
UNIVERSITY OF OSLO
Department of Informatics

Safe Commits for
Transactional
Featherweight
Java1

Research Report No.
392

Martin Steffen and
Thi Mai Thuong
Tran

ISBN 82-7368-353-2
ISSN 0806-3036

October 2009





Safe Commits for
Transactional Featherweight Java†

Martin Steffen and Thi Mai Thuong Tran

30th. October 2009

Abstract

Transactions are a high-level alternative for taming concurrency and more low-
level mechanisms such as locks, semaphores, monitors, etc. One recent proposal
for integrating transactional features into programming languages is Transactional
Featherweight Java (TFJ) with syntactic support for nested and multi-threaded
transactions. The transactional and concurrency systems based on this calcu-
lus model nested and multi-threaded transactions with flexible programming con-
structs. In this paper, we introduce a type and effect system for safe use of trans-
actions in these systems which prevents potential errors due to free usage of con-
structs for starting and finishing transactions; We prove the soundness of our type
system.

1 Introduction
Transactions, a well-known and successful concept originating from database systems
[20, 11], have recently attracted interest to be incorporated directly into programming
languages. They are advocated as a high-level, declarative alternative to more low-level
mechanisms such as locks, monitors, etc.

A recent proposal for integrating transactional features into programming languages
is Transactional Featherweight Java (TFJ) [15] with syntactic support for nested and
multi-threaded transactions. The transactional model of TFJ is quite general, support-
ing nested transactions (a transaction can contain one or more child transactions) and
multi-threaded transactions (one transaction can contain internal concurrency). Fur-
thermore, the calculus allows to freely start and commit transactions (the respective
constructs are called onacid and commit).

The flexibility comes at a cost: not all usages of starting and committing transac-
tions “make sense”. In particular, it is an error to perform a commit without being
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inside a transaction. In this paper, we introduce a static type and effect system to pre-
vent these errors by keeping track of starting and committing transactions, formulated
as an effect system [18]. We concentrate on the effect part, as the part dealing with the
ordinary types works in a standard manner and is straightforward.

TFJ threads in a parent transaction can execute concurrently with threads in nested
transactions. To commit an entire parent transaction, all its child threads must join (via
a commit). In this paper, we choose the design which allow to put explicitly commit
commands into the code of child threads, and that means that they can continue to run
after committing. The primary contribution of this paper is to give a particular static
type system to avoid these errors by keeping track of onacid and commit expressions in
the program to guarantee that the onacid and commit commands are placed in the right
place. Soundness of our type checker is given in terms of a standard subject reduction
proof.

The paper is organized as follows. After Section 2 which recapitulates the syntax
of the calculus and related issues, section 3 will introduce rules of the type checker and
some new notations in order to keep track of onacide and commit expressions aiming to
prevent commit error situations due to using onacid and commit commands arbitrarily.
The proof of the type checker is also described 4. Section 5 raises some discussions
and future works.

2 An object-oriented calculus with transactions
In this section, we present the object-oriented core calculus we use for the results. It is,
with slight modifications, taken from [15] and is a variant of Featherweight Java (FJ)
[13] extended with transactions and a construct for thread creation. We first present
the syntax, and afterwards sketch a type system. The type system is fairly standard,
and we include it in the technical report for completeness sake, only.

2.1 Syntax
Featherweight Java was introduced originally to study typing issues related to Java,
such as inheritance, subtype polymorphism, type casts, etc., while ignoring other is-
sues. For instance, the original proposal in [13] ignored imperative features. FJ in-
spired quite a number of variants and generalizations, concentrating on different lan-
guagues features of object-oriented language, and the term Featherweight Java is more
understood as a generic term for Java-related core-calculi. Like in [15] and compared
to the original FJ proposal, we ignore inheritance, subtyping, and type casts, as they
are orthogonal to the issues at hand. On the other hand, the calculus supports imper-
ative features, i.e., destructive field updates, furthermore concurrency and support for
transactions.

Table 1 shows the abstract syntax of transactional Featherweight Java (cf. also
[15]). A program consists of zero or a number of processes/threads t〈e〉 running in
parallel, where t is the thread’s identifier and e is the expression being executed. The
vector ~f represents a list of fields, under the silent assumption that all fi’s are differ-
ent. The vector notation is used analogously for other entities, as well; ~T represents
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P ::= 0 | P ‖ P | t〈e〉 process
L ::= class C{~f : ~T ;K; ~M} class definition
K ::= C(~f : ~T ){this.~f := ~f} contructor
M ::= m(~x:~T ){e} : T method
e ::= v | v. f | v. f := v | if v theneelsee | let x : T = e in e | v.m(~v) expression
| new C(~v) | spawn e | onacid | commit | null

v ::= r | x values

Table 1: Abstract syntax

a sequence of types, ~x stands for a sequence of variables, etc. When writing ~x : ~T we
silently assume that the length of ~x correspond to the length of ~T , and we refer by
xi : Ti to the i’s pair of variable/type. We do not make explicit or formalize such kind
of assumptions, when they are clear from the context; it would not be hard, but would
clutter the rules and definitions without adding insight.

The syntactic category L captures class definitions. In absence of inheritance, a
class class C{~f : ~T ;K; ~M} consists of a name name C, a list of fields ~f with corre-
sponding type declarations, a constructor K, and a list ~M of method definitons. A con-
structor C(~f :~T ){this. f := ~f} mentions the name of the corresponding class C and its
only purpose is to initialize the fields of that class, which are mentioned as the formal
parameters of the constructor. We assume that each class has exactly one constructor,
i.e., we do not allow constructor overloading. Similarly, we do not allow method over-
loading by assuming that all methods defined in a class have a different name; likewise
for fields. A method definition m(~x:~T ){e} : T consists of the name m of the method,
the formal parameters with their types, the method body, and finally the return type T
of the method.

For expressions e, v stands for values, i.e., expressions that can no longer be eval-
uated. When leaving out in the core calculus some standard values such as integers,
booleans, and the like, the only values are variables x and object references r. The ex-
pressions field access v. f and v1. f := v2 represent field access and field update respec-
tively. Method calls are written v.m(~v) and object instantiation is new C(~v). The next
two expressions deal with the basic, sequential control structures: if v thene1 elsee2
represents conditions, and the let-contruct let x : T = e1 in e2 introduces a local vari-
able x, evaluation e1 before e2. So sequential composition e1;e2 is syntactic sugar for
let x : T = e1 in e2 where the variable x does not occur free in e2. The let-construct,
as usual, binds x in e2. We write fv(e) for the free variables of e, defined in the stan-
dard way. The language is multi-threaded and a new thread of activity is spawned by
the expression spawne, which will run in parallel with the spawning threads. Specific
for TFJ are the two constructs onacid and commit, two dual operations dealing with
transactions. The expression onacid starts a new transaction and executing commit
successfully termininates a transaction by committing its effect. The expression null
represents the null value.

A note on the form of expressions and the use of values may be in order. The
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syntax is restricted concerning where to use general expressions e. For instance, Table
1 does not allow to use method updates e1. f := e2, where the object whose field is being
updated and the value used in the right-hand side are represented by general expressions
that need to be evaluated first. It would be easy to relax the syntax that way and indeed
the proposal of TFJ from [15] allows such more general expressions. We have chosen
this more restricted syntax, as it slightly simplifies the operational semantics later: [15]
specify the operational semantics using so-called evaluation contexts, which fixes the
order of evaluation in such more complex expressions. With that slightly restricted
representation, we can get away with a semantics without evaluation contexts, using
simple rewriting rules (and the let-syntax). Of course, this is not a real restriction in
expressivity. For instance, the mentioned expression e1. f := e2 can easily and in a
semantically equivalent manner expressed by letx1 = e1 in(letx2 = e2 inx1. f := x2),
making the evaluation order explicit. The transformation from a program in the more
general syntax to the one of Table 1 is standard.

2.2 The underlying type system
We first describe the underlying type system, i.e., the standard type system for the
object-oriented language that assures that actual parameters of a method call match
the expected types for that method, that an object can handle an invoked method. The
available types are given in equation (1). In a nominal type system, class names C serve
a types. In addition, B represents basic types (left unspecified) such as booleans, inte-
gers etc. Finally, Void expresses the absence of a value, i.e., it is used for expressions
that are evaluated for their side-effect, only.

T ::= C | B | Void (1)

The type system is given inductively in Table 2. For expressions, the type judg-
ments are of the form Γ ` e : T (“under type assumptions Γ, expression e has type T ”).
The type environment Γ keeps the type assumptions for local variables, basically the
formal parameters of a method body and the fields. Type environments Γ are of the
form x1:T1, . . . ,xn:T1, where we silently assume the xi’s are all different. This way, Γ is
considered also as a finite mapping from variables to types. By dom(Γ) we refer to the
domain of that mapping and we write Γ(x) for the type of variable x in Γ. Furthermore,
we write Γ,x:T for extending Γ with the binding x:T , assuming that x /∈ dom(Γ).

Table 2 shows the rules of the underlying type system. The rules are straightforward
and similar to the ones found for other variants of FJ. To define the rules, we need
two additional auxiliary functions. We assume that the definitions of all classes are
given. As this information is static, we do not mention the corresponding “class table”
explicitly in the rules which contains the definitions of fields(C) or mtype(C,m)

Variables are typed according to the binding found in the type environment (rule
T-VAR). The null-value has the type Void (cf. rule T-NULL). A conditional expression
is well-typed with type T , if both branches carry that type and if the conditional ex-
pressions is a boolean expression (cf. rule T-COND). To determine the type of a field
access in rule T-FIELD, we use the fields-function to look up the types of the fields
of appropriate class. Similarly for methods calls in rule T-METH, where mtype yields
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Γ(x) = T
T-VAR

Γ ` x : T
T-NULL

Γ ` null : Void

Γ ` e : Bool Γ ` e1 : T Γ ` e2 : T
T-COND

Γ ` if ethene1 elsee2 : T

Γ ` e : C fields(C) = ~f : ~T
T-FIELD

Γ ` e. fi : Ti

Γ ` e : C mtype(C,m) : ~S→ T Γ `~e : ~S
T-CALL

Γ ` e.m(~e) : T

Γ ` e1 : C fields(C) = ~f : ~T Γ ` e2 : Ti
T-ASSGN

Γ ` e1. fi := e2 : Ti

Γ ` e1 : T1 Γ,x:T1 ` e2 : T2
T-LET

Γ ` letx : T1 = e1 ine2 : T2

C ∈ Γ
T-NEW

Γ ` newC : C

Γ ` e : T
T-SPAWN

Γ ` spawne : Void

T-ONACID
Γ ` onacid : Void

T-COMMIT
Γ ` commit : Void

~x:~S,this:C ` e : T
T-METH

` m(~x : ~S){e} : T : ok in C

K = C(~f : ~T ){this.~f := ~f} ` ~M : ok in C
T-CLASS

` class C{~f : ~T ;K; ~M} : ok

Γ ` e : T
T-THREAD

Γ ` t〈e〉 :ok
T-EMPTY

Γ ` 0 : ok

Γ1 ` P1 :ok Γ2 ` P2 :ok
T-PAR

Γ1,Γ2 ` P1 ‖ P2 :ok

Table 2: The underlying type system

the type of the method as found in the concerned class. For assignments e1. f := e2, in
rule T-ASSGN, the type of the appropriate field is determined using fields as for field
access, and furthermore checked that the type of e2 coincides with it. The type of a
sequential composition e1;e2 is the type of the last expression e2 (cf. rule T-SEQ). A
freshly instantiated object carries the class it instantiates as type, and spawning a new
thread has a side-effect, only, but returns no value, hence spawn carries type Void (cf.
rules T-NEW and T-SPAWN). Similarly, the two operations for starting and ending a
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l1

t1

t2

Figure 1: Multi-threaded transaction

transaction, onacid and commit, are evaluated for their effect, only, and carry both the
type Void (cf. rules T-ONACID and T-COMMIT).

Rule T-METH deals with method declarations, explicitly mentioning the class C
which contains the declaration. The body e of the method is type checked, under an
type environment extended by appropriate assumptions for the formal parameters x and
by assuming type C for the self-parameter this. A class definition class C{~f :~T ;K; ~M}
is well-typed (cf. rule T-CLASS), if all methods ~M are well-typed in C (the premise
` ~M :ok in c of the rule is meant as iterating over all of the class’s methods, using
T-METH for each individual one). A thread t〈e〉 is well-typed, if the expression e it
evaluates is (cf. rule T-THREAD). Rule T-EMPTY and T-PAR assure that a program is
well-typed if all its processes are.

3 The Effect system

In our setting, the purpose of the effect system is to determine correct use of the starting
and committing transactions, in particular to avoid committing when one is not inside
a transaction. Such a situation constitutes an error, we call it a commit error. To avoid
such erroneous situations, the effect system keeps track of onacid and commit in the
code; we refer to the number of onacid minus the number of commits as the balance.
An execution of a thread is balanced, if all begun transactions are committed, i.e., if
the balance equals 0.

The situation gets slightly more involved when dealing with multi-threading. TFJ
supports not only nested transactions, but multi-threaded transactions. I.e., inside one
transaction there might be more than one thread active at a time, which, for instance,
can yield the effect of the transaction, upon commit, non-determinstic due to internal
concurrency. Figure 1 shows a simple situation with two threads t1 and t2, where t1
starts a transaction, and spawns a new thread t2 inside the transaction. So an example
expression resulting in the depicted behavior is e1 = onacid;spawne2;e′1, where e1 is
the expression evaluated by thread t1, and e1 by the freshly created t2.

Now, both t1 and t2 must join in a common commit, in order to terminate the trans-
action. So in order to keep track over the number of open and yet uncommitted trans-
action, it’s we must take into account that e2 and the rest e′1 of the original thread are
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l1

t1 e′1

t2

Figure 2: Sequential composition

executed in parallel, and furthermore, that when executing e2 in the new thread t2,
already one onacid has been executed by t1, namely before the spawn-operation. A
consequence for the effect system is that we need to keep track of the balance not just
for the thread/expression under consideration, but take into account the balance of the
newly created threads, as well.

Even if a spawning thread and a spawned thread run in parallel, without prefer-
ence or priority to either one (indeed, in the semantics, the information which threads
is the father of which other thread is not maintained), the situation wrt. the analy-
sis is not symmetric. More precisely, the current thread of control plays a specific
role when it comes to sequential composition of expressions. Consider the expres-
sion onacid;spawne2 followed by e′1. The first expression is depicted left of Figure
2, where the “open box” represents the transaction started by the first onacid. Con-
sidering the balance for the left onacid;spawne2, the balance for both “threads” after
execution amouts to 1, i.e., both threads are execution inside one enclosing transaction
(assuming that e2 itself does not do start or end any transactions). When calculating
the combined effect in the analysis for onacid;spawne2 followed sequentially by e′1,
the balance value of onacid is treated different from the one of e2, since the control
flow of the sequential composition connects the trailing e′1 with onacid, but not with
the thread of e2 (indicated by the dotted line in Figure 2). This means, for the analysis
of the sequentially composed expression, the sum of the balances for onacid and of e′1
must be calculated.

To sum up: to determine the effect in terms of the balance, we need to calculate the
balance for potentially all threads concerned, which means for the thread executing the
expression being analysed plus all threads (potentially) spawned during that execution.
From all threads, the one which carries the expression being evaluate plays a special
role, and is treated specially. The effect after evaluating an expression is therefore
represented as a pair of an integer n and a (finite) multi-set S of integers:

n,S : Int× (Int→ Nat) (2)

We write /0 for the empty multi-set, ∪ for the multi-set union. Alternatively, the
multi-set can be seen as a function of type Int→ Nat, and we write dom(S) for the
set of elements of S, ignoring their multiplicity. The integer represents the balance of
the thread of the given expression, the multi-set the balance numbers for the threads
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spawned by the expression. The judgements of the analysis are thus of the following
form:

n1 ` e :: n2,S , (3)

which reads as: starting with a balance of n1, executing e results in a balance of n2 and
the balances for new threads spawned by e are captured by S. The balance for the new
threads in S is calculated in a cumulative manner, i.e., their balance includes n1, the
contribution of e before the thread is spawned, and the contribution of the new thread
itself.

For clarity, we do not integrate the effect system with the underlying type system
of Section 2.2. Instead, we concentrate on the effects in isolation. In the appendix,
we show the combined type and effect system. Variables, the null-expression, and
field access have no effects (cf. rules T-VAR, T-NULL, and T-FIELD, so they leave
the balance unchanged and since no threads are generated, the multi-set of balances
is empty. For conditionals if e thene1 elsee2, we insist that the (boolean) expression e
does not change the balance, and that the two branches e1 and e2 agree on a balance
n′. An assignment has no effect (cf. rule T-ASSGN), as we require, that the expression
being assigned and the expression designating the object, whose field we assgn to, are
evaluated already. Likewise, creating a new object has no effect (cf. rule T-NEW).

In a sequential composition (cf. rule T-SEQ), the effects are accumulated. Creating
a new thread by executing spawne does not change the balance of the executing thread
(cf. rule T-SPAWN). The spawned expression e in the new thread is analyzed starting
with the same balance n in its pre-state. The resulting balance n′ of the new thread is
given back in the conclusion as part of the balances of the spawned threads, i.e., as part
of the multi-set. The dual two commands of onacid and commit simply increase, resp.
decrease the balance by 1 (cf. rule T-ONACID and T-COMMIT). The rule T-METH
deals with method declarations. Rule T-SUB captures a notion of subsumption where
by S1 ≤ S2 we mean the subset relation on multi-sets.

We illustrate the effect system with the following example:

Example 3.1. The follwing derivation shows the effect for the expression
e1;spawn(e2;spawne3);e4 :: n4,{n2,n3}, when starting with a balance of 0.

0 ` e1 :: n′1,{}

n′1 ` e2 :: n2,{}

n2 ` e3 :: n3,{}

n2 ` spawne3 :: n2,{n3}

n′1 ` (e2;spawne3) :: n2,{n3}

n′1 ` spawn(e2;spawne3) :: n′1,{n2,n3} n′1 ` e4 :: n4,{}

n′1 ` spawn(e2;spawne3);e4 :: n4,{n2,n3}

0 ` e1;spawn(e2;spawne3);e4 :: n4,{n2,n3}

The derivation demonstrates the two most interesting rules T-SEQ and T-SPAWN
with a starting balance is 0 for simplicity. Assume that the expressions e1,. . . e4 them-
selves have the following balances 0 ` ei :: n′i,{}. Based on Lema 3.2 we have:
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T-VAR
n ` x :: n, /0

T-NULL
n ` null : n, /0

T-FIELD
n ` v. f : n, /0

n ` e : n, /0 n ` e1 : n′,S1 n ` e2 : n′,S2
T-COND

n ` if e thene1 else e2 : n′,S1∪S2

n ` v :: n, /0 mtype(C,m) :: n′,S 0 `~e ::~n,~S
T-CALL

n ` v.m(~e) : n+n′+∑
i

ni,S∪
⋃

i
(Si +n)

n ` v1 : n, /0 n ` v2 : n, /0
T-ASSGN

n ` v1. fi := v2 : n, /0
T-NEW

n ` newC :: n, /0

n0 ` e1 :: n1,S1 n1 ` e2 :: n2,S2
T-LET

n0 ` let x : T = e1 ine2 :: n2,S1∪S2

n ` e :: n′,S
T-SPAWN

n ` spawne :: n,S∪{n′}

T-ONACID
n ` onacid : n+1, /0

n≥ 1
T-COMMIT

n ` commit : n−1, /0

n ` e : n′,S1 S1 ≤ S2
T-SUB

n ` e : n′,S2

n1 ` e : n2,{0,0, . . .}
T-METH

` m(~x : ~T ){e} : n1→ n2

K = C(~f : ~T ){this.~f := ~f} 0 ` ~M : n,~S
T-CLASS

0 ` class C{~f : ~T ;K; ~M} : 0, /0

|E| ` e : 0,{0,0, . . .}
T-THREAD

t:E ` t〈e〉 : ok

Γ1 ` P1 :ok Γ2 ` P2 :ok
T-PAR

Γ1,Γ2 ` P1 ‖ P2 :ok

Table 3: Effect system

n′1 ` e2 :: n′1 +n′2 = n2
n2 ` e3 :: n2 +n′3 = n3
n′1 ` e4 :: n′1 +n′4 = n4

In order to check the type of T-SEQ, we have to apply T-SEQ for the whole expres-
sion from left to right ( note that calculation performing in the other way around is
similar and have the same result). First we evaluate the type of the first expression e1
and then the rest as the second expression spawn(e2;spawne3);e4.

Lemma 3.2. If n1 ` e :: n2, then n1 +n ` e :: n2 +n.

Proof. By straightforward induction over the length of derivation.
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4 Semantics
In this section, we describe the dynamic semantics of TFJ in terms of two different
levels: local semantics and global semantics.

The local semantics is given in Table 4 on the following page. These local rules
specify the “core” of the semantics, as the paper claims; there are 4 of those and they
work as follows. Note that the rule specify exactly one command, not a whole expres-
sion with an expression inside. The four rules are pretty straightforward, as far as the
expression is concerned. As well as the second component of the local configuration,
i.e., the local environment, involved, the situation is a bit more complex, or rather a bit
unspecific, as the details of E is given only abstractly. Only later, E and the correspond-
ing manipulations are concretized, yielding in this paper, the versioning semantics and
the semantics with strict two-phase locking. In the premises of the rules, the E is con-
sulted, looking up object references. Not only that, the E is also changed. The change
is not only done when executing a write-command, but also for a read command: in
the versioning semantic, it records, information about of accesses to the storage, and it
might copy in values into the log of the local transaction.

Rule R-FIELD deals with field lookup; the command is of the syntactic form r. fi,
where r is a location and fi is the i’s field of the object referenced by r. Basically,
the read-function consults the environment E to look-up r, and finds the object C(~r)
referenced by r. Besides that, the read-function changes the E environment to E ′. This
change, as said, will be described and concretized later. The change, abstractly, will
somehow mention/record, in which transaction the location is referenced. Note that at
this stage (with read etc. not concretely given), there is no mentioning of transactions
in the reduction rules, so we don’t see in which transaction the reduction takes place,
at least not on the transition label.

The next rule R-ASSIGN treats assignment. As in the rule for look-up, the environ-
ment is consulted to retrieve the object C(~r) (and changing E to E ′ as a side-effect).
The second premise does the update itself, using the write-operation. In the label, both
the location that contains the object and the location that is stored in the field, are men-
tioned. Rule R-INVOKE deals with method invocation, and works as expected. The
final, local rule R-NEW specifies object instantiation, and uses the extend-operation

The five rules of the global semantics are given in Table 5. The global operational
semantics works on configurations of the following form:

Γ ` P (4)

where P is a program and Γ is a program state. We will call Γ a global environment.
Basically, a program P consists of a number of threads evaluated in parallel (cf. the ab-
stract syntax from Table 1 on page 3), where each thread corresponds to one expression,
whose evaluation is described by the local rules. As seen, each local expression/thread
has a sequence E of bindings, called the local environment. Now that we describe the
behavior of a number of (labeled) threads t〈e〉, we need one E for each thread t. This
means, Γ is a “sequence” (or rather a set) of t:E bindings, called thread environments.

Definition 4.1 (Global enviroment). A global environment Γ of type GEnv is a finite
mapping from thread names to local environments. A global environment is written as
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R-NULL
E ` letx : T = null ine−→ E ` e

R-RED
E ` letx : T = v ine−→ E ` e[v/x]

R-LET
E ` letx2 : T2 = (letx1 : T1 = e1 ine) ine′ −→ E ` letx1 : T1 = e1 in(letx2 : T2 = e ine′)

read(r,E) = E ′,C(~u) fields(C) = ~f
R-FIELD

E ` letx : T = r. fi ine rd r−−→ E ′ ` letx : T = ui ine

read(r,E) = E ′,C(~r) write(r 7→C(~r) ↓r′
i ,E ′) = E ′′

R-ASSIGN

E ` letx : T = r. fi := r′ ine wr rr′−−−→ E ′′ ` letx : T = r′ ine

read(r,E) = E ′,C(~r) mbody(m,C) = (~x,e)
R-INVOKE

E ` letx : T = r.m(~r) ine′ rd r−−→ E ′ ` letx : T = e[~r/~x][r/this] ine′

r fresh extend(r 7→C( ~null),E) = E ′
R-NEW

E ` letx : T = newC() ine xt r−−→ E ′ ` letx = r ine

R-COND1
E ` letx : T (if v = v then e1 else e2) ine−→ E ` letx : T = e1 ine

v1 6= v2
R-COND2

E ` letx : T = (if v1 = v2 then e1 else e2) ine−→ E ` letx : T = e2 ine

Table 4: Semantics (local)
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t1:E1, . . . tk:Ek (the order of bindings does not play a role, and each thread name can
occur at most once).

So the steps are of the form:

Γ ` P α=⇒t Γ
′ ` P′ (5)

The subscript t denotes the identity of the thread that does the step, and α the label,
as before. Besides the 3 labels for the local steps, there will be more kinds of labels,
however.

The rule G-PLAIN simply lifts a local steps to the global level. And thus the reflect-
operation also lifts the change of E ′ to Γ′. The rule SPAWN deals with the spawn-
expression, which starts a new thread. As that involves two threads, the original and
the new one, it is being dealt with at the global level. The transition is labeled with the
original thread t that executes those steps. The identity t ′ of the new thread must be
fresh. Note that the calculus allows thread creation, but does not feature thread classes.
Also, the functionality of the spawn-operation will be dealt with later. Anyway, a
freshly created thread executes in the same transaction(s) as the spawning thread.

The next three important rules treat the two central commands of the calculus, those
dealing with directly with the transactions. The first one G-TRANS covers onacid,
which starts a transaction. The rule here itself is pretty unspectacular. The step simply
creates a new label l, and all the work is done in the implementation of start. Rule
G-COMMIT deals with committing a transaction, i.e., making its effect globally known
in an instantaneous manner. The step from P to Ṕ seems clear enough. The rest is a
bit more complex. What is a bit strange is that this rule is not longer too abstract, i.e.,
suddenly the inner structure of Γ and E is exposed (and not postponed until we get
a special incarnation of the transactional semantics). The Γ contains the binding for
the thread t which actually performs the commitment statement. The associated E is
consulted to get the name of the transaction. The function intranse takes a transaction
label l and a global environment Γ, and gives back the sequence (or rather the set) of
thread labels, which are running inside the mentioned transaction. The argument Γ is
a list (or rather a set) associating for each thread a local environment and the function
iterates therefore through that set. In the introductory part, they state that a thread can
execute within a transaction l. However, transactions can be nested. So that might
mean, a thread may (indirectly) execute within more than one transaction. Maybe:
The configuration contains a number of threads in front of their respective commit-
statement. They are all take in one step, so that seems to be some join-synchronization.
And the third rule says that an commit error will be raised if the program commits
non-transaction code.

The following function is needed to define the nestedness of threads within transi-
tions in Definition 4.3 below.

Definition 4.2. Given a local environment E, the function l : LEnv→ List of TrName
is defined inductively as follows: l(ε) = ε , and l(l: ,E) = l, l(E).

Overloading the definition, we lift the function straightforwardly to global environ-
ments (with type l : TName×GEnv→ List of TrName), such that l(t,(t:E),Γ) = l(E).
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P = P′′ ‖ t〈e〉 E ` e α−→ E ′ ` e′ P′ = P′′ ‖ t〈e′〉

Γ ` t : E reflect(t,E ′,Γ) = Γ′
G-PLAIN

Γ ` P t=⇒α Γ
′ ` P′

P = P′′ ‖ t〈letx : T = spawne1 ine2〉 P′ = P′′ ‖ t〈letx : T = null ine2〉 ‖ t ′〈e1〉

t ′ fresh spawn(t, t ′,Γ) = Γ′
G-SPAWN

Γ ` P t=⇒sp t ′ Γ
′ ` P′

P = P′ ‖ t〈r〉 Γ = t:E,Γ′
G-THKILL

Γ ` P t=⇒ki Γ
′ ` P′

P = P′′ ‖ t〈letx : T = onacid ine〉 P′ = P′′ ‖ t〈letx : T = null ine〉

l fresh start(l, t,Γ) = Γ′
G-TRANS

Γ ` P t=⇒ac Γ
′ ` P′

P = P′′ ‖ t〈letx : T = commit ine〉 P′ = P′′ ‖ t〈letx : T = null ine〉

Γ = Γ′′, t:E E = E ′, l:ρ intranse(l,Γ) =~t = t1 . . . tk

commit(~t,~E,Γ) = Γ′ n1:E1,n2:E2, . . .nk:Ek ∈ Γ ~E = E1,E2, . . . ,Ek
G-COMM

Γ ` P t=⇒co Γ
′ ` P′

P = P′′ ‖ t〈letx : T = commit ine〉 Γ = Γ′′, t:E E = /0
G-COMM-ERROR

Γ ` P t=⇒co error

Table 5: Semantics (global)
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The first definition, extracting the list of transaction labels from a local environment
E is a straightforward projection, simply extracting the sequence of transaction labels.
As for the order of the transactions, as said: the most recent, the innermost transaction
label is to the right.

Given a transaction, the following function determines the threads for which the
given transaction is (properly) “nested” in a global environment, i.e., those threads
which execute inside the given transaction but where the transaction is not the current,
directly enclosing transaction. So, “nested” may be a slight misnomer: It does not
mean that a transaction occurs not outermost.

Definition 4.3 (Nesting). Given a global environment, the function nested : TrName×
GEnv→ List of TName returns the list/set of all threads nested inside a given transac-
tion.

Next we prove that the type and effect system does what it is designed to do. The
safety property the type system guarantees is the absence of commit errors. The main
part of the proof is preservation of well-typedness under reduction, also called subject
reduction.

Lemma 4.4 (Subject reduction (local)). Let n = |E|. If n ` e :: n′,S′ and E ` e α−→ E ′ `
e′, then |E ′|= n and n ` e′ :: n′,S′. (we have to define lenght of E)

Proof. First observe that by the properties of read, write, and extend, |E| = |E ′|. Pro-
ceed by case analysis over the operational rules of Table 4. The cases R-FIELD,
R-ASSIGN, R-INVOKE, and NEW are immediate. For R-COND1, we need subsump-
tion (R-COND2 works analogously):
Case: R-COND1
In this case the expression e before the step is of the form if v = v thene1 elsee2 and the
step is given as E ` e−→ E ` e1. Note that E ′ = E, and hence |E ′|= n. Concerning the
typing, we are given n ` if v = v thene1 elsee2 :: n′,S′, which implies by the premises
of rule T-COND that n ` e1 :: n′,S1 and n ` e2 :: n′,S2 with S′ = S′1 ∪ S′2. The result
follows by subsumption (rule T-SUB).

The global semantics accesses and changes the global enviroments Γ. These ma-
nipulations are captured in various functions, which are kept “abstract” in this seman-
tics (as in [15]). To perform the subject reduction proof, however, we need to impose
certain requirements on those functions:

Definition 4.5. The following functions on global environments are specified as fol-
lows.

1. The function reflect satisfies the following condition: if reflect(t,E,Γ) = Γ′ and
Γ = t1:E1, . . . , tn:En, then Γ′ = t1:E ′1, . . . , tn:E ′n with |Ei|= |E ′i | (for all i).

2. The function spawn satisfies the following condition: Assume Γ = t : E,Γ′′ and
t ′ /∈ Γ and spawn(t, t ′,Γ) = Γ′, then Γ′ = Γ, t ′:E ′ s.t. |E|= |E ′|.
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3. The function start satisfies the following condition: if start(l, ti,Γ) = Γ′ for a
Γ = t1:Ek, . . . , tk:Ek and for a fresh l, then Γ′ = t1:E1, . . . , ti:E ′i , . . . , tk:Ek, with
|E ′i |= |Ei|+1.

4. The function intranse satisfies the following condition: Assume Γ = Γ′′, t:E s.t.
E = E ′, l:ρ and intranse(l,Γ) =~t, then

(a) t ∈~t and

(b) for all ti ∈~t we have Γ = . . . , ti : Ei, l:ρi, . . ..

(c) for all threads t ′ with t ′ /∈~t and where Γ = . . . , t ′:E ′, l′:ρ ′, . . ., we have l′ 6= l.

5. The function commit satisfies the following condition: if commit(E, t,Γ) = Γ′ for
a Γ = Γ′′, t:E and for a~t = intranse(l,T ), and for a P = P′′ ‖ ti〈commit;ei〉 then
Γ′ = t ′i :E

′′
i , ti:E ′i where ti ∈~t, t ′i /∈~t, t ′i :E

′
i ∈ Γ and P′ = t ′i〈e′i〉 ‖ ti〈null;ei〉, with

|E ′′i |= |E ′i | and |E ′i |= |Ei|−1.

Lemma 4.6 (Subject reduction). If Γ ` P : ok and Γ ` P−→ Γ′ ` P′, then Γ′ ` P′ : ok.

Proof. Proceed by case analysis on the rules of the operational semantics from Table 5
(except rule G-COMMERROR for commit errors).
Case: G-PLAIN
From the premises of the rule, we get for the form of the program that P = P′′ ‖ t〈e〉,
furthermore for t’s local environment Γ ` t : E and E ` e α−→ E ′ ` e′ as a local step.
Well-typedness Γ ` P : ok implies n ` e :: n′,S′ for some n′ and S′, where n = |E|. By
subject reduction for the local steps (Lemma 4.4) n ` e′ :: n′,S′. By the properties of
the reflect-operation, |E ′|= n, so we derive for the thread t

n ` e′ :: 0,{0, . . .}

Γ
′, t:E ′ ` t〈e′〉 : ok

from which the result Γ′ `P′′ ‖ t〈e′〉 : ok follows (using T-PARALLEL and the properties
of reflect from Definition 4.5.1).
Case: G-SPAWN
In this case, P = P′′ ‖ t〈let spawne1 in e2〉 and P′ = P′′ ‖ t〈let null in e2〉 ‖ t ′〈e1〉 (from
the premises of G-SPAWN). The well-typedness assumption Γ ` P : ok implies the
following sub-derivation:

n ` e1 : 0,S1

n ` spawne1 : n,S1∪{0} n ` e2 : 0,S2

n ` let spawne1 in e2 : 0,{0, . . .}

t:E ` t〈let spawne1 in e2〉 : ok

(6)

with S1 = {0, . . .} and S2 = {0, . . .}. By the properties of reflect, the global environment
Γ′ after the reduction step is of the form Γ, t ′:E ′ where t ′ is fresh and |E ′| = |E| (see
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Definition 4.5.2). So we can derive

t:E ` t〈let null in e2〉 : ok

n ` e1 : {0, . . .}

t ′:E ′ ` t ′〈e1〉 : ok

t:E, t ′:E ′ ` t〈let null in e2〉 ‖ t ′〈e1〉 : ok

The left sub-goal follows from T-THREAD,T-SEQ, T-NULL, and the right subgoal of
the previous derivation (6). The right open subgoal directly corresponds to the left
subgoal of derivation (6).
Case: G-THKILL
Straightforward.
Case: G-TRANS
In this case, P = P′′ ‖ t〈onacid;e〉 and P′ = P′′ ‖ t〈let null in e〉. The well-typedness
assumption Γ ` P : ok implies the following subderivation (assume that |E|= n):

n ` onacid :: n+1, /0 n+1 ` e :: 0,{0, . . .}

n ` let onacid in e :: 0,{0, . . .}

t:E ` t〈let onacid in e〉 : ok

(7)

For the global environment Γ′ after the step, we are given Γ′ = start(l, t,Γ) from the
premise of rule G-TRANS. By the properties of start from Definition 4.5.3, we have
Γ′ = Γ′′, t:E ′ with |E ′|= n+1. So with the help of right subgoal of the previos deriva-
tion (7), we can derive for thread t after the step:

n+1 ` e :: 0,{0, . . .}

t:E ′ ` t〈e〉 : ok

Since furthermore the local environments of all other threads remain unchanged (cf.
again Definition 4.5.3), the required Γ′ ` P′ : ok can be derived, using T-PAR.
Case: G-COMM
In this case, P = P′′ ‖~t〈let commit in ~e〉 and P′ = P′′ ‖~t〈~e〉. The well-typedness as-
sumption Γ ` P : ok implies the following subderivation for thread t:

n ` commit :: n−1, /0 n−1 ` ei : 0,{0, . . .}

n ` let commit in ei : 0,{0, . . .}

ti:Ei ` ti〈let commit in ei〉 : ok

(8)

For the global environment Γ′ after the step, we are given Γ′ = commit(~t,~E,Γ) from
the premise of rule G-TRANS, where~t = intranse(l,Γ) and ~E are the corresponding
local environments. By the properties of commit from Definition 4.5.5, we have for
the local environments ~E ′ of threads~t after the step that |E ′i |= n−1. So we obtain by
T-THREAD, using the right sub-goal of derivation (8):

n−1 ` ei :: 0,{0, . . .}

ti:E ′i ` ti〈ei〉 : ok
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For the threads t ′i〈e′i〉 different from t, according to the Definition 4.5.5, we have |E ′′i |=
|E ′i | so t ′i :E

′′
i ` t ′i〈e′i〉 : ok straightforwardly. As a result, we have Γ′ ` P′ : ok.

Lemma 4.7. If Γ ` P : ok then it is not the case that Γ ` P−→ error.

Proof. Let Γ ` P : ok and assume for a contradiction that Γ ` P −→ error. From the
rules of the operational semantics it follows that P = t〈let commit in e〉 ‖ P′ for some
thread t, where the step Γ ` P−→ error is done by t (executing the commit-command).
Furthermore, the local environment E for the thread t is empty:

E = /0
G-COMM

Γ
′, t:E ` t〈let commit in e〉 ‖ P′ −→ error

To be well-typed, i.e., for the judgment Γ ` t〈let commit in e〉 ‖ P : ok to be deriv-
able, it is easy to see that the derivation must contain Γ′, t: /0 ` t〈let commit in e〉 : n,S
as subderivation (for some n and S). By inverting rule T-THREAD, we get that 0 `
let commit in e : 0,{0,0, . . .} is derivable (since |E|= 0). This is a contradiction, as the
balance after commit would be negative (inverting rules T-SEQ and T-COMMIT).

Corollary 4.8 (Well-typed programs are commit-error free). If Γ ` P :ok then it is not
the case that Γ ` P−→∗ error,

Proof. A direct consequence of the subject reduction Lemma 4.6 and Lemma 4.7.

5 Conclusion
We presented a type and effect system to avoid improper use of transaction operations,
such as not committing a transaction, or committing a transaction when not executing
inisde one. In order to keep track of using correctly onacid and commit commands,
we have introduced a notation in the type-effect system to accumulate the balance for
potentially all threads concerned. The soundness of our type checker was proven in the
paper to make sure that type errors will not happen under our type system.

5.1 Related work
This paper took the language design of [15] TFJ. That paper is not concerned with the
type system and static analysis, but develops and investigates operational semantics for
TFJ that assures transactional guarantees. FJ and its variant TFJ are core languages to
capture essential features of real languages, in this case of Java resp. of transactional
extensions for Java. The proposal of TFJ concerning transaction is rather advanced (al-
lowing nested and concurrent transactions), compared to the traditional way Java deals
with concurrency control: each object is equipped with a lock, and the synchronized-
statement (resp. sychnronized methods) can be used to achieve mutual exclusion.
The monitors in Java work lock-based (and are not based on transactions); more im-
portantly in the context of our static analysis is: the use of synchronized is rather
restricted compared to the situation in TFJ, as locking has to adhere to lexical scop-
ing. Recent library extensions to Java (“Java 5”) give more flexibility in allowing
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non-lexically scoped locks via the interface Lock. TFJ studied here is, likewise, non-
lexically scoped, but allows still more freedom in supporting multi-threading inside
one transaction. Therefore, the type-system here can be applied to the simpler setting
of Java 5 locks, as well.

There have been a number of further proposals for integrating transactional features
into programming languages. The paper [1] presents the AME calculus, a calculus for
automatic mutual conclusion, a concept proposed in [14]. The sequential core is some
λ -calculus with references and imperative update, extended by the possibility to cre-
ate asynchronouse threads and means for atomic execution. Unlike other approaches,
where the user is required to mark parts of the code intended for atomic execution, in
AME, atomic execution is the default. For code parts where transactional behavior is
not intended or possible (for instance, legacy code from libraries) can be marked as un-
protected. A calculcus and a proof method (implemented in the tool QED) for atomic
actions is presented in [8]. Also the following languages or calculi are concerned with
transactions, too. AtomCaml [19], X10 [5], Fortress [3], Chapel [6]

Over the years, many static analyses for different purposes and language features
have been devised, to assure desired properties ranging from resource consumption
(e.g., concerning memory, time . . . ), absence of deadlocks and race conditions. Most
authors (e.g., [4][2][17]. . . ) focus on avoiding data races and deadlocks in multi-
threaded Java programs relating to shared-memory issues and synchronization. Static
type systems have also been used to impose restrictions assuring transactional seman-
tics, for instance in [12][1][14] A type system for atomicity [10][9].

5.2 Future work
The work presented here can be extended to deal with more complex type systems, for
instance when dealing with higher-order functions. In that setting, the effect part and
the connection to the type system becomes for challenging. Furthermore, we plan to
adopt the results for a different language design, more precisely to the language Creol
[7, 16], which is based on asynchronously communicating, active objects, in contrast
to Java, whose concurrency is based on multi-threading.
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A Notes
The general questions about transactions is kept in the paper directory, here there are
only questions concerning the specific things.

http://heim.ifi.uio.no/creol
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A.1 Development
29. Sept. 2009 we switched to let-semantics

Sept. 2009: Abstract to NWPT

End of July 2009: start

A.2 Special questions
Question A.1 (Spawning). What is the problem with spawning new threads when it
comes to counting the balance?

Answer: Maybe it’s a weakness of the syntax. The problem is that we cannot have a
in a directly compositional manner the type of e1;e2 calculated from e1 and e2, if the bal-
ance is just a number. One can see it by the fact that the type system cannot distinguish
between e1; e2 (when we assume that e1 and e2 is single-threaded, and (spawn e1); e2. So
it means we need to take the “threads” intro account. Let’s ignore the standard types.
Let’s further assume that Θ =~t :~n. Let’s assume futher that t0 is the standard thread.

Γ ` e : Θ
T-SPAWN

Γ ` spawne1 : Θ, t0:0

Furthermore, the rule for sequential composition can be as follows

Γ ` e1 : Θ1, t0:n1 Γ ` e1 : Θ2, t0:n2
T-SEQ

Γ ` e1;e2 : Θ1,Θ2,n1 +n2
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