Software Transactional Memory &
Automatic Mutual Exclusion

Martin Steffen
University of Oslo, Norway

Oslo

10. Feb. + 3. March 2009

http://www.ifi.uio.no/~msteffen
http://www.uio.no

Introduction

Transactional Java
Operational semantics without transactions
Transactional semantics
Versioning semantics
Two-phase locking

Automatic mutual exclusion

Conclusion

Motivation

e concurrency = concurrency control
e nowaday’s languages: lock-based (good ol' mutex)
e disadvantages:

o low-level of abstraction
o difficult to reason about
e “conservative” protection = performance penalty /

deadlocks
e pessimistic approach to concurrency control

e here: “ optimistic ” approach
¢ reduce crit-secs, more concurrency = non-blocking

Transactions

e coming from the data-base community
¢ control abstraction

e important correctness/failure properties: ACID transaction
semantics = “illusion” of mutex

atomicity

—

2. isolation
3. consistency
4

durability

Transactional Java
Operational semantics without transactions
Transactional semantics
Versioning semantics
Two-phase locking

TFJ

taken from [Jagannathan et al., 2005]

extending Featherweight Java with transactions
e state
o multi-threading (of course)
e transactions

featuring: nested and multi-threaded transactions
operational semantics, 2 concretizations
e versioning

e 2-phase locking

correctness proof: serializability

Why are transactions more high-level?

class Transactor {

u: Updater;
r: Runner;
init (r: Runner , u: Updater) { this.u := u;
this.r = r;
this }
run () {
this.u.update (); /1 write
this.r.run(); /! spawn intervel
thus.u.n.val; /1 read
}

Why are transactions more high-level?

class Transactor {

u: Updater;
r: Runner;
init (r: Runner , u: Updater) { this.u := u;
this.r = r;
this }
run () {
onacid
this .u.update (); /1 write
this.r.run(); /! spawn intervel
thus.u.n.val; // read
commit
}

}

Syntax

P == 0|P| P|te) process
L == classC{f; M} class definition
M = m(X){e} method
e = xlef|lem(é)|ef:=e expression
| newsC | spawn e | onacid | commit | null
v = r|v,flv.m(V)|b.f:=v values/basic exj

e basically 2 additions:
e onacid : start a transaction
e commit : end a transaction

Semantics

e given operationally (SOS, as usual ...

o labelled transition system
e evaluation-contexts

e 2 “stages”:

1. first “general” semantics

2. afterwards: 2 concretizations
e 2-level semantics

1. local = per thread

2. global = many threads

Underlying semantics: no transactions

o forillustration here, only

no separation in local < global steps

no transaction handling (but concurrency)
heap-manipulations (read, write, extend) left “unspecified”
configuration (local/global): T' - e

Operational semantics: no transactions

-

read(r,I") = C(0) fields(C) = f

R-FIELD
Merf 9 rey
read(r,1) = C(F) write(r — C(7) |/,T) =T
R-ASSIGN
Ferf=r "X 'kr
read(r,T) = C(7) mbody(m, C) = (X, e)
R-INVOKE

M r.m(F) 2L Tk e[f/X][r/this]

rfresh extend(r — C(null),l) ="
R-NEwW

TFnewC() XL 'k r

P = P" || n(E[spawn €]) P = P" || n(E[null]) || n'{€)

n' fresh
R_CpAa\WN

Introducing transactions
e as said: syntax: onacid + commit

e steps: splitinto 2 levels
1. local : per thread
2. global : “inter’-thread

e more complicated “ memory model ”

e each thread has a local copy

e how that exactly works = depending on the kind of
transaction implementation (see later)

e general idea: optimistic approach
e each thread works on its local copy (no locks, no regard of
others)
e local copy = isolation
e when committing : check for conflicts =

e no: = make the effect visible
e yes: = abort

Transactions and threads

e both are dynamic
o thread creation by spawn
¢ transaction “creation” by onacid

e transaction structure: nested ’

e a transaction can contain inner transactions
e child transactions must commit before outer transaction
e child transaction

e commits = effects become visible to outer transaction
e aborts = outer transaction does not abort
e relationship:
e each thread inside an enclosing transaction?
e “multi ” threads in one transaction

"Thread structure: flat. One could make a hierarchical “father-child”
structure, but it’s irrelevant here.
2or toplevel

Local steps

steps concerning one thread

basic “single-threaded”, “non-transactional” steps
local state/configuration:
« “simple” expression e + local environment & 3

e
e &

e per transaction (labelled with /): local (partial) “state” =
assoc of references to values

¢ manipulated by read/write/extend

o details determine the transactional model

e Note: read -access may change &

3The paper itself is undecided whether to call it transaction environment or
a sequence of transaction environments.

Local steps: rules

read(r,&) = &', C(0) fields(C) = f

R-FIELD

Errf 9 gry

read(r.€) = €', C(7) write(r — C(7) 1{ ') = &”

R-ASSIGN
Errfi=r "L gpyp
read(r,£) = &',C(f) mbody(m, C) = (X, e)
R-INVOKE

EFr.m(F) %L & e[f/X][r/this]

r fresh extend(r — C(null), &) = &'

R-NEw
ErnewC() &L &k r

Global steps

e behavior of multiple interacting threads
mifes) [... | nkex) = P
e global state/configuration
repP

= program P + global environment I = local environment
per thread:

n:&q, ... N:Ex n1<e1> e nk(ek>

e transitions
TP, " P

Global steps: rules (1)

P=P'|nle) Ere>¢&ré P = P" | n(e)
reflect(n,&',T) =T"'

G-PLAIN
r-P=2,1"+ P
P = P" || n(E[spawn €]) P = P" || n(E[null]) || n"{€)
n' fresh spawn(n, &', T) =T"
G-SPAWN

spn

r-p 2 P

P=P | n{(r) r=né&

G-THKILL
r-pX - pr

Global steps: transaction handling

e start a transaction:
¢ basically straightforward
e create a new transaction label

e finish a transaction (commit)

e “ publish ” the result
e slightly more complex, because of multi-threaded
transactions
= join all threads that are about to commit the transaction in
question
¢ transaction in question: the “innermost” meant by the
commit-action

Global steps: transaction rules (2)

P =P | n(E[onacid]) P’ = P” | n(E[null])
| fresh start(l,n,T) =1T"
N

G-TRANS

P = P" | n(E[commit)) P’ = P" | n(E[null])
r=r'me &£=¢& ko intranse(l,T) =fi=n...n

commit(A,E,T) =T" ny:&,Mp:a,...NkEx €T E=&1,E, ...

N N

G-Co

Versioning semantics

e so far: the core has been left abstract

e one concretization of the general semantics

concretization of the memory manipulations
local environment £

h:01,. . Ik:ok

I: transaction label

° g:

e log (of that transaction/of the given thread)

o (part of the) dynamic context of the transaction /

£ is ordered,
e current enclosing one: on the right

o reflects the nesting of transactions

Environment manipulations (local)
remember the local steps , for one thread
EFr— &F7r
read: given a reference r, find the assoc. value

e look-up the value for r, not necessary in the
innermost (= rightmost) transaction
e log the found value for the innermost

transaction, i.e., copy/record it into that
transactions log

write: similarly, the old value is logged locally, too
extend: similarly, no old value is logged (fresh reference)

Environment manipulation (local)

E=¢lo findlast(r,) = C(F) &' =& I:(o,r — C(F))
read(r,&) = £", C(r)

E-READ

=& lo findlast(r,€) = D(F') &" =&, I:(o,r — D(F), r — C(F))
write(r — C(7),&) = &”

E-\

E=¢& Lo E"=¢&" I:(o,r — C(F))
extend(r — C(7),&) = &”

E-EXTEND

r=n&, 1 M"=n-&.T
E-SPAWN

spawn(n,n’,T) =T"

Environment manipulation: for transactions

e 2 operations: start and commit

start:

commit:

easy (“optimistic”)

create a new label for the transaction
start with an empty log for the new
transaction

more tricky.

propagate (“reflect”) bindings from the
transaction to the parent

commit only, if no conflict is detected
conflict : values used (r/w) in / must coincide
with values as in parent transaction

Environment manipulation: transactions

Fr=n& T T =(LE)T
start(l,n,T) =T"

E-START

E-COMMIT;,
commit({), (),T) =T
E=E&Ip readset(p, ()) = o writeset(o, ()) = o”
check(o', &) E=&" 10" reflect(n, (", 10", 0"),[) =T"
commit(f, E,T") = I

= E-Co
commit(nn, & E,T)=T"

Checking an environment

Modsets

Modsets

readset((),-) = ()

0= uw C(U) u¢r readset(o”,ru) = o

readset(o,F) = u— C(il), o'

o=uw C(U),0” uer readset(y" 7)= ¢

readset(o,r) = o

writeset((),-) = ()

o?r— C(F), 0" writeset(o”,0') = o' r— C(F) # first(r, o)

7 /11

writeset(p, o') = u+— D(0), 0

Two-phase locking

o different instantiation of the general semantics, slight
alteration

based on locks

pessimistic

two phases :

1. first get hold of all the locks needed for a transaction
2. then release them again

strict : all acquiring is done before all releasing.

Two-phase locking transactional semantics

¢ “slight” alteration of the previous one
transaction & locks
e objects have locks for protection
e locks are held by transactions *.
e enter atransaction: all locks held by transaction or prefix
e creating an object.
to support locking
e unique transaction label /; +
e lock environment o, .
o stores lock ownership (per reference): which
transactions hold the lock = sequence to reflected
nesting
given /1,/2, .. .,/k
change of lock-ownership:

e acquire by grabbing
e commit by child, and propagate the lock upwards

“Note the difference to multi-threaded Java

Environment manipulation with locks (local)

E=¢&" 1o findlast(r,&) = C(F)
E"=¢&"I:(o,r— C(r)) checklock(r,£) =T
read(r,&) = &",C(7)

E-READ

findlast(r,€) = D(r') &' = acquirelock(r, E)
£ =E" Lo &"=¢&"I(o,r— D), r— C(F)
write(r — C(7),&) = &"

E-WRITE

acquirelock(r,E) =&, 1.0 &" =&, I:(o,r — C(T))
extend(r — C(7),&) = &"

E-EXTEND

Environment manipulation: transactions

Fr=n& T T =(LE)T
start(l,n,T) =T"

E-START

E-CoMMIT4

commit({), (),T) =T
£=lion,& o = release(l(€), o) € =l:q},€
reflect(n, (£",I':9",0"),T) =" commit(fi,E,I") ="

- E-CoOMMIT,
commit(n i, E,T) =T"

Further development in the paper

o After the formalization: prove some “soundness results”

o ultimately: “ACID”, serialization
¢ techniques: “permutation lemmas”

Automatic mutual exclusion

Automatic mutex

e See [Abadi et al., 2008]

¢ building on the “AME” proposal of [Isard and Birell, 2007]
e weak vs. strong atomicity:

Weak vs. strong
How does non-transactional code interacts with transactional?
e cf. Java’s synchronized-method
e important for library code, “instrumentation”
e user expectation, subtle errors
e weak atomicity more common/easier

AME calculus

e simple core-calc.
o higher-order functions
e heap /imperative features
e concurrency® via async

e protection by default

¢ “fragmentation ” by user-command unprotected /“yield”
e cf. suspend-command in Creol

5of course

AME syntax

v 1= c|x|Ax.e

unit | false | true

v expressions: values
ee application
refe|le|e:=e

asynce

blockuntil

unprotected e

o
|

Strong semantics

e reference semantics

e evaluation style definition (eval. contexts slightly
complicated)

e separation of protected and unprotected code

e configuration
(o, T,e€)

1. heap o
2. pool of exprs/threads T
3. active expression e

Evaluation contexts

2= [||Pel|refP|P:=e|r:=7P|blockuntil P

= unprotected& |U e|vU |refU|U |U :=e|r:=U | blocki
= [Ee|vE|refE|I€|E:=e]|r:=¢&|blockuntil £ | unprot
c= TU.T, unit| T,P

R S IR
i

(o, F[(Ax.e) v]) — (o, Fle[v/X]]) T-APP

r fresh
T-REF
(o, Frefv) — (o[r— V], Fr)
o(r)=v
T-DEREF

(0, FIry = (0, FV)

(o,Fr:=v)— (o[r—v],Funit) T-SET

(0, Fasynce) — (o,e.Funit) T-ASYNC

(o, Fblockuntiltrue) — (o, Funit) T-Bock

(o, T,P[]) = (o, T.Plunprotected g],unit) ~ T-UNPROTECT

(o, T.E[unprotected v]. T’ unit) — (o, T.E[v].T',unit) T-CLOSE
(

o, T.e.T' unit) — (o, T.T', €) T-ACTIVATE

example: yielding

yield = unprotected unit

Weak semantics

more complex
two variants
o with roll-back
o “optimistic”
(o,T,e f,I,P)
interplay of transacted/non-transacted code can be tricky

Examples

ri :
re =

Il
x

unprotected {
X = 1

}

|
x

Al !l A2 /1 U1
=u U++; unprotected {
v V++; ri = x;

r2). { }

(=r1 !

is there a race ?

/]
ri
re

e intuitively: no race

/1 A2
U++;
V++;

is there a race ?

/1 U1
unprotected {

}

ri

X5

Results

e weak = strong semantics, under certain restrictions
e violation-freedom, separation

e generalization of race-freedom ©

¢ type and effect system for separation

Srace freedom is not enough

Introduction

Transactional Java
Operational semantics without transactions
Transactional semantics
Versioning semantics
Two-phase locking

Automatic mutual exclusion

Conclusion

Further reading

wait-free data structures

old, related theoretical results: [Lipton, 1975]: theory of
left/right movers

[Herliny and Wing, 1990]: linearizability for concurrent
objects

futures [Welc et al., 2005]

transactions for Java [Garthwaite and Nettles, 1996]
software transactional memory [Shavit and Toitu, 1995]
automatic mutual exclusion [Abadi et al., 2008] and
originally [Isard and Birell, 2007]

and another POPL08 paper?

[Grossman, 1997]

[Blundell et al., 2006]

language extensions with transactions (often based on

Java): [Carlstrom et al., 2006] [Harris and Fraser, 2003],
Haskell, Caml, Lisp, Fortress, X10, ...

References |

[Abadi et al., 2008] Abadi, M., Birell, A., Harris, T., and Isard, M. (2008).
Semantics of transactional memory and automatic mutual exclusion.
In Proceedings of POPL '08. ACM.

[Blundell et al., 2006] Blundell, C., Lewis, E. C., and Martin, M. K. (2006).
Subtelties of transactional memory atomicity semantics.
IEEE Computer Architecture Letters, 5(2).

[Carlstrom et al., 2006] Carlstrom, B. D., McDonald, A., Chafi, H., Chung, J., Minh, C. C., Kozyrakis, C., and
Oluktun, K. (2006).
The ATOMOX transactional programming language.
In ACM Conference on Programming Language Design and Implementation (Ottawa, Ontario, Canada). ACM.

[Garthwaite and Nettles, 1996] Garthwaite, A. and Nettles, S. (1996).
Transactions for Java.
In Aktinson, M. P. and Jordan, M. J., editors, Proceedings of the First International Workshop on Persistence and
Java. Sun Microsystems Laboratoris Technical Report 96-58, pages 6—14.

[Grossman, 1997] Grossman, D. (1997).
The transactional memory / garbage collection analogy.
In Object Oriented Programming: Systems, Languages, and Applications (OOPSLA) '97. ACM.
In SIGPLAN Notices.

[Harris and Fraser, 2003] Harris, T. and Fraser, K. (2003).
Language support for lightweight transactions.
In Eighteenth Object Oriented Programming: Systems, Languages, and Applications (OOPSLA) '03. ACM.
In SIGPLAN Notices.

[Herlihy and Wing, 1990] Herlihy, M. and Wing, J. (1990).

Linearizability: A Correctness Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Systems, 12(3):463—492.

[Isard and Birell, 2007] Isard, M. and Birell, A. (2007).
Automatic mutual exclusion.
In Proceedings of the 11th Workshop on Hot Topics in Operating Systems.

References Il

[Jagannathan et al., 2005] Jagannathan, S., Vitek, J., Welc, A., and Hosking, A. (2005).
A transactional object calculus.
Science of Computer Programming, 57(2):164—186.

[Lipton, 1975] Lipton, R. (1975).
Reduction: A method of proving properties of parallel programs.
Communications of the ACM, 18(12):717-721.
Papers from the Second ACM Symposium on POPL, Palo Alto, California.

[Shavit and Toitu, 1995] Shavit, N. and Toitu, D. (1995).
Software transactional memory.
In Proceedings of the 14th Annual ACM Symposium on Principles of Programming Languages, pages 204-213.

[Welc et al., 2005] Welc, A., Jagannathan, S., and Hosking, A. (2005).
Safe futures in Java.
In Twentieth Object Oriented Programming: Systems, Languages, and Applications (OOPSLA) ‘05, pages 439 —
453. ACM.
In SIGPLAN Notices.

	Introduction
	Transactional Java
	Operational semantics without transactions
	Transactional semantics
	Versioning semantics
	Two-phase locking

	Automatic mutual exclusion
	Conclusion

