Executable interface specifications for
testing asynchronous Creol components

I. Grabe, M. Kyas, M. Steffen, and A. B. Torjusen

University of Oslo FU Berlin ~ CWI, Amsterdam

FSEN'09

Background

e Project:
e asynchronously communicating components in open
environments, using Creol
o behavioral interface description language
e automated validation techniques
e testing

e Challenges:

e asynchronicity
e non-determinism

e Approach:
e “divide-and-conquer”
e black-box behavior given by interactions at the interface.

General setting

Goal: Test components under specific schedulings.

Tool: Specification language over communication labels.
e Input interactions: environment assumptions.
e QOutput interactions: commitments of the component.

= : expected observable output behavior under the
assumption of a certain scheduling of input.

Method: Specification simulates environment behavior.
e execute component and specification in parallel
e generate incoming communication from specification.

e test actual outgoing communication from the component.

Main contributions (outline)

1 Theoretical basis:
e Formalization of the interface behavior of Creol.
o The behavioral interface specification language.

2 framework for scheduling and asynchronous testing of
Creol objects.

3 Implementation of a specification-driven Creol interpreter.

Creol

Creol (www.uio.no/~“creol): high-level, object-oriented
language for distributed systems

e strongly typed, formal operational semantics in rewriting
logic

e features active objects.

e communication by asynchronous method calls.

e Creol object: acts as a monitor.

e non-deterministic selection of waiting calls.

www.uio.no/~creol

Abstract Creol syntax

Cu=0|C|C|v(nT).C|n[O]|nn,F L] | nt)
O :=FM
M:a:=l=m,...,.l=m
Fu=l=f...,l=Ff
m = g(n:T). Nx:T,...,x:T).t
foa=c(:T).X)v | s(n:T).A().L,,/
t = v |stop|letx:T =eint
e =1t |ifv=wvtheneelsee | if undef(v.l()) theneelse e
| v@I(D) | v.l() | v.l :=¢(s:n).X().v
| newn | claim@(n,n) | get@n | suspend(n) | grab(n) | release(n)
vae=z|n|()
L:=1]|T

e component: classes, objects, and (named) threads.
e active, executing entities: named threads n(t)

e hiding and dynamic scoping: V -operator

component
object
method suite
fields
method

field

thread

expr.

values
lock status

Operational semantics

Two stages:
e internal semantics
e external steps occurring at the interface.
e Component/environment: exchange information via call-
and return-labels:

y == n{call n.I(v)) | n{return(n)) |v(n:T).y basic labels
a == y?|y! input and output labels
e External steps
cs C

Operational semantics

Two stages:

internal semantics

external steps occurring at the interface.
Component/environment: exchange information via call-
and return-labels:

y == n{call n.I(v)) | n{return(n)) |v(n:T).y basic labels
a == y?|y! input and output labels
e External steps
=FCS=RC
e = = “context " of C (assumptions + commitments)

contains identities + typing of objects and threads
known so far

checked in incoming communication steps
updated when performing a step

External steps: outgoing call

=ZFV(=1).(C | n{letx:T =o0./(V) in t))

External steps: outgoing call

a=V(Z'). n(call 0.I(V))! Alo

=FV(Z1).(C | n{letx:T = 0./(V) in t)) >

e label = outgoing call (A = assumption context)

External steps: outgoing call

a=V(Z'). n(call 0.I(V))! Alo

ZFV(Z1).(C || nletx:T = 0./(V) in t)) 2
= V(Z1).(C || n'(letx: T =n int))

e label = outgoing call (A = assumption context)

e update the contexts

External steps: outgoing call

a=V(Z'). n(call 0.I(V))! Alo
é:E+a E’zfn(LaJ)ﬁEl _1—_1 =

a

ZFV(Z1).(C || n{letx:T =o0./(V) in t)) =
= V(Z1).(C || n'(letx: T =n int))

e label = outgoing call (A = assumption context)
e update the contexts

e scope extrusion

External steps

labelled steps at the interface

a=Vv(='). n{call 0.I(V))? =ZFa:T Z=Z+a
Calll

=FC|ofe,F, 1] 2=+ Cllofc,F,T] | nlletx:T = M.I(0)(¥)inrelease(o); x)

a=V(Z'). n{call 0.I(V))! Z'=1fn(la])N=; =1==1\T Ato ==Z+a callo

= V(Z1).(C || nlletx: T = 0./(V) in £)) S = V(Z1).(C || n'{letx: T =n int))

a=V(Z'). n(return(v))? =ta: ok Z=Z+4a2
- Retl
ZHFCZZHC n(v)
a=v(Z). n{return(v))! = =fn(la))N=; T ==\ Z=Z+a

RetO

ZHV(Z1).(C || n(v)) 2 ZFV(Z1).C

Behavioral interface specification language

Black-box behavior of a component described by a set of traces

Design goals:
e concise
e intuitive

e executable in rewriting logic

y == x{call x.I(X)) | x{return(x)) |v(x:T).y|(x:T).y basic labels
a == y?|y! input and output
¢ = Xle|lad|d+d]recX.0 specifications

e specification language: uses variables
e two kinds of var. binders

e Creol communication labels: concrete names/references.

Behavioral interface specification language

distinguish between input and output interactions:

e Input: controlled by the environment.
e Qutput: to be provided by the component.

Input interactions are the ones being scheduled.

Output interactions are used for testing.
pu=Xlelap|p+o|rec X.p specifications

Specially relevant for the choice operator: either external
or internal choice.

Formalized as well-formedness conditions.

Well-formedness

e Restrict specifications to traces actually possible at the
interface.

e three main restrictions :
* typing
e scoping

e communication patterns

e given as derivation/type system over trace specs.

e polarity: specifications either well-formed input or
well-formed output.

Asynchronicity— Observational blur”

e asynchronicity: messages order not preserved in
communication.

e The specification is relaxed up-to observational
equivalence

e Testing of output only up-to observability.

EQ-SwiTcH

v(E) vyl =obs V() 2l le

Operational semantics of specifications

Given the observational equivalence relation (=), the
meaning of a specification is given operationally in a quite
straightforward manner:

E=E+4a EFor B EF
— — R-PREF — — ! - R-PLus;
SEtap—EZFp EFe1+p2 — EF
© Zobs P ER L ERY

R-Equiv

Well-formedness

e =_ps preserves well-formedness

e any spec is either in, out or empty

e @is wf! iff @ can do an outgoing step (analogously for ?7)

o subject reduction: =F ¢ : wf and =F ¢ 5 =+ ¢, then
ZHé: wf.

o soundness Assume =+ C. If =+ C ==, then

=k ¢¢: wf (where §; is the trace t interpreted as spec.
formula)

Scheduling and asynchronous testing of Creol
objects

e Combine:
e external behavior of object
e intended behavior given by specification
e interaction defined by synchronous parallel composition
e specification ¢ and component must engage in
corresponding steps:

e For incoming communication, this schedules the order of
interactions with the component

o For outgoing communication, the interaction will take
place only if it matches an outgoing label in the
specification

e Error if the specification requires input and the
component could do output.

Parallel composition

ErCcLERC

— — PAR-INT
EECle—-EFCle

EFp:uff
- PAR-ERROR
EFv(E).(C || n(letx:T = o0l(0)int) ||) — 4
SIFCEEFC SihelErg Fas.b
PARr

S EC|le—=EFC| ¢o

e Matching of ¢'s step and components step (- a <S¢ b)
e As said: specification contains:

o freshness assertions (V(x:T))
e standard variable declarations (x: T)

Matching

Fa; Sgan: ok = <=50:

F=1.a1 So=0.a2:

~

Implementation in rewriting logic.

e Creol interpreter executable in Maude
e Implementation of the spec. language in Maude, too

e Execution of Creol components synchronized with
specifications
e generate input from specification
e test component behaviour for conformance

e No input queue, specified method calls are answered
immediately

e Reentering suspended methods may interfere.

Implementation in rewriting logic

e Creol configuration: objects, classes, and messages:
rl Cfg => Cfg’.

e Scheduling interpreter: introduce Spec for specifications.
rl (Spec || 0) Cfg => (Spec’ || 0’) Cfg’.

e operational semantics easily coded into Maude.

e “Observational blur”, implemented rewriting modulo
equivalences.

Summary

e Formalization of interface behavior of Creol + a
behavioral interface specification language.

e A formal description of how to use this specification
language for black-box testing of asynchronously
communicating Creol objects.

e A rewriting logic implementation of the testing
framework

Future work

e from objects to multi-object components
e more features from the Creol language
e extend specifications with assertion statements on labels

e combine: testing framework + model checking and
abstraction

e case study

Related work

e [Johnsen et al., 2008]

e validating component interfaces
e assumption/commitment style
e FOL over traces
e [Schlatte et al., 2008]
o scheduling activity to restrict behavior

e intra object scheduling
e internal state of object

References |

[Johnsen et al., 2008] Johnsen, E. B., Owe, O., and Torjusen, A. B. (2008).
Validating behavioral component interfaces in rewriting logic.
Fundamenta Informaticae, 82(4):341-359.

[Schlatte et al., 2008] Schlatte, R., Aichernig, B., de Boer, F., Griesmayer, A., and Johnsen, E. B.
(2008).
Testing (with) applicati pecific schedulers for concurrent objects.
Accepted for ICTAC 2008, 5th International Colloquium on Theoretical Aspects of Computing.

	Introduction
	The Creol language
	Behavioral interface specification language
	2 Scheduling and asynchronous testing of Creol components
	Implementing a specification-driven Creol interpreter
	Conclusion

