testing framework is especially well suited to implement this
since, using the rewriting logic system Maude, associativity and commutativity
can be declared using equational attributes [4] which allows efficient evaluation
of such specifications.

2 Results

This paper extends [8] which introduced and gave the formal basis for the ap-
proach we explore further here: We test whether an object/component conforms
to its behavioral interface description, taking into account especially the asyn-
chronous nature of the communication model. The main contributions are:



3

Verification We provide an implementation of the approach in the rewriter
Maude and use Maude’s search functionality for state exploration (for rewrit-
ing modulo AC) for verification of components and investigate how the sup-
port for AC reasoning built in into Maude contributes to state space reduc-
tion in verification of asynchronously communicating components.

Experimental results We present experimental results from using the Maude
rewriting tool which give empirical evidence of the benefits of our method.
We compare, in two series of experiments, the influence on the state space
of using Maude’s built in AC support against explicit representation of all
possible reorderings of output events (with the same semantics). Using AC
rewriting may considerably reduce the resource consumption when testing
asynchronously communicating objects. AC rewriting significantly pays off
in terms of time and the number of rewrites.

References

1. G. Bernot. Testing against formal specification: A theoretical view. In S. Abramsky
and T. S. E. Maibaum, editors, TAPSOFT ’91, Vol. 1, volume 493 of LNCS, pages
99–119. Springer, 1991.

2. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-
Based Testing of Reactive Systems, volume 3472 of LNCS. Springer, 2005.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In R. Nieuwenhuis, editor, RTA 2003, volume 2706
of LNCS, pages 76–87. Springer, June 2003.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude Manual (version 2.1.1). SRI International, Menlo Park, Apr.
2005.

5. The Creol language. http://heim.ifi.uio.no/creol, 2007.
6. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton,

and B. M. Horowitz. Model-based testing in practice. In Proceedings of the 1999
International Conference on Software Engineering, 1999, pages 285–294, 1999.

7. M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I.
Schwarzbach, editors, Proceedings of TAPSOFT ’95, volume 915 of LNCS, pages
82–96. Springer, 1995.

8. I. Grabe, M. Steffen, and A. B. Torjusen. Executable interface specifications for
testing asynchronous Creol components. In Proceedings of the 3rd International
Conference on Fundamentals of Software Engineering (FSEN’09), 15 - 17 April,
Kish Island, Persian Gulf, LNCS. Springer, 2009. To appear.

9. R. M. Hierons, J. P. Bowen, and M. Harman, editors. Formal Methods and Testing,
An Outcome of the FORTEST Network, Revised Selected Papers, volume 4949 of
LNCS. Springer, 2008.

10. International Telecommunication Union. Open Distributed Processing - Reference
Model parts 1–4. Technical report, ISO/IEC, Geneva, July 1995.

11. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66,
Nov. 2006.

12. J. Meseguer. Conditional rewriting as a unified model of concurrency. Theoretical
Computer Science, pages 73–155, 1992.

13. R. Patton. Software Testing. SAMS, second edition, July 2005.

http://heim.ifi.uio.no/creol

	Model Testing Asynchronously Communicating Objects using Modulo AC Rewriting 
	Olaf Owe, Martin Steffen, and Arild B. Torjusen

