
Incremental Reasoning for Multiple Inheritance

Johan Dovland and Einar Broch Johnsen
Olaf Owe and Martin Steffen

Institutt for Informatikk Universitet i Oslo

iFM, Düsseldorf

17. February 2009

http://www.ifi.uio.no/~msteffen
http://www.ifi.uio.no
http://www.uio.no

Context
• Late bound method calls in object-oriented programs
• Crucial for the incremental development principle of OOP
• Challenge for reasoning about programs

Talk Outline
• substitutability and behavioral subtyping
• late binding
• reasoning about late-bound calls
• lazy behavioral subtyping
• introducing multiple inheritance
• conclusions / future work

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 2 / 23

Behavioral Subtyping

Substitutability and subtype polymorphism
Problem:
When can some expression e1 replace some other e2?

classical answer: subtyping

Example 1: Assignment

x := e
Γ ` e : T T ≤ Γ(x)

Γ ` x := e : ok

Example 2: Method Calls

x := m(e)

Want: m(e)
Get: m’(e)

m: T1 → T2

T1 ≤T′
1 ⇓ ⇑ T′

2 ≤T2

(contra-variance) m’: T′
1 → T′

2 (covariance)

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 3 / 23

Behavioral Subtyping

Behavioral subtyping
Extend subtyping to behavioral properties:

“any property proved about supertype objects
also holds for subtype objects” [Liskow & Wing 94]

Consider an assertion language on local state variables,
a programming language, and some program logic.

assertions p1,p2,q1,q2, . . . used for pre- and post-conditions

When can we replace e1 by e2?

{p1} e1 {q1} contra-variance: p1 ⇒ p2

{p2} e2 {q2} co-variance: q2 ⇒ q1

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 4 / 23

Late Bound Calls

Late Binding of Method Calls
Object-oriented programming
• incremental program development

• substitutability is exploited to organize programs
by means of inheritance
• “inheritance implies subtyping”
• object substitutability:

a subclass object may be bound to a superclass variable
• late binding:

subclass methods may be selected instead of superclass methods

Late binding of method calls
• code bound to a call depends on the actual class of the object

• decided at runtime
• not statically decidable

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 5 / 23

Late Bound Calls

Example

class C {
m() {...}
n() {...; m(); ...}

}

class D extends C {
m() {...}

}

• the binding of m() depends on the actual class of the object
• incremental development: class D may be added later
• late binding and incremental development pose a challenge for

program verification

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 6 / 23

Late Bound Calls

Verifying late-bound method calls
• two main approaches in the literature
• Closed world [Pierik & de Boer 05, . . .]

• Complete reasoning method
• Breaks incremental reasoning

• Open world [America 91, Liskow & Wing 94, Leavens & Naumann 06, . . .]
• Behavioral subtyping: supports incremental reasoning
• Subtyping constraints: too restrictive in practice

• Lazy behavioral subtyping [1]
• supports incremental reasoning
• less restrictive than behavioral subtyping

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 7 / 23

Late Bound Calls Examples

Example: Closed world approach
class C {
m(): (p1,q1) {...}
n() {...; {p}m(){q}; ...}

}

Commitment (declaration site)
Requirement (call site)
PO: p ⇒ p1 ∧ p2, q1 ∨ q2 ⇒ q

class D extends C {
m(): (p2,q2) {...}

}
Commitment (declaration site)

closed world approach
• Assumes all commitments of a method known at reasoning time
• Sufficiently expressive: complete reasoning system
• redo proofs if a new class is added to the program

• breaks with incremental development principle (proof reuse .)

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 8 / 23

Late Bound Calls Examples

Example: Open World Approach
class C {
m(): (p1,q1) {...}
n() {...; {p}m(){q}; ...}

}

commitment (decl. site)
requirement (call site)
PO: p ⇒ p1, q1 ⇒ q

class D extends C {
m(): (p2,q2) {...}

}
Commitment (declaration site)
PO: p1 ⇒ p2, q2 ⇒ q1

Behavioral subtyping

• (p1,q1) acts as commitment (contract) for declarations of m
• redefinitions relate to the contract, not to the call site
• incremental : Proof reuse when the program is extended

• restriction : (p1,q1): strong requirement for redefinitions

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 9 / 23

Late Bound Calls Examples

Example: Lazy Behavioral Subtyping
class C {
m(): (p1,q1) {...}
n() {...; {p}m(){q}; ...}

}

Commitment (declaration site)
Requirement (call site)
PO: p ⇒ p1, q1 ⇒ q

class D extends C {
m(): (p2,q2) {...}

}
Commitment (declaration site)
PO: p ⇒ p2, q2 ⇒ q

Lazy behavioral subtyping

• POs depend on requirements , not on commitments (contracts)

• irrelevant parts of old commitments may be ignored

• more flexible than behavioral subtyping approach

• incremental: proof reuse when program is extended

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 10 / 23

Late Bound Calls Basic idea

Lazy Behavioral Subtyping
• Distinguish method use and method declarations

• track call site requirements and declaration site commitments

• Proof reuse : Impose these requirements on method overridings
in new subclasses to ensure that old proofs remain valid

• declaration site proof obligations wrt. superclass’ requirements
• Many, but weaker POs than with behavioral subtyping

for superclass declarations

• Formalize how commitments and requirements propagate as
subclasses and proof outlines are added
• proof environment tracks commitments and requirements
• syntax-driven inference system for program analysis
• independent of a particular program logic

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 11 / 23

Late Bound Calls Basic idea

Proof Environment for Program Analysis
The proof environment consists of three mappings , which capture

• the class hierarchy

• method commitments
• S(C ,B.m): commitment of a method m (defined in B) in C
• Concerned with the declaration of methods
• Commitment of a particular implementation

• method requirements

• R (C,B#m): requirements towards m made by C
• C: imposes the requirements
• B: call-site class, where calling method is defined.

• use of methods
• requirements on several implementations

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 12 / 23

Late Bound Calls Basic idea

Example: Lazy Behavioral Subtyping
class C {
m(): (p1,q1) {...}
n() {...; {p}m(){q}; ...}

}

(p1,q1) ∈ S(C,m)
(p,q) ∈ R(C,m)
PO: S(C,m)⇒ R(C,m)

class D extends C {
m(): (p2,q2) {...}

}
(p2,q2) ∈ S(D,m)
PO: S(D,m)⇒ R↑(C,m)

Analysis uses and modifies a proof environment
• Analysis uses and updates the proof environment
• Collect information from mappings; e.g., R↑(C,m), S↑(C,m)

• Context-dependent commitments:
New proof outlines for old method declarations

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 13 / 23

Late Bound Calls Basic idea

Glimpse of the calculus

P ::= L {t} program
L ::= class C extends C {f M} class definition

M ::= m (x){t} method
e ::= new C | b | v | this | e.m(e) | m(e) | m(e)@C expression
v ::= f | f@C values
t ::= v := e | return e | skip
| if b then t else t fi | t ; t

• variant of Featherweight Java
• with multiple inheritance
• static calls (as generalization of super-calls)

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 14 / 23

Late Bound Calls Basic idea

Multiple inheritance
• inheritance hiearchy = directed acyclic graph (6= tree)

Account

hhhhhhhhh
WWWWWWWWWW Number

gggggggggg

FeeAccount

VVVVVVVVVV InterestAccount

gggggggggggg

Card

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 15 / 23

Late Bound Calls Basic idea

Example

class Account { int bal = 0;
deposit(int x) {...;update(x)}
withdraw(int x) {...;update(-x)}
update(int y) {...; bal=bal+y;...}}

class Number { int num;
update(int x) {num = x }
increase(int x) {update(num+x)}}

class InterestAccount extends Account Number { int fee;
addInterest(int x y) {...; deposit(x); increase(y)}
withdraw(int x) {withdraw(x)@Account; if bal<0 then update(-fee) fi}}

class FeeAccount extends Account { int fee;
withdraw(int x) {withdraw(x)@Account; update(-fee) }
update(int y) {...; bal=bal+y;...}}

class Card extends FeeAccount InterestAccount {
withdraw(int x) {withdraw(x)@InterestAccount; update(-fee@FeeAccount)}}

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 16 / 23

Late Bound Calls Basic idea

Name conflicts and healthiness
• name “conflicts”

• vertical
• horizontal

• resolved by binding strategy

• 2 classes C1 and C2 related : C1 ≤ C2 or vice versa

• healthiness : general condition on binding strategies when
methods are inherited

⇒ “ do not bind to unrelated classes ”
• self-calls in C: must bind to a class related to C
• remote call x .m, with x ’s declared type C: bind to class related to C

C′.n

!!CC
CC

CC
CC

C.{m,n}

zzvvvvvvvvv

D

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 17 / 23

Late Bound Calls The Inference System

Program Analysis
• module : a set of classes which form a unit of analysis
• analysis happens in modules
• incremental development : a sequence/stream of modules

• proof environment carries over from one module to the next-

Modules

E ` [ε ; L] · A
E ` module(L) · A (NEWMODULE)

E ` A
E ` [ε ; ∅] · A (EMPMODULE)

Here, L are classes, and A are remaining modules.

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 18 / 23

Late Bound Calls The Inference System

Tracking constraints
• formalized by a derivation system
• analyzing a m(~x) : (p,q){body(B,m)} in class C:
⇒

• add (p,q) to the commitments S(C,B.m)

• analyze the annotated method: for each call {r} n() {s}
1. (r , s) is analyzed wrt. implementation of B#n found when starting the

search in C: proof obligation S ↑ (C, E .n) =⇒ (r , s) must be
established, where E = bind(C, B#n).

2. (r , s) is remembered in requirements R(C, B#n)

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 19 / 23

Late Bound Calls The Inference System

Analysis rules

C /∈ E D ∈ E E = commSupE(C)

E ⊕ extP(C,D, f ,M) ` [〈C : analyzeMtds(M) · supCls(E)〉 ; S] · A
CLASS

E ` [ε ; {class C extends D {f M}} ∪ S] · A

E ` [〈C : verify(C,m, {(p,q)} ∪ R↑E(C.inh,m)) · O〉 ; S] · A
METHOD

E ` [〈C : analyzeMtds(m(x) :(p,q) {t}) · O〉 ; S] · A

S↑E(C,D.m)⇒ (p,q) E ` [〈C : O〉 ; S] · A
REQDER

E ` [〈C : verify(D,m, (p,q)) · O〉 ; S] · A

`PL m :(p,q) {bodyE(D,m)}
E ⊕ extS(C,D,m, (p,q)) ` [〈C : analyzeOutline(D,bodyE(D,m)) · O〉 ; S] · A

REQNOTDER
E ` [〈C : verify(D,m, (p,q)) · O〉 ; S] · A

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 20 / 23

Late Bound Calls The Inference System

Properties of the Inference System
• A sound proof environment

1. Enough requirements reflecting the use of methods
2. All requirements follow from commitments

• Preservation of environment soundness
The inference system maintains soundness of
the proof environment at the level of modules

• Soundness of the proof system
Assuming soundness for the given program logic,
the proof outline system is sound
Proof: by induction on the depth of derivation,
we show the correctness of the proof outlines

• Minimality of proof environments
No “junk” in the proof environment

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 21 / 23

Multiple inheritance

Conclusion
sound, incremental strategy for reasoning about late-bound method
calls

• Comparison to previous approaches
• behavioral subtyping: incremental, but too restrictive
• closed world: complete, but not incremental
• behavioral subtyping plus separation logic (and multiple

inheritance)
• LBS: incremental, less restrictive than BS

• Lazy behavioral subtyping strategy for multiple inheritance
• Method commitments (declarations) vs. requirements (use)
• Proof reuse: requirements inherited by need
• soundness condition for multiple inheritance
• Formalized as syntax-driven inference system

• Future work
• Combination with invariant reasoning and interfaces
• Integration in programming and analysis environment

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 22 / 23

Multiple inheritance Examples

References I
[1] J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen.

Lazy behavioral subtyping.
In Proceedings of the 15th International Symposium on Formal Methods (FM’08), volume 5014 of Lecture Notes in Computer
Science, pages 52–67. Springer-Verlag, 2008.

[2] J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen.
Incremental reasoning for multiple inheritance.
In Proceedings of the 7th International Conference on integrated Formal Methods (iFM’09), Düsseldorf, Germany, 16 - 19
February, 2009, Lecture Notes in Computer Science. Springer-Verlag, Feb. 2009.
To appear.

[3] E. B. Johnsen, O. Owe, and I. C. Yu.
Creol: A type-safe object-oriented model for distributed concurrent systems.
Theoretical Computer Science, 365(1–2):23–66, Nov. 2006.

(iFM’09) Incremental Reasoning for Multiple Inheritance 2009 23 / 23

	Behavioral Subtyping
	Late Bound Calls
	Examples
	Basic idea
	The Inference System

	
	Multiple inheritance
	Subtyping, late binding, and incremental program development
	Examples

