Executable interface specifications for
testing asynchronous Creol components

I. Grabe, M. Kyas, M. Steffen, and A. B. Torjusen

University of Oslo  FU Berlin ~ CWI, Amsterdam

FSEN'09




Background

e Project:
e asynchronously communicating components in open
environments, using Creol
o behavioral interface description language
e automated validation techniques
e testing

e Challenges:

e asynchronicity
e non-determinism

e Approach:
e “divide-and-conquer”
e black-box behavior given by interactions at the interface.



General setting

Goal: Test components under specific schedulings.

Tool: Specification language over communication labels.
e Input interactions: environment assumptions.
e QOutput interactions: commitments of the component.

= : expected observable output behavior under the
assumption of a certain scheduling of input.

Method: Specification simulates environment behavior.
e execute component and specification in parallel
e generate incoming communication from specification.

e test actual outgoing communication from the component.



Main contributions (outline)

1 Theoretical basis:
e Formalization of the interface behavior of Creol.
o The behavioral interface specification language.

2 framework for scheduling and asynchronous testing of
Creol objects.

3 Implementation of a specification-driven Creol interpreter.



Creol

Creol (www.uio.no/~“creol): high-level, object-oriented
language for distributed systems

e strongly typed, formal operational semantics in rewriting
logic

e features active objects.

e communication by asynchronous method calls.

e Creol object: acts as a monitor.

e non-deterministic selection of waiting calls.


www.uio.no/~creol

Abstract Creol syntax

Cu=0|C|C|v(nT).C|n[O]|nn,F L] | nt)
O :=FM
M:a:=l=m,...,.l=m
Fu=l=f...,l=Ff
m = g(n:T). Nx:T,...,x:T).t
foa=c(:T).X)v | s(n:T).A().L,,/
t = v |stop|letx:T =eint
e =1t |ifv=wvtheneelsee | if undef(v.l()) theneelse e
| v@I(D) | v.l() | v.l :=¢(s:n).X().v
| newn | claim@(n,n) | get@n | suspend(n) | grab(n) | release(n)
vae=z|n|()
L:=1]|T

e component: classes, objects, and (named) threads.
e active, executing entities: named threads n(t)

e hiding and dynamic scoping: V -operator

component
object
method suite
fields
method

field

thread

expr.

values
lock status



Operational semantics

Two stages:
e internal semantics
e external steps occurring at the interface.
e Component/environment: exchange information via call-
and return-labels:

y == n{call n.I(v)) | n{return(n)) |v(n:T).y  basic labels
a == y?|y! input and output labels
e External steps
cs C



Operational semantics

Two stages:

internal semantics

external steps occurring at the interface.
Component/environment: exchange information via call-
and return-labels:

y == n{call n.I(v)) | n{return(n)) |v(n:T).y  basic labels
a == y?|y! input and output labels
e External steps
=FCS=RC
e = = “context " of C (assumptions + commitments)

contains identities + typing of objects and threads
known so far

checked in incoming communication steps
updated when performing a step



External steps: outgoing call

=ZFV(=1).(C | n{letx:T =o0./(V) in t))



External steps: outgoing call

a=V(Z'). n(call 0.I(V))! Alo

=FV(Z1).(C | n{letx:T = 0./(V) in t)) >

e label = outgoing call (A = assumption context)



External steps: outgoing call

a=V(Z'). n(call 0.I(V))! Alo

ZFV(Z1).(C || nletx:T = 0./(V) in t)) 2
= V(Z1).(C || n'(letx: T =n int))

e label = outgoing call (A = assumption context)

e update the contexts



External steps: outgoing call

a=V(Z'). n(call 0.I(V))! Alo
é:E+a E’zfn(LaJ)ﬁEl _1—_1 =

a

ZFV(Z1).(C || n{letx:T =o0./(V) in t)) =
= V(Z1).(C || n'(letx: T =n int))

e label = outgoing call (A = assumption context)
e update the contexts

e scope extrusion



External steps

labelled steps at the interface

a=Vv(='). n{call 0.I(V))? =ZFa:T Z=Z+a
Calll

=FC|ofe,F, 1] 2=+ Cllofc,F,T] | nlletx:T = M.I(0)(¥)inrelease(o); x)

a=V(Z'). n{call 0.I(V))! Z'=1fn(la])N=; =1==1\T Ato ==Z+a callo

= V(Z1).(C || nlletx: T = 0./(V) in £)) S = V(Z1).(C || n'{letx: T =n int))

a=V(Z'). n(return(v))? =ta: ok Z=Z+4a2
- Retl
ZHFCZZHC n(v)
a=v(Z). n{return(v))! = =fn(la))N=; T ==\ Z=Z+a

RetO

ZHV(Z1).(C || n(v)) 2 ZFV(Z1).C



Behavioral interface specification language

Black-box behavior of a component described by a set of traces

Design goals:
e concise
e intuitive

e executable in rewriting logic

y == x{call x.I(X)) | x{return(x)) |v(x:T).y|(x:T).y  basic labels
a == y?|y! input and output
¢ = Xle|lad|d+d]recX.0 specifications

e specification language: uses variables
e two kinds of var. binders

e Creol communication labels: concrete names/references.



Behavioral interface specification language

distinguish between input and output interactions:

e Input: controlled by the environment.
e Qutput: to be provided by the component.

Input interactions are the ones being scheduled.

Output interactions are used for testing.
pu=Xlelap|p+o|rec X.p specifications

Specially relevant for the choice operator: either external
or internal choice.

Formalized as well-formedness conditions.



Well-formedness

e Restrict specifications to traces actually possible at the
interface.

e three main restrictions :
* typing
e scoping

e communication patterns

e given as derivation/type system over trace specs.

e polarity: specifications either well-formed input or
well-formed output.



Asynchronicity— Observational blur”

e asynchronicity: messages order not preserved in
communication.

e The specification is relaxed up-to observational
equivalence

e Testing of output only up-to observability.

EQ-SwiTcH

v(E) vyl =obs V() 2l le



Operational semantics of specifications

Given the observational equivalence relation (=), the
meaning of a specification is given operationally in a quite
straightforward manner:

E=E+4a EFor B EF
— — R-PREF — — ! - R-PLus;
SEtap—EZFp EFe1+p2 — EF
© Zobs P ER L ERY

R-Equiv



Well-formedness

e =_ps preserves well-formedness

e any spec is either in, out or empty

e @is wf! iff @ can do an outgoing step (analogously for ?7)

o subject reduction: =F ¢ : wf and =F ¢ 5 =+ ¢, then
ZHé: wf.

o soundness Assume =+ C. If =+ C ==, then

=k ¢¢: wf (where §; is the trace t interpreted as spec.
formula)



Scheduling and asynchronous testing of Creol
objects

e Combine:
e external behavior of object
e intended behavior given by specification
e interaction defined by synchronous parallel composition
e specification ¢ and component must engage in
corresponding steps:

e For incoming communication, this schedules the order of
interactions with the component

o For outgoing communication, the interaction will take
place only if it matches an outgoing label in the
specification

e Error if the specification requires input and the
component could do output.



Parallel composition

ErCcLERC

— — PAR-INT
EECle—-EFCle

EFp:uff
- PAR-ERROR
EFv(E).(C || n(letx:T = o0l(0)int) || ) — 4
SIFCEEFC SihelErg Fas.b
PARr

S EC|le—=EFC| ¢o

e Matching of ¢'s step and components step (- a <S¢ b)
e As said: specification contains:

o freshness assertions (V(x:T))
e standard variable declarations (x: T)



Matching

Fa; Sgan: ok = <=50:

F=1.a1 So=0.a2:

~




Implementation in rewriting logic.

e Creol interpreter executable in Maude
e Implementation of the spec. language in Maude, too

e Execution of Creol components synchronized with
specifications
e generate input from specification
e test component behaviour for conformance

e No input queue, specified method calls are answered
immediately

e Reentering suspended methods may interfere.



Implementation in rewriting logic

e Creol configuration: objects, classes, and messages:
rl Cfg => Cfg’.

e Scheduling interpreter: introduce Spec for specifications.
rl (Spec || 0) Cfg => (Spec’ || 0’) Cfg’.

e operational semantics easily coded into Maude.

e “Observational blur”, implemented rewriting modulo
equivalences.



Summary

e Formalization of interface behavior of Creol + a
behavioral interface specification language.

e A formal description of how to use this specification
language for black-box testing of asynchronously
communicating Creol objects.

e A rewriting logic implementation of the testing
framework



Future work

e from objects to multi-object components
e more features from the Creol language
e extend specifications with assertion statements on labels

e combine: testing framework + model checking and
abstraction

e case study



Related work

e [Johnsen et al., 2008]

e validating component interfaces
e assumption/commitment style
e FOL over traces
e [Schlatte et al., 2008]
o scheduling activity to restrict behavior

e intra object scheduling
e internal state of object
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