
The Stock Quoter Case Study

Mar 27, 2009

Martin Steffen and Tran Thi Mai Thuong

Department of Computer Science, University of Oslo, Norway

Abstract. This document describes on an abstract level the stock quoter
case study. The case study offers simple functionality for stock trading
over the internet and has been used for illustrating the Corba component
model [2,1], for instance in [4]. The document is intended to give an
overview over the functionality of the system.

1 Introduction

The stock quoter system is a web-based software that supports clients interested
in the stock market (henceforth called brokers). The software allows the brokers
to keep up-to date with information about the stock market, i.e., the current
prices of individual stocks or other financial products.

The stock quoter system has been used as some typical piece of component
software, in particular exhibiting two different kinds of communication, roughly
event-based communication in a publish-and-subscibe mode, and a request-and-
respond comunication mechanism, based on method calls and returns. [4], for
instance, uses the stock quoter system to illustrate the Corba component model
and the use of IDL3.x

2 Architecture and Specification

This section describes the architecture of the system, i.e., its decomposition in
different (types of) components, and their respective interfaces. First we give a
short overview of the two main components in Section 2.1. Their interaction is
described in more detail afterwards in Section 2.2, distinguishing between the
request and response interaction and the event-based interaction. The interface
specifications as well as the data structures are expressed in the IDL 2.x specifi-
cation language from the OMG group. We start with the interfaces, as they give
a good overview of the functionality, even if the types of the communicated data
is not immediately provided. The remaining data types are given afterwards in
Section 2.3.

2.1 Description of the components

The system, as discussed here, includes two (kinds of) components: the stock
distributor (or distributor for short) and the stock broker (or broker). We assume

2

that there is one distributor and an arbitrary number of brokers in the system.
The brokers do not communicate with each other and so the only communication
is between the distributor and individual brokers.

2.1.1 Distributor The stock distributor plays the role of an information
server for the brokers. It monitors a real-time data-base (not modelled here)
containing the stock data and it publishes a real-time feed of stock information
to the associated brokers. As said, we consider one instance of the distributor
component. In real-life situations, in contrast, it is of course possible, that a
broker receives information from various distributors, for instance, each one as-
sociated with a different stock exchange. The distributor offers to the brokers the
possibility to subscribe and unsubscribe. Conceptionally, the distributor is ad-
ministered by a controller component, which is not modelled here, and which has
administrative functionality. It is used to start and stop the distributor server,
and change certain parameters (for example, the notification rate).

Conceptually, the distributor offers two types of interfaces, one for the ad-
ministrative controller, the other, the main one, for its clients, the brokers. The
provided interface for the controller, the trigger interface of Listing 1.1, is rather
simple: the controller can start or stop the distributor from performing its ser-
vice. It is a non-descript interface for administering servers, and is inherited by
the stock distributor interface.

Listing 1.1. Trigger

interface Trigger // d i s t r i b u t o r in t e r f a c e for the con t r o l l e r
{

void s t a r t () ;
void stop () ;

}

Listing 1.2 shows the (main part of the) distributor’s interface. It inherits
the trigger interface (offered to the controller). The first method represents the
request/response communication mechanism, the latter two belong to the event-
based communication, dealing with subscription and unsubscription.

Listing 1.2. Distributor

interface StockDi s t r ibu to r : Tr igger
{

/// reques t / response in t e rac t i on : provided in t e r f a c e
StockQuoter p r ov i d e quo t e r i n f o () ;

/// methods for event−based communication

Cookie s u b s c r i b e n o t i f i e r (in StockNameConsumer c) ;
StockNameConsumer un s u b s c r i b e n o t i f i e r (in Cookie ck)

r a i s e s (I nva l i d Sub s c r i p t i o n) ; ;

attribute long n o t i f i c a t i o n r a t e ; /// rate of updates

} ;

3

2.1.2 Broker The component acts a client resp. as a subscriber to the dis-
tributor. Again, there are two modes of obtaining information: a broker can
actively request information from the distributor server and to receive infor-
mation this way, a broker needs not to be subscribed. The second mode are
notification events for subscribed brokers, informing about changes of individual
stocks. Listing 1.3 shows the stock broker interface in IDL2.x, where the first
three method correspond to the request/response mechanism, and the remaining
one represents the event-based communication.1

Listing 1.3. Broker

interface StockBroker{

void conne c t quo t e r i n f o (in StockQuoter c) ; // se t

StockQuoter d i s c onn e c t quo t e r i n f o () ; // re se t
StockQuoter g e t c onn e c t i o n quo t e r i n f o () ; // get

/// Event−based communication (event s ink)
StockNameConsumer g e t c o n s ume r n o t i f i e r i n () ;

} ;

2.2 Communication mechanisms

Next we describe the interaction between a distibutor and a broker in more
detail.

2.2.1 Request and response Request and response is the known interaction
model of object-oriented languages or client-server type of interaction, i.e., in-
voking a method or service and getting a response back. This kind of interaction
is used by the broker to obtain information about stocks (“quoter information”)
from the distributor. In component terminology, the distributor provides that
interface and the broker on opposite side, acting as a client, uses or requires that
interface.2

So in first approximation, the distributor offers the method get_stock_info

to the brokers to fetch stock information. In reality, the distributor object does
not directly provide that method. Instead, it offers a factory method, namely
provide_quoter_info: invoking that method gives an instance of the StockQuoter
class, which in turn offers the mentioned get_stock_info-method. These two
methods are shown in Listing 1.4 and 1.5.

Listing 1.4. Quoter

interface StockQuoter
{

StockIn fo g e t s t o c k i n f o (in s t r i n g stock name) r a i s e s Inva l i d S to ck ;
} ;

1 The corresponding broker IDL3.x component is shown in Listing 1.14.
2 See also the representation in IDL3.x in Listing 1.13 and 1.14 later.

4

Listing 1.5. Distributor (provide)

StockQuoter p r ov i d e quo t e r i n f o () ;

Basically, the discussed methods cover the request and response interaction
between distributor and broker. As discussed, to fetch stock information, the bro-
ker needs to get a stock-quoter from the distributor first; typically, it would store
that information in a field, to query the stock quoters provide_quoter_info

method to obtain the wished information. As accessor methods (getting/sett-
ting/unsetting), the broker supports three methods, shown in Listing 1.6

Listing 1.6. Broker

void conne c t quo t e r i n f o (in StockQuoter c) ; // se t

StockQuoter d i s c onn e c t quo t e r i n f o () ; // re se t
StockQuoter g e t c onn e c t i o n quo t e r i n f o () ; // get

2.2.2 Event-based communication Events are directed messages, from a
sender to a receiver, i.e., generated by an event source and fielded by an event
sink. In our example, the event source is part of the distributor, and the sink
located at the broker. To receive notifications from a distributor, a broker needs
to be subscribed, i.e., subscription is a relationship between a distributor and a
broker.3 To send events is also called notification, the source of an event publishes
the event and a sink of an event consumes it. One also says, the event source
pushes the event to the sink.

In the example, when the value of a stock changes, the distributor pushes the
name of the stock to all subscribed brokers. The stock name is given basically
as string (cf. the value type StockName). More interesting is the way, the event
notification is done. The stock name is not just intended as a mere data type
which is being exchanged. Instead, it is intended as a value that is exchanged
by the event mechanism supported by the component model. This is also known
as event type. So, the “string type” of Listing 1.11 should not be considered
in isolation, but in combination with the consumer interface of Listing 1.9. An
event type is represented in IDL2.x as a combination of a value type plus a
corresponding consumer interface.

As mentioned, as broker needs to subscribe in order to be notified. The
corresponding methods of the distributor are shown in Listing 1.7. The subscribe
method returns an object of class Cookie. The return value is used to identify
the communication between distributer and subscribed broker. In other words,
the cookie is a unique session identifier and valid until the broker unsubscribes
again. To unsubscribe, the broker hands over the id of the session it wishes
to terminated and the corresponding method unsubscribe_notifier answers

3 In IDL3.x, event communication is exchanged via the dual port types of event sources
and event sinks. In the concrete case study, the two ports are named notifier_out

and notifier_in. Cf. the IDL3.x component interface description of Listing 1.13
and 1.14 later. Note that in IDL3.x, the type of an event port (sink or source) is an
event type. The event type StockName is given in Listing 1.15 for IDL3.x.

5

with the identiy of the broker, in case of a sucessful unsubscribing. The attempt
to unsubscribe a non-existing subscription raises an exception and the cookie-
argument is used to identify the subscription. Once a broker is subscribed, it
will be notified about stocks whose values has changed in database.

Listing 1.7. Distributor

Cookie s u b s c r i b e n o t i f i e r (in StockNameConsumer c) ;
StockNameConsumer un s u b s c r i b e n o t i f i e r (in Cookie ck)

r a i s e s (I nva l i d Sub s c r i p t i o n) ; ;

When the value of a particular stock changes, the distributor uses the method
push_StockName to notify all subscribed brokers. The broker does not directly
provide that method; instead, it offers a factory method get_comsumer_notifier,
which returns a StockNameConsumer object (cf. Listing 1.9), which in turn of-
fers the mentioned push_StockName method. So the situation here is dual to the
one for the request/response interaction, and especially the StockNameConsumer
plays a role analogous to the one of StockQuoter for request and response (cf.
Listing 1.4).

Listing 1.8. Broker

StockNameConsumer g e t c o n s ume r n o t i f i e r i n () ;

Listing 1.9. Stock name consumer

interface StockNameConsumer
{

void push StockName (in StockName stock name) ;
attribute Cookie cook i e ;

} ;

2.3 Data types

As mentioned, we present the data types for the values communicated in the
system and the exceptions. As the interfaces, they are specified using IDL. We
use records (“structs”) and general data types (“value type”) for the specifica-
tion. We do not need the full generality of IDL for specifying the here (e.g., we
do without inheritance and operations for the value types), and even without
experience in IDL, the definitions should be fairly clear.

Listing 1.10. Stock info

s t r u c t StockIn fo
{

s t r i n g name ; // f u l l name
long high ; // max value so far
long low ; // min value so far
long l a s t ; // most recent

} ;

The information about a stock contains its name plus information about the
latest value and some extremal values (last, high, and low). The stock itself is
represented by its name; Listing 1.11 shows a wrapper class for the stock name.

6

Listing 1.11. Stock name

valuetype StockName
{

pub l i c s t r i n g name ; // symbol of the s tock
} ;

This value type is used in the communication between stock distributor -server
and stock broker client to handle the callback from distributor server whenever
the value of a stock the stock broker client is interested in changes. As mentioned
in connection with the subscription of brokers at a distributor, a pair of a broker
and a distributor are engaged in a session. The session id is represented by
instances of the cookie-class, given in Listing 1.12.

Listing 1.12. Cookie

valuetype Cookie
{

pub l i c s t r i n g c o ok i e i d ;
} ;

Besides normal termination, some of the interface methods may also termi-
nate by raising exceptions. The exceptions cover faulty situations when trying to
unsubscribe when not eligible (i.e., basically, when not subscribed), or for a stock
which does not exists. The two exceptions are exception Invalid_Stock{} and
exception Invalid_Subscription{}.

2.4 IDL3.x

The following is taken from [4]. It models the quoter system using version 3 of
the IDL. This allows a higher level of abstraction, in particular relying on the
Corba component model. The system two main components, the distributor and
the broker are shown in Figure 1, using the symbolic representation from IDL3.x,
and their textual representation is given in Listing 1.13 and 1.14.4.

Listing 1.13. Distributor

component StockDi s t r ibu to r supports Tr igger {

publishes StockName n o t i f i e r o u t ; // event source
provides StockQuoter quo t e r i n f o ou t ; // facet , provided in t e r f a c e

attribute long n o t i f i c a t i o n r a t e ;

} ;

The distributor plays the role of a publisher/server, and the stock broker the
role of a subscriber/client.

Listing 1.14. Broker

component StockBroker {
consumes Stockname n o t i f i e r i n // event s ink
uses StockQuoter q u o t e r i n f o i n // receptac le , requ . in t e r f a c e

4 Remember that in the previous representation in IDL2.x, StockBroker and
StockDistributor only are interfaces, not components (cf. Listing 1.2 and 1.3)

7

Fig. 1. The architecture of Stock Quoter System in IDL3.x

Listing 1.15. Stock name (IDL3.x)

eventtype StockName {
pub l i c s t r i n g name ;

} ;

As in the case of the IDL2.x interface version earlier, the component here
inherits the trigger interface (cf. Listing 1.1), offering methods to start and stop
the component. The two components are dual to each other, reflecting their
dual roles. The distributor publishes information that the brokers receive. More
concretely, the two ports notifier_out and quoter_info_out of the distributor
are mirrored by notifier_in and quoter_info_in of the broker. Apart from
being dual to each other, the two components also illustrate two major patterns
of communication within the component model. One based on events and the
other by the request/response mechanism.

2.4.1 Event communication Component can communicate via events. More
precisely, the distributor publishes the events via port notifier_out and the
broker receives it via its dual port notifier_in. In order to receive notifications,
the broker sink must be subscribed. This mode of communication is also called
a publish and subscribe architecture.

2.4.2 Request/response The second mode of communication also uses ports.
They are called facets and receptacles. The correspond to the concepts of pro-
vided and required interfaces. In the example, the interface in question is the
StockQuoter interface (cf. Listing 1.4). It’s the distributor that provides the in-
terface, namely via the facet quoter_info_out. Dually, the broker requires that
interface via the receptable quoter_info_in. Unlike in the situation for the
event-based communication, the interface StockQuoter here is an “ordinary”
method interface, not an interface for events. Concretely here, the StockQuoter

mentions one method, which therefore is offered by the quoter and required by
the broker. The bottom line is that the quote offers a method for clients to obtain
information about a single name (identified by the name as a string).

8

The two entities notifier_in and quoter_info_in are ports. The notifier_in
is an event sink So both ports are input ports, one is for consuming, the event
sink for consuming the stock name event types, the other is called a receptacle
Let’s have a look at the broker’s quoter_info_in-receptacle. The keyword, as
said, to designate a receptacle is uses.

References

1. The common object request broker: Architecture and specification revision 2.6, May
2002. OMG Technical Document formal 05-09-02.

2. Corba components. OMG Document 2002-06-65, June 2002.
3. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model

for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66,
Nov. 2006.

4. D. C. Schmidt and S. Vinoski. The CORBA component model: Part 2, defining
components with the IDL 3.x types. Dr. Dobb’s Portal, Apr. 2004.

5. T. N. Thuan, T. T. M. Thuong, T. V. Khanh, and N. V. Ha. Checking the consis-
tency between UCM and PSM using graph method. In Proceedings of ASCIID’09,
2009.

	The Stock Quoter Case Study [0.1em] Mar 27, 2009
	Introduction
	Architecture and Specification
	Description of the components
	Distributor
	Broker

	Communication mechanisms
	Request and response
	Event-based communication

	Data types
	IDL3.x
	Event communication
	Request/response

