Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Static Deadlock Detection for Active Objects”

Frank S. de Boer

CWI, Amsterdam, The Netherlands

Immo Grabe

CWI, Amsterdam, The Netherlands
Christian-Albrechts- Unwversity, Kiel, Germany

Martin Steffen

University of Oslo, Norway

Abstract

We present a static technique for deadlock detection for active objects. To do so, we introduce a novel
kind of automata (visibly multiset automata, VMAs for short) to describe in an approximative manner the
behaviour of one active object resp. a deadlock scenario. In this setting deadlock detection is checking the
intersection of the VMAs for emptiness. We illustrate our technique in terms of the Creol language.

1 Introduction

Active objects [1] form a well established model for distributed systems. We present
a static technique for deadlock detection for active objects. To do so, we introduce
a novel kind of automata (visibly multiset automata, VMAs for short) to describe
in an approximative manner the behaviour of one active object. We also use VMAs
to describe possible deadlock situations. Thus, deadlock detection is reduced to
language intersection and checking for emptiness. In a broad sense, therefore, the
VMAs play a role comparable to (visibly) pushdown automata that have been used
successfully to abstractly describe the behavior of procedural or object-oriented
languages with multi-threading. The role of the stack, however, is replaced by the
multiset data structure, reflecting the different concurrency model.

Our technique is illustrated in terms of the Creol language [3]. Creol is a high-
level modeling language based on active objects. The communication model of

* Part of this work has been supported by the EU-project IST-33826 Credo: Modeling and analysis of
evolutionary structures for distributed services and the German-Norwegian DAAD-NWO exchange project
Avabi (Automated validation for behavioral interfaces of asynchronous active objects).

©2009 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
http://www.cwi.nl/projects/credo/
http://www.ifi.uio.no/avabi/

DE BOER, GRABE AND STEFFEN

Creol is based on exchanging messages asynchronously. For each asynchronous
method invocation, a new thread is created. This is in contrast to object-oriented
languages based on multi-threading, such as Java or C#, which use synchronous
message passing in which the calling thread inside one object blocks and control is
transferred to the callee.

The result of an asynchronous method call is returned by a future. A future is
created upon method invocation and available to the caller. Upon termination of
the method call, the result of the computation is stored in the future by the callee.
A future is local to the thread which invoked the call and can not be stored in a
variable or passed around. Completion of a method call can be tested by testing its
future. Requesting a result from a future is blocking, i.e., in case the result has not
been computed the thread requesting the result blocks until the result is computed.

In Creol, each object acts as a monitor, i.e., at most one thread can be active
within an object. Context switch is limited to so—called processor release points.

The combination of exclusive access to the processor and blocking waiting for
the result of an asynchronous method call may result in a deadlock. In the following
sections we present a static analysis technique for Creol programs to detect such
deadlocks.

2 Deadlock Detection

For deadlock detection we restrict ourselves to Creol programs with a finite number
of objects. We do not deal with object creation, i.e., we assume all objects to exist at
the beginning of the program execution. Furthermore we restrict Creol to method
definitions without await statements. An aewait statement denotes a conditional
processor release point within a method body. In our setting, methods resemble
atomic tasks executed by different sites in a distributed system.

In contrast to our previous work on deadlock detection for Java via context—
free-language reachability [4], we use language intersection to detect deadlocks in
Creol. Due to the asynchronous nature of Creol, a designated thread is created for
each method call. Modeling the active objects, instead of the individual threads, is
an elegant way to deal with this kind of thread creation.

We introduce visibly multiset automata to model active objects and possible
deadlock situations. Such a deadlock situation is characterized by a cyclic chain of
objects, executing threads that are waiting for a result of a method call to the next
object in the chain.

In case the intersection of the automata is empty the program is deadlock free
otherwise each word within the language describes a computation leading to a dead-
lock.

3 Visibly Multiset Automata

A visibly multiset automaton resembles a visibly pushdown automaton [2] with a
multiset as storage instead of a stack. The operations on the multiset are determined
by the input letter, i.e., an input letter can trigger either an add action, cf. push,
or a remove action, cf. pop, but not both.

2

DE BOER, GRABE AND STEFFEN

Definition 3.1 (Visibly Multiset Automaton) A (nondeterministic) visibly
multiset automaton on finite words over an add-remove alphabet ¥ = YA WX g WXt
is a tuple M = (Q,Q,T,0,0,QF), where @ is a finite set of states, Q; C @
is the set of initial states, Qrp C @ is the set of final states , I' is a finite al-
phabet that contains a special symbol () € I' denoting the empty set, and 6 C
(Q@xBAxQxT\{0HU(Q@xEr xI'x Q)U(Q X Xyt X Q) is a transition function.

To address the asynchronous communication we split each call, resp. return, into
two phases. As a first step a token denoting the call, resp. the return, is added to
the multiset. Later as a second step the token is removed and the call is “executed”,
resp. the execution is “finished”. The VMASs are synchronized via their multisets.

We represent a VMA as a Multi-Stack Visibly Pushdown Automaton (MVPA)
[5] with two stacks. The first stack is used to store the elements of the multiset.
The second stack is used to swap stack symbols of the first stack when accessing a
symbol within the first stack. With this construction we reduce the decidabilty of
intersection and emptiness of VM As to the decidabilty of intersection and emptiness
of MVPAs which were shown in [5].

4 Conclusion

4.1 Results

We have introduced visibly multiset automata as a natural representation for con-
current systems communicating via asynchronous method calls.

We have presented a technique to prove absence of deadlock for asynchronous,
active objects. This technique is based on a representation of the static structure
of the program and a representation of the possible deadlock situation.

4.2 Future Work

We plan to investigate, object creation, inheritance, and context switches within
method bodies, i.e. await statements. Implementation in the context of the Creol
toolsuite is a goal as soon as more features of the language are covered by our
technique.

References

[1] G. Agha. Actors: a model of concurrent computation in distributed systems. MIT Press, Cambridge,
MA, USA, 1986.

[2] R. Alur and P. Madhusudan. Visibly pushdown languages. In L. Babai, editor, STOC, pages 202—-211.
ACM, 2004.

[3] The Creol language. http://heim.ifi.uio.no/creol.

[4] F. S. de Boer and I. Grabe. Finite-State Call-Chain Abstractions for Deadlock Detection in
Multithreaded Object-Oriented Languages (extended abstract). In E. B. Johnsen, O. Owe, and
G. Schneider, editors, Proceedings of the 19th Nordic Workshop on Programming Theory (NWPT’07)
(Abstracts), Oct. 2007. University of Oslo, Dept. of Computer Science, Research Report 366.

[5] S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages. Logic in
Computer Science, Symposium on, 0:161-170, 2007.

http://heim.ifi.uio.no/creol

	Introduction
	Deadlock Detection
	Visibly Multiset Automata
	Conclusion
	Results
	Future Work

	References

