Software Transactional Memory &
Automatic Mutual Exclusion

Martin Steffen

Oslo
10. Feb. 2009

Abstract

This is the handout version talk about software transactional memory and au-
tomatic mutual exclusion. The wisdom is taken from [Abadi et al., 2008] and
[Jagannathan et al., 2005], for the most part.

1 Introduction

Motivation
e concurrency =- concurrency control
e nowaday’s languages: lock-based (good ol’ mutex)
e disadvantages:

— low-level of abstraction

— difficult to reason about

“conservative” protection = performance penalty / deadlocks

pessimistic approach to concurrency control

e here: “ optimistic ” approach

— reduce crit-secs, more concurrency = non-blocking

Transactions
e coming from the data-base community
e control abstraction

e important correctness/failure properties: ACID transaction semantics = “illu-
sion” of mutex

1. atomicity

isolation

2
3. consistency
4

durability

http://www.ifi.uio.no/~msteffen

2 Transactional Java
TF]J
e taken from [Jagannathan et al., 2005]

e extending Featherweight Java with transactions

— state
— multi-threading (of course)

— transactions

featuring: nested and multi-threaded transactions
e operational semantics, 2 concretizations
— versioning

— 2-phase locking

e correctness proof: serializability

Why are transactions more high-level?

Listing 1: TFJ example
class Transactor {
u: Updater;
r: Runner;

init (r: Runner , u: Updater) { this.u := u;
this.r := r;
this }
run () {
onacid
this .u.update (); !/l write
this.r.run (); // spawn intervening activity
thus.u.n.val; // read
commit
}
}
Syntax
P == 0| P]| P|tle) process
L = classC{f; M} class definition
M = m(Z){e} method
e == zleflem(é)]ef:=e expression
| newsC | spawn e | onacid | commit | null
v u= r|o, flom(@)]bfi=wv values/basic expressions

e basically 2 additions:

— onacid : start a transaction

— commit : end a transaction

Semantics

e given operationally (SOS, as usual ...)

— labelled transition system

— evaluation-contexts
e 2 “stages™:

1. first “general” semantics

2. afterwards: 2 concretizations
e 2-level semantics

1. local = per thread

2. global = many threads

2.1 Operational semantics without transactions

Underlying semantics: no transactions

for illustration here, only
e no separation in local < global steps
e no transaction handling (but concurrency)

e heap-manipulations (read, write, extend) left “unspecified”

configuration (local/global): I" - e

Operational semantics: no transactions

read(r,T) = C(d) fields(C) = f R-FIELD

rd r

Thrfi % Tra

read(r,I') = C(7) write(r — C(7) |7, T) =T

R-ASSIGN
Thrfi=r "5 TF+
read(r,T") = C(7) mbody(m,C) = (Z,e)
R-INVOKE

L+ r.m(7) A S el7/Z][r/this]

r fresh extend(r — C(null),T) =T"
R-NEwW

TknewC() &5 b7

P =P" || n(E[spawn ¢]) P’ = P"n{E[null]) || n(e')
n' fresh spawn(n, &\ T) =T"

R-SPAWN

pn’

r~p 2L r'+p

2.2 Transactional semantics

Introducing transactions
e as said: syntax: onacid + commit
e steps: splitinto 2 levels

1. local : per thread

2. global : “inter”-thread
e more complicated “ memory model ”

— each thread has a local copy

— how that exactly works = depending on the kind of transaction imple-
mentation (see later)

e general idea: optimistic approach

— each thread works on its local copy (no locks, no regard of others)
— local copy = isolation
— when committing : check for conflicts =

* no: = make the effect visible

* yes: = abort

Transactions and threads

e both are dynamic

thread creation by spawn

transaction “creation” by onacid

e transaction structure: nested

a transaction can contain inner transactions
child transactions must commit before outer transaction
child transaction

* commits = effects become visible to outer transaction

% aborts = outer transaction does not abort

e relationship:

each thread inside an enclosing transactio

“ multi ” threads in one transaction

Local steps

e steps

concerning one thread

e basic “single-threaded”, “non-transactional” steps

e local

e &

state/configuration:

“simple” expression e + local environment &

Eke

per transaction (labelled with [): local (partial) “state” = assoc of refer-
ences to values

manipulated by read/write/extend
details determine the transactional model

Note: read -access may change &

IThread structure: flat. One could make a hierarchical “father-child” structure, but it’s irrelevant here.
2or toplevel
3The paper itself is undecided whether to call it transaction environment or a sequence of transaction

environments.

Local steps: rules

read(r,£) = £',C(@) fields(C) = f
R-FIELD

Ebrfi W & ru

read(r,&) = &', C(7) write(r — C(7) 15/,5/) =&

R-ASSIGN
Errfi=r" "5 &k
read(r,&) = &', C(7) mbody(m, C) = (&, e)
R-INVOKE

Errm(F) L &' & e[F/F[r/ this]

r fresh extend(r — C(null), &) = &

R-NEW
EFnewC() R
Global steps
e behavior of multiple interacting threads
n1<€1> || H nk<ek> =P
e global state/configuration
r=pP

= program P + global environment I' =local environment per thread:

n1:€1, ... € Fng(er) .. ngleg)

e transitions
r-pP=,1'+P

Global steps: rules (1)

P=P'|nle) Ere>E&Fre P =P'|nl)
reflect(n, &', T) =T’

G-PLAIN
IEP=,I"+P
P = P" || n(E[spawne]) P’ = P" || n(E[null]) || n (')
n' fresh spawn(n, &\ T) =T"
G-SPAWN

rrp = '+ P

P="P|nr) r'=n&, T’
G-THKILL

PFP2 1+ P’

Global steps: transaction handling
e start a transaction:
— basically straightforward
— create anew transaction label

e finish a transaction (commit)

— “ publish " the result
— slightly more complex, because of multi-threaded transactions
= join all threads that are about to commit the transaction in question

— transaction in question: the “innermost” meant by the commit-action

Global steps: transaction rules (2)

P = P" || n(E[onacid]) P’ = P" || n{E[null])
[fresh start(l,n,T) =T'
I'-pP=,I"+P

G-TRANS

P =P | n(E[commit])) P’ =P" || n(E[null)
r=1"né& E=&lp intranse(l,T) =7 =n1...ng
commit(n, g,) =T" ni:€1,n2:€,...n:& €T = E1,E2,...,Ek
IEP=,T" P

G-CoMM

2.3 Versioning semantics

Versioning semantics
e so far: the core has been left abstract
e one concretization of the general semantics
e concretization of the memory manipulations

e local environment £
l1:01, ... li:ok

[transaction label

[] Q:
— log (of that transaction/of the given thread)

— (part of the) dynamic context of the transaction [
e £is ordered ,
— current enclosing one: on the right

— reflects the nesting of transactions

Environment manipulations (local)

remember the local steps , for one thread £ +r — &' F 1/
read: given a reference r, find the assoc. value

e look-up the value for r, not necessary in the innermost (= rightmost) trans-
action

e log the found value for the innermost transaction, i.e., copy/record it into
that transactions log

write: similarly, the old value is logged locally, too

extend: similarly, no old value is logged (fresh reference)

Environment manipulation (local)

E=E Lo findlast(r,E) = C(7) E" =& l:(o,m — C(7))
read(r,&) = &",C(¥)

E-READ

E=E"l:p findlast(r,€) = D(7") E&" =&, l:(0,7 — D(7),r — C(7))
write(r — C(7),E) = &"

E-WRITE

E=Elo E"=&l(or— C(F)
extend(r — C(7),E) = &"

E-EXTEND

I'=n&, TV " =n"&T
E-SPAWN

spawn(n,n’,T") =T"

Environment manipulation: for transactions

e 2 operations: start and commat

start:

— easy (“optimistic”)

— create a new label for the transaction

— start with an empty log for the new transaction
commit:

— more tricky.
— propagate (“reflect”) bindings from the transaction to the parent
— commit only, if no conflict is detected

— conflict : values used (r/w) in [must coincide with values as in parent
transaction

Environment manipulation: transactions

P=nt, I T"=(L(1:()),T
start(l,n,T) =T

E-START

E-CoMMIT,
commit({), (),I’) =T
E=&lp readset(o, () = o’ writeset(g, () = o”
check(o', &) g =&"1:0" reflect(n, (E",1':0",0"),T) =T’
commit(it, €, 1) =T

commit(n i, E,T) =T"

E-COMMIT,

Checking an environment
Modsets

Modsets

readset((),-) = ()

0=uwr C() ug 7 readset(o”,7u) = ¢

readset(o,) = u — C(i), o’

o=ur C(d),0" w €T readset(o”,7) = ¢

readset(o,7) = o'

writeset((),-) = ()

otr = C(F), o writeset(d",) = ¢ 1 C(F) # first(r, o')

/11

writeset(g, 0') = u +— D(ii), o

2.4 Two-phase locking
Two-phase locking

different instantiation of the general semantics, slight alteration

based on locks
e pessimistic

e two phases :

1. first get hold of all the locks needed for a transaction

2. then release them again

e strict : all acquiring is done before all releasing.

Two-phase locking transactional semantics

e “slight” alteration of the previous one

e transaction & locks

objects have locks for protection

locks are held by transactionsﬂ

enter a transaction: all locks held by transaction or prefix

creating an object.

to support locking

— unique transaction label [; +

— lock environment oy, .

o stores lock ownership (per reference): which transactions hold the lock =

sequence to reflected nesting

given Iy, 1o, ... I

change of lock-ownership:

— acquire by grabbing
— commit by child, and propagate the lock upwards

Environment manipulation with locks (local)

E=E&"lp findlast(r,&) = C(7)
E" =& l:(o,7 — C(7)) checklock(r,&) =T
read(r,&) = £",C(¥)

E-READ

findlast(r,€) = D(7") &' = acquirelock(r, E)
E=&" 1o E"=&",l:(o,7 — D), r — C(7))
write(r — C(7),&) = &

E-WRITE

acquirelock(r, E) = £ l:0 &£ =& 1:(g,7 — C(7))
extend(r — C(7), &) = &"

E-EXTEND

4Note the difference to multi-threaded Java

10

Environment manipulation: transactions

P=n&,I" T =(:(1:()),T
E-START
start(l,n,T") =T"
E-COMMIT,

commit({), (1) =T
E=lr:00,& o, = release(l(€), or.) & =lp:0,&
reflect(n, (E",1":0",0"),T) =T’ commit (i, £ y=r"
commit(n i, & E,T) =T"

E-COMMIT,

Further development in the paper

o After the formalization: prove some ‘“soundness results”

— ultimately: “ACID”, serialization

— techniques: “permutation lemmas”

3 Conclusion
Further reading

e wait-free data structures

e old, related theoretical results: [Lipton, 1975]: theory of left/right movers

[Herlihy and Wing, 1990]: linearizability for concurrent objects

futures [Welc et al., 2005]

e transactions for Java [Garthwaite and Nettles, 1996||

software transactional memory [Shavit and Toitu, 1995]

e automatic mutual exclusion [Abadi et al., 2008]] and originally [Isard and Birell, 2007]]

and another POPL’08 paper?
References

References

[Abadi et al., 2008] Abadi, M., Birell, A., Harris, T., and Isard, M. (2008). Semantics
of transactional memory and automatic mutual exclusion. In Proceedings of POPL
'08. ACM.

11

[Garthwaite and Nettles, 1996] Garthwaite, A. and Nettles, S. (1996). Transactions for
Java. In Aktinson, M. P. and Jordan, M. I., editors, Proceedings of the First Interna-
tional Workshop on Persistence and Java. Sun Microsystems Laboratoris Technical
Report 96-58, pages 6-14.

[Herlihy and Wing, 1990] Herlihy, M. and Wing, J. (1990). Linearizability: A Cor-
rectness Condition for Concurrent Objects. ACM Transactions on Programming
Languages and Systems, 12(3):463-492.

[Isard and Birell, 2007] Isard, M. and Birell, A. (2007). Automatic mutual exclusion.
In Proceedings of the 11th Workshop on Hot Topics in Operating Systems.

[Jagannathan et al., 2005] Jagannathan, S., Vitek, J., Welc, A., and Hosking, A.
(2005). A transactional object calculus. Science of Computer Programming,
57(2):164-186.

[Lipton, 1975] Lipton, R. J. (1975). Reduction: A new method of proving properties
of system processes. In Second Annual Symposium on Principles of Programming
Languages (POPL) (Palo Alto, CA), pages 78-86. ACM.

[Shavit and Toitu, 1995] Shavit, N. and Toitu, D. (1995). Software transactional mem-
ory. In Proceedings of the 14th Annual ACM Symposium on Principles of Program-
ming Languages, pages 204-213.

[Welc et al., 2005] Welc, A., Jagannathan, S., and Hosking, A. (2005). Safe futures
in Java. In Twentieth Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA) "05, pages 439 —453. ACM. In SIGPLAN Notices.

12

	Effects
	Transactional Java
	Operational semantics without transactions
	Transactional semantics
	Versioning semantics
	Two-phase locking

	Conclusion

