
Safe Commits for
Transactional Featherweight Java?

10. Sept. 2009

Martin Steffen and Thi Mai Thuong Tran

PMA group, Deptartment of Informatics — University of Oslo

1 Motivation

Transactions, a well-known and successful concept originating from database
systems [4,1], have recently attracted interest to be incorporated directly into
programming languages. They are advocated as a high-level, declarative alter-
native to more low-level mechanisms such as locks, monitors, etc.

A recent proposal for integrating transactional features into programming
languages is Transactional Featherweight Java (TFJ) [2] with syntactic support
for nested and multi-threaded transactions. The transactional model of TFJ
is quite general, supporting nested transactions (a transaction can contain one
or more child transactions) and multi-threaded transactions (one transaction
can contain internal concurrency). Furthermore, the calculus allows to freely
start and commit transactions (the respective constructs are called onacid and
commit).

The flexibility comes at a cost: not all usages of starting and committing
transactions “make sense”. In particular, it is an error to perform a commit
without being inside a transaction. In this paper, we introduce a static type
system to prevent these errors by keeping track of starting and committing
transactions, formulated as an effect system [3]. We concentrate on the effect
part, as the part dealing with the ordinary types works in a standard manner
and is straightforward.

2 A Type and Effect System for TFJ

The purpose of our formal system is to determine correct usage of starting and
committing transactions, in particular to avoid committing when one is not
inside a transaction. We call such erroneous situations commit errors. To prevent
them, we basically keep track per thread of the number of onacids minus the
number of commits in the code (which we call balance).

The general form of a judgment for a single expression (i.e., inside one thread)
is of the form:
? The work has been partly supported by the EU-projects IST-33826 Credo (Modeling

and analysis of evolutionary structures for distributed services) and FP7-231620
HATS (Highly Adaptable and Trustworthy Software using Formal Methods).

http://credo.cwi.nl
http://www.cse.chalmers.se/research/hats/

2

n1 ` e :: n2, S (1)

where, as said, we leave aside the expression’s “standard” type and concentrate
on the effect. The judgment is read as “starting with a balance of n1, evaluating
e will lead to a balance of n2.” The multi-set S of integers mentioned in the
post-condition takes care of the balance of new threads spawned by e.

The situation is slightly more involved, as TFJ supports nested and multi-
threaded transactions. For instance, to commit a transaction, all threads inside
must join to commit at the same time. To adequately take care of that multi-
threading inside a transaction, the multi-set S of equation (1) is needed, which
calculates the balance for potentially all threads concerned, i.e, all threads (po-
tentially) spawned during that execution.

The following sketches 4 typical effect rules for expressions, concentrating on
the aspects of transaction handling and multi-threading.

T-Onacid
n ` onacid :: n + 1, ∅

T-Commit
n ` commit :: n− 1, ∅

n0 ` e1 :: n1, S1 n1 ` e2 :: n2, S2
T-Seq

n0 ` e1; e2 :: n2, S1 ∪ S2

n ` e :: n′, S
T-Spawn

n ` spawn e :: n, S ∪ {n′}

The first basic two rules (cf. rule T-Onacid and T-Commit) are to start
and commit a transaction. The dual two commands of onacid and commit simply
increase, resp. decrease the balance by 1. In a sequential composition (cf. rule
T-Seq), the effects are accumulated. Creating a new thread by executing spawn e
does not change the balance of the executing thread (cf. rule T-Spawn). The
spawned expression e in the new thread is analyzed starting with the same
balance n in its pre-state.

The type and effect system is not only concerned with checking expressions,
the declarations of methods are generalized, as well. We do not require that
method bodies are balanced: a method may perfectly well be used to implement
code for committing a transaction. To ensure, however, that this flexibility does
not lead to commit errors, the declaration of a method does not only contains
the expected balance of the method body, but also a requirement on where that
method can be used as a form of precondition. So the specification of a method,
as far as its effects are concerned, is of the form m(~x : ~T){e} : n1 → n2, and the
corresponding rule looks as follows:

n1 ` e :: n2, {0, . . . , 0}
T-Meth

` m(~x : ~T){e} : n1 → n2

3

The formal system must make sure that for all client code of the form o.m(~v),
where m is the mentioned method, the call is issued only at a location, where
the balance is at least n1 if the method does not spawn new threads, or exactly
n1 if it does (corresponding to T-Meth).

3 Results

We present a type and effect system TFJ [2] concentrating on the commit-errors.
Our contributions are:

Type and effect system: We present a formal derivation system following the
ideas sketched above, to avoid improper use of transaction operations.

Soundness Based on the operational semantics of TFJ [2], we prove the sound-
ness of our formal system. The proof takes the form of a standard subject
reduction proof.

References

1. J. Gray and A. Reuter. Transaction Processing. Concepts and Techniques. Morgan
Kaufmann, 1993.

2. S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional object calculus.
Science of Computer Programming, 57(2):164–186, August 2005.

3. F. Nielson, H.-R. Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

4. G. Vossen and G. Weikum. Fundamentals of Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann, 2001.

	 Safe Commits for Transactional Featherweight Java 10. Sept. 2009 [0.1em]
	Martin Steffen and Thi Mai Thuong Tran

