
The Credo Methodology�

(Extended Version)

Immo Grabe1, Mohammad Mahdi Jaghoori1, Joachim Klein3,
Sascha Klüppelholz3, Andries Stam6, Christel Baier3, Tobias Blechmann3,

Bernhard K. Aichernig5, Frank de Boer1, Andreas Griesmayer5,
Einar Broch Johnsen2, Marcel Kyas9, Wolfgang Leister8, Rudolf Schlatte2,

Martin Steffen2, Simon Tschirner4, Liang Xuedong7, and Wang Yi4

1 CWI, Amsterdam, The Netherlands
2 University of Oslo, Norway

3 Technische Universität Dresden, Germany
4 University of Uppsala, Sweden

5 UNU - IIST, Macau, China
6 Almende, The Netherlands

7 RRHF, Oslo, Norway
8 NR, Oslo, Norway

9 Freie Universität Berlin, Germany

Abstract. This paper is an extended version of the Credo Methodol-
ogy [16]. Credo offers tools and techniques to model and analyze highly
reconfigurable distributed systems. In a previous version we presented
an integrated methodology to use the Credo tool suite. Following a com-
positional, component–based approach to model and analyze distributed
systems, we presented a separation of the system into components and
the network. A high–level, abstract representation of the dataflow level
on the network was given in terms of behavioral interface automata and
a detailed model of the components in terms of Creol models. Here we
extend the methodology with a detailed model of the network connect-
ing these components. The Vereofy tool set is used to model and analyze
the dataflow of the network in detail. The behavioral automata connect
the detailed model of the network and the detailed model of the compo-
nents. We apply the extended methodology to our running example, a
peer-to-peer file-sharing system.

1 Introduction

Current software development methodologies follow a component-based approach
in modeling distributed systems. A major shortcoming of the existing methods
is the lack of an integrated formalism to model highly reconfigurable distributed
systems at different phases of design, i.e., systems that can be reconfigured in
� This work has been funded by the European IST-33826 STREP project CREDO

on Modeling and Analysis of Evolutionary Structures for Distributed Services.
(http://credo.cwi.nl)

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 41–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://credo.cwi.nl

42 I. Grabe et al.

Fig. 1. Overview of modeling levels and analysis in Credo

terms of a change to the network structure or an update to the components.
Moreover, the high complexity of such systems requires tool-supported analysis
techniques.

The Credo methodology allows modeling on two different levels of abstraction
(cf. Fig. 1). At the abstract level, i.e., the dataflow level, constraint automata [7]
are used to represent the interface behavior of components and Reo [3], an ex-
ecutable dataflow language for high-level description of dynamic reconfigurable
networks, is used to describe the glue code to connect the components. The mod-
eling languages CARML (constraint automata reactive module language) and
RSL (Reo scripting language) [6] are used for a hierarchical specification of the
network and components in a compositional manner. At the concrete level, the
concurrent object-oriented modeling language Creol [22] is used to provide an
executable model of the implementation for the individual components. At this
level, Credo offers a timed-automata framework for real-time modeling of concur-
rent objects. Fig. 1 illustrates the relation between the modeling languages and
their relation to existing programming languages and different kinds of analysis
the Credo tool suite provides on the chosen levels of abstraction.

In a previous version of this paper [16] we integrated the Credo tools and
techniques into the software development life-cycle and illustrated how and
when to use them during the design and analysis phases. The tools and meth-
ods presented covered a high–level model of the network and a detailed model
of the components. In this paper, we extend the methodology introduced in
[16] with tools and methods to model and analyze the dataflow of the network
in detail. The high–level model of the network in terms of behavioral inter-
face automata connects the detailed network model and the detailed component
model; behavioral interfaces are also central to the schedulability analysis of real-
time object-oriented description of a detailed component model. The connection

The Credo Methodology 43

Fig. 2. End user perspective of the Credo Tools

between the high–level network model and the detailed component model was
checked by conformance testing. In a similar approach conformance between the
high–level network model and the detailed network model is established.

At the dataflow-level, which is the most abstract characterization of a sys-
tem, behavioral interfaces (cf. Fig. 2) are used to describe components and the
dataflow between components of a composite system. These interfaces abstract
from the details of the (object-oriented) implementation of components. Instead
they describe the components and the connections they use to communicate and
interact with each other. Credo provides as an Eclipse plug-in an integrated tool-
suite, ECT (Eclipse Coordination Tools) [13], including a plug-in for the model
checker Vereofy [6,5]. Vereofy uses CARML and RSL as input languages and
provides model checking of branching-time properties via a CTL-like logic with
regular expressions to specify the observable dataflow as well as alternating-time
and linear time versions thereof and bisimulation checking. The logics allow to
reason about the coordination principles and the dataflow in the network as well
as about the internal states of the components and behavioral interfaces.

The functional behavior of the objects within a component is modeled in
Creol. Furthermore, we use the timed automata of Uppaal [25,8] to create real-
time models of objects and their behavioral interfaces. The Credo tool suite offers
an automated technique for schedulability analysis of individual objects [21,20].
Given a specification of a scheduling policy (e.g., earliest deadline first) for an
object, we use Uppaal to analyze the object with respect to its behavioral
interface in order to ensure that tasks are accomplished within their specified
deadlines.

44 I. Grabe et al.

Conformance between a model of a component implementation and its behav-
ioral interface specification is checked by the Credo tools [17]. Moreover, given
an implementation of a component in a programming language like C, Credo
also provides a technique to check conformance between the implementation
and the Creol model [18,1]. Both techniques are based on testing. The abstract
behavioral interface model is used to generate test cases to steer the execution.

To illustrate the Credo methodology we will give a running example. Through-
out the paper we model and analyze a file-sharing system with hybrid peer-to-
peer architecture (like in Napster), where a central server keeps track of the data
in every peer node.

In Section 2, we develop the structural and behavioral interfaces of the com-
ponents (peer nodes of the P2P system) and the network (the network manager
managing the dynamic connections between peer nodes); and prove some ex-
ample properties of different kinds. In Section 3, we give a detailed model of
the network using the Vereofy tool suite and analyze it by means of simulation
and model checking. In Section 4, we give executable object-oriented models
for the components and analyze them by means of simulation and testing for
conformance both with respect to the behavioral interfaces and a Creol im-
plementation. We demonstrate schedulability analysis by analyzing the central
server of the peer-to-peer example. Section 5 concludes the paper.

2 High-Level Dataflow Model

We use the exogenous coordination language Reo [3] for the high-level dataflow
modeling. Reo is a channel-based formalism that supports compositional design
of the network that yields the glue-code for a given set of components. In Reo,
a system consists of a set of components connected by a network. The network
exogenously controls the dataflow between the components and may be dynami-
cally reconfigured to alter the connections between the components. At this level
of abstraction, only a facade of each component is visible. A facade consists of
port and event declarations, and its abstract behavior is specified using an au-
tomata model called constraint automata [7]. Constraint automata are variants
of labeled transition systems where the transitions are labeled by sets of read
and write operations on I/O-ports of components and dataflow locations of the

sReq cReq

N1
sAns cAns

sReq cReq

N2
sAns cAns

sReq cReq

N3
sAns cAns

Fig. 3. Peer nodes in the P2P system

The Credo Methodology 45

network, possibly together with data constraints for the written or read data
values. Besides describing the interface behavior of the components, constraint
automata also serve as a formal semantics for Reo [7]. In this section, we do not
go into the details of how to compose Reo channels. Instead, we use constraint
automata as a model for the network behavior directly.

Components use ports to communicate with each other via the network. Fig. 3
shows a system of components (as rectangles), their ports (as small triangles),
and the network (as a cloud). Ports can be either input or output ports (implied
by the direction of the triangles). By exogenous coordination, we mean that a
component has no direct control on how its ports are connected. A component
can only indirectly influence its connections by raising events. Events include re-
quests/announcements of services, time-outs, or acknowledgments. These events
can trigger reconfigurations of the context-aware network. A network manager
handles the events and reconfigures the network connections according to the
events. At this moment we consider the network manager to be a part of the
network and we model the peer nodes independent of a concrete implementation
of the network manager.

In this section, we model the peer nodes of the P2P system as components.
Each peer node has two sides, a client side and a server side. Each side has
a pair of request and answer ports. As a client, a peer node writes a request
(a ‘key’ identifying the requested data) to its cReq–port and expects the re-
sult on its cAns–port. As a server, a peer node reads a request from its sReq–
port and writes the result to its sAns–port. For two peer nodes to communicate,
the network manager has to connect the corresponding ports of the client and
the server, i.e., the cReq–port of the client with the sReq–port of the server and
the cAns–port of the client with sAns–port of the server.

2.1 Structural Interface Description

To describe the facade of a component, we declare its ports and the events the
component may raise. Below, we define two facades, ClientSide and ServerSide. The
facade Peer inherits the ports and events declared in these two and adds another
event that is needed when the two sides are combined.

1 facade Cl i en tS id e begin

2 port cReq : outport

3 port cAns : i npo r t

4 sync event openCS<req : outport , ans : inport >(in k : Data ; out f : Bool)

5 sync event closeCS<req : outport , ans : inport >()

6 end

1 facade ServerS ide begin

2 port sReq : i npo r t

3 port sAns : outport

4 sync event openSS<req : inport , ans : outport >()

5 sync event c loseSS<req : inport , ans : outport >()

6 r e g i s t e r <>(in keyList : L i s t [Data]) // async event

7 end

46 I. Grabe et al.

1 facade Peer inherits Cl ientS ide , ServerS ide begin

2 update<>(in keyList : L i s t [Data]) // async event

3 end

The network manager does not keep a centralized account of all port bindings;
these are locally stored at each component. A component cannot directly change
its port bindings. Before using ports, the component must request a connection
by raising an open session event. An event for closing the session implies that
the ports are ready to be disconnected. When requesting to open a session or
reporting the end of a session the ports used in that session are send as param-
eters. In addition to the ports, events can have extra parameters, e.g., the ‘open
client session’ event (written as openCS) provides the key to the data it is looking
for as additional information to steer the connection process. Based on the data
key the network manager can set up a connection to a server that holds the
requested data.

Events are by default asynchronous. However, when expecting return values
(e.g., opening or closing a session), we declare events to be synchronous (using
the keyword sync event). All events raised by the components are handled by the
network. This is reflected in the structural interface description of the network.

Network. We give the structural interface description of a particular network
manager called Broker. The keyword networkmanager is used to identify such
interfaces (and distinguish them from those characterizing component facades).
The Credo methodology distinguishes between the concept of a network manager
and the network itself because a network in general consists of a network manager
and additional coordination artifacts like channels, as described later in this
section.

The description of the Broker declares the event handlers that it provides. For
each event handler, it specifies the facade (representing a component) from which
the handled event originated using the keyword with.

1 networkmanager Broker begin

2 with ServerS ide

3 r e g i s t e r <>(in keyList : L i s t [Data])

4 sync event openSS<in req : inport , ans : outport >()

5 sync event c loseSS<in req : inport , ans : outport >()

6 with Cl i en tS id e

7 sync event openCS<in req : outport , ans : inport >(in k : Data ; out f : Bool)

8 sync event closeCS<in req : outport , ans : inport >()

9 with Peer

10 update<>(in keyList : L i s t [Data])

11 end

2.2 Behavioral Interface Description

The behavioral description for a component facade specifies the order of raising
events and the port operations. This is modeled using constraint automata [4].
In these automata, we denote port operations by port names. The corresponding

The Credo Methodology 47

�� �register � �openSS �

��

�closeSS

sAns
��
sReq

�� �openCS �

��

�closeCS

cAns
��
cReq

(a) ServerSide (b) ClientSide

�� �register � �cAns

update

��

(c) Peer

Fig. 4. Behavioral interfaces for facades

action (read or write) is understood from the port type (given in the structural
facade description).

Fig. 4 shows the behavioral specification for the facades in our example. As
mentioned earlier, the port actions are enclosed by opening and closing session
events in Fig. 4(a) and Fig. 4(b). A server registers its data with the network
manager at initialization. We opt for a simple scenario, i.e., each server or client
handles only one request at a time. We also assume at this level of abstraction,
that openCS is always successful, i.e., every data item searched for is available.

The Peer facade inherits the behavior specified for ClientSide and ServerSide fa-
cades. The Peer facade introduces some additional behavior, i.e., an update to the
data stored at the broker. The Peer automaton (see Fig. 4(c)) synchronizes with
the ServerSide automaton (see Fig. 4(a)) to ensure that an update only takes place
after the data is registered. Moreover, the data at the broker is updated after
receiving new information (on the ClientSide). This is modeled by synchronization
on the read operations on the cAns–port.

The behavior of the sub-type has to be a refinement of the behavior of its
super-type [28]. This is achieved by computing the product of the automata
describing the inherited behavior (ServerSide and ClientSide) and the automaton
synchronizing them (Peer). In this product [4] transitions with different action
names are interleaved while those with common action names are synchronized.

Network. The Broker in a peer-to-peer system connects the ports and handles
the events of the components. We show how to model the synchronization of a
system consisting of a fixed number of components, say n, for some n > 0. The
observable actions of the i–th component (i ∈ {1, . . . , n}), i.e., the communica-
tions on its ports and its events, are denoted by openCSi, openSSi, closeCSi,
closeSSi, cReqi, sReqi, cAnsi, and sAnsi. Synchronization of actions is modeled
in the following automata by a transition labeled with the participating actions.

For clarity, we start with different automata for the synchronization of ports
and events. Synchronization between the ports of a pair of components i and j
is described by the following automaton.

48 I. Grabe et al.

�cReqi, sReqj

�
��

�
�� cAnsi, sAnsj

For each pair of components i and j, the following automaton synchronizes the
events openCSi and openSSj to establish a connection between components
i and j and the events closeCSi and closeSSj to release the connection again.
These two consecutive synchronizations together thus model one session between
the client of component i and the server of component j.

�� �openCSi, openSSj

closeCSi, closeSSj

��

Combining the automata above models the port connections in a session (shown
below). As stated before communication between components is only possible
after requesting a session to be opened. After the components have finished their
communication the session is closed. The interleaving product of these combined
automata for all pairs of components results in an automaton describing the
behavioral interface of the Broker.

�� �openCSi, openSSj

closeCSi, closeSSj

��

� �
�

� ��

cReqi, sReqj

cAnsi, sAnsj

Notice that interleaving allows for components to be involved in more than one
session at a time. The synchronized product of the network manager automa-
ton with the component automata (from the previous subsection) describes the
overall behavior of the system. The product restricts the network manager and
the components to exclusive sessions, i.e. a component is involved in at most one
session at a time.

Channels. We further refine the network model by introducing channels (which
are primitive connectors) [3,19]. In general, a channel provides two (channel)-
ends. We distinguish between input-ends (to which a component can write) and
output-ends (from which a component can read). We also describe the syn-
chronization between the two channel-ends by an automaton. For example, the
automaton below models a 1-place buffer. It provides an input-end in and an
output-end out. In state e the buffer is empty and in state f it is full (for sim-
plicity, we abstract from the data transferred and stored).

�� �in

out

��

We model the data-transfer from server j to client i, i.e., the connection between
the answer ports, by replacing the synchronization of cAnsi and sAnsj by the
following synchronization with the above 1-place buffer.

�sAnsj , in
�
��

�
�� cAnsi, out

The Credo Methodology 49

sReq cReq

N1
sAns cAns

sReq cReq

N2
sAns cAns

sReq cReq

N3
sAns cAns

Fig. 5. Using Reo channels for modeling the network

The overall behavior of the system is described by the synchronized product
of the Broker, the component automata, and the channel automata. The network
itself consists of the Broker and the channels. Fig. 5 shows a configuration in
which two buffer channels are used as the network connecting the components.
The dashed arrows in this figure show port bindings, i.e., the channel-end to
which a port is bound. The bold arrows represent the channels.

3 Dataflow Model

In this section we give a detailed model of the dataflow of our peer–to–peer
example. We use the Vereofy [10,6,11] (see Fig. 6) tool suite for modeling and
analyzing the detailed dataflow model. The Vereofy tool suite supports model
checking and equivalence checking of components, connectors, and the composite
system. Constraint automata serve as a generic operational semantics, which is
used for the service interfaces of the components, the network that provides the
glue code, and the composite system.

Reo scripting language
(RSL)

Constraint Automata
Reactive Module

Language (CARML)

LIBRARIES
(pre- and user defined)

Model Checker
(LTL, BTSL, ASL)

graphical representation
of the constraint automaton

graphical representation
of the network

YES/ NO + witness/couterexample
(graphical and textual representation)

Bisimulation Checker

Symbolic CA
Representation

YES/ NO

Fig. 6. The Vereofy tool suite

50 I. Grabe et al.

We use the specification languages Reo Scripting Language (RSL) for Reo
and the Constraint Automata Reactive Module Language (CARML) to spec-
ify service interfaces of the components. While the scripting language RSL is
used to specify exogenous or endogenous coordination mechanisms, the guarded
command language CARML is used to specify behavioral component interfaces
and component connectors. Both languages rely on the same semantic automata
model. This hybrid approach allows nesting of the two specification languages,
supports compositional design, modular verification and reusability of compo-
nents and component connectors. Vereofy includes symbolic model checking tools
for linear-time, branching-time and alternating-time temporal logics [24,23,5]
with special operators to reason about the events and dataflow at I/O-ports of
components and internal nodes of the connecting network. Furthermore Vereofy
includes a bisimulation checker [9] for components, component connectors, and
the composite system.

In the following we show how to model the network manager establishing
connections in our running peer-to-peer example. We use CARML to provide
textual specifications of the facades of server and client side and RSL to specify
the network manager. Finally we explain how the model checking engine of
Vereofy is used to validate the composite system. The full source code for the
P2P model is available on the web:

http://www.vereofy.de/download/examples/vereofy_p2p_example.zip

3.1 Modeling in Vereofy

The facades from Section 2 serve as a starting point to model the server and client
side. Facades define the interface ports together with the possible events. In this
section we follow an exogenous modeling approach where the communication
and coordination of the peers is handled completely outside the components by
the connecting network. Thus, there are no complex events inside the component
specifications, i.e., the CARML code for the server and client side. Instead, events
are handled by the network manager using synchronous message passing via I/O-
ports. The specification of I/O-ports in CARML differs only syntactically from
the facade definition presented earlier.

The Server side and client side facades in Vereofy. The automata from
Section 2 for the server side and client side facades are directly translated into
CARML modules. A CARML specification consists of a (possibly empty) list of
parameter (e.g. the number of I/O-ports), the interface declaration where source
ports (for the input-ends) and sink ports (for the output-ends) of a component
and its local variables are defined followed by the transition definitions speci-
fying the behavioral interface. The evaluations of the local variables represent
automata states. The transition definitions have the form

state guard−[I/O guard]→state assignments;

where the state guard represents a boolean expression on the current evaluation
of the variables, I/O guard is a boolean expression on the dataflow observed

http://www.vereofy.de/download/examples/vereofy_p2p_example.zip

The Credo Methodology 51

at the interface ports, and state assignments describe the effect on the local
variables. An I/O-guard specifies the list of active ports as well as restrictions
to the data observed at the active ports. E.g., the I/O-guard “{A} & #A == k”
states that port A is the only port active during the transition and the observable
data value at A is equal to k.

To reduce the complexity of our model for demonstration purposes we (1)
abstract from the update events, (2) assume that all peers have all data, and
(3) the network manager establishes a connection to serveri if datai is requested.
Furthermore, we use a global data domain

Data = {0, 1, 2, 3,

key0, key1, key2,

data0, data1, data2,

openSignal, closeSignal, registerSignal ,

undefined}

for the requests, the data and all signals. The numbers 0, 1, 2, 3 ∈ Data are used as
signals triggering a reconfiguration in the network topology. Please note, that for
each message type a distinct input or output port has been introduced according
to the facades definition from Section 2.1. An alternative way of modeling uses

1 MODULE ClientSide{

2 // interface declaration (specification of I/O-ports):

3 in: openCS;

4 in: closeCS;

5 out: myReq;

6 in: myAns;

8 // local variables:

9 var: enum{idle,open,waiting,done} status:=idle;

10 var: Data tans := undefined;

12 // transition definitions :

13 status==idle -[{openCS} & #openCS==openSignal]->

14 status:=open;

16 status==open -[{myReq} & #myReq==key0]-> status:=waiting;

17 status==open -[{myReq} & #myReq==key1]-> status:=waiting;

18 status==open -[{myReq} & #myReq==key2]-> status:=waiting;

20 status==waiting -[{myAns}]-> status:=done & tans:=#myAns;

22 status==done -[{closeCS} & #closeCS== closeSignal]->

23 status:=idle & tans:=undefined;

24 }

Fig. 7. CARML module for client facade of a peer

52 I. Grabe et al.

less (or even single) input and output ports and structured data types, such as
disjoint unions. For the usage of structured data types we refer to the Vereofy
user manual [11]. Fig. 7 depicts the CARML code for the client facade of a peer.

The interface of the client side facade has three input ports (openCS, closeCS,
and myAns) and one output port (myReq). The variable status stores the current
state of the peer (initially idle), while the variable trans stores an element from
the global data domain Data when the peer receives one (initially undefined). The
server side facade of the peer is modeled analogously.

The network manager. We model the network manager in the scripting
language RSL which is inspired by the exogenous, channel-based coordination
language Reo [3]. Both Reo and RSL yield elegant declarative frameworks for the
specification of circuits, i.e., for the compositional construction of (dynamically
changing) component connectors by creating channels and gluing their channels
ends, the I/O-ports of components, or sub-connectors together. RSL’s core lan-
guage features are (1) instantiation of modules and sub-circuits (via the RSL
command new); (2) gluing instances together (explicitly via the RSL command
join, or implicitly by reusing port names); (3) forming a new prototype for en-
tities for a higher modeling level (via the arrays source and sink); (4) defining
networks with dynamically changing topologies (via the RSL keyword TOPO); (5)
and scripting features such as variables, loops, and conditional branching.

registrationTable

Client
myReq

Server
register

EXROUTER

Server
exReq

Server
exAns

Client
myAns

Server
openSS

Server
closeSS

NetworkManager

release
buffer

request
buffer

P2PConnection

A

B
C

R

I J

RI[0]

RI[1]

RI[2]

RO[0]

RO[1]

RO[2]

AI[0]

AI[1]

AI[2]

AO[0]

AO[1]

AO[2]

Fig. 8. The network manager

The Credo Methodology 53

1 #include "builtin"

2 #include "registrationtable.carml"

3 #include "p2pconnection.rsl"

5 CIRCUIT NetworkManager{

6 // create registration table

7 Table = new registrationTable(source[0],source[1],source[2],

8 source[3],source[4],source[5],R;

9 I,J,

10 sink[0],sink[1],sink[2],

11 sink[6],sink[7],sink[8]);

13 // node A merges the requests

14 for (i=0;i<3;i=i+1){

15 Sync[i] = new SYNC(source[i+3];A);

16 }

18 // the requests are beeing buffered in the FIFO1

19 request_buffer = new FIFO1(A;B);

21 // the buffered request later goes via an exclusive router

22 // into the connections matrix (P2PConnection)

23 new EXROUTER<3>(B;RI[0],RI[1],RI[2]);

25 // create P2PConnection to direct requests and answers

26 Connections = new P2PConnection(I,J,RI[0],RI[1],RI[2],

27 AI[0],AI[1],AI[2];

28 RO[0],RO[1],RO[2],

29 AO[0],AO[1],AO[2]);

31 // the answers are merged into a single node C

32 for(i=0;i<3;i=i+1){

33 Sync[i+3] = new SYNC(AI[i];C);

34 }

36 // and buffered in the release_buffer for

37 // the later release (in the registration table)

38 release_buffer = new FIFO1(C;R);

40 // rest of the interface declaration

41 source[6] = AI[0]; source[7] = AI[1]; source[8] = AI[2];

42 sink[3] = RO[0]; sink[4] = RO[1]; sink[5] = RO[2];

43 sink[9] = AO[0]; sink[10] = AO[1]; sink[11] = AO[2];

44 }

Fig. 9. RSL script composing a network manager

54 I. Grabe et al.

An overview on the structure of the network manager is shown in Fig. 8. The
network manager consists of several distinct entities, some of them are modeled
in CARML while others are specified using RSL. The RSL code composing
these entities to form the network manager is presented in Fig. 9. The RSL main
program, which is not shown here, composes the peers and the network manager
the same way.

The basic idea behind the model of the network manager is that registrationTable

– specified in CARML – keeps track of the server registrations, notices requests
from clients and generates indices i, j ∈ {0, 1, 2} serving as reconfiguration signals
for the dynamically changing P2PConnection – specified in RSL. When peer i sends
the key for the �-th data package (key�) indicating the request for data�, then the
registrationTable is aware which of the registered servers has the requested data. If
peer j is the one whose server side has already registered and has the requested
data, the registrationTable opens a server session by sending the signal openSignal via
the I/O-port openSSj . Moreover it sends the indices i and j via the internal ports
I and J to the P2PConnection. The P2PConnection then establishes a bidirectional
connection between peer i and peer j first for the requests and then for the
answers. The requests are kept in the request buffer and delivered to exactly one
of the ports RI[0], RI[1] or RI[2] of the P2PConnection using an exclusive router
component (EXROUTER). After the connection has been established the request
is routed through the P2PConnection from RI[i] to RO[j], i.e, to exReq of peer j.
When the request is answered by the server side the data is delivered through
the P2PConnection from AI[j] to AO[i], i.e, from port exAns of peer j to port myAns

of peer i. A copy of the data package is kept in the release buffer . In the next
step the copy is forwarded to the registrationTable generating new reconfiguration
signals on the internal I/O-ports I and J disconnecting the peers. Moreover, it
sends the signal closeSignal via the I/O-port closeSSj to close the server session.
The network manager is now back in its initial configuration, ready for a new
request-answer-cycle.

The synchronous channels (Sync), the buffers (FIFO1), and the exclusive router
(EXROUTER) are part of Vereofy ’s built-in library. The predefined channels and
component connectors from the library can be instantiated like any other com-
ponent. The composition of channels and components is done implicitly dur-
ing the instantiation by reusing port names in the new statements. If a port
name is used more than once the corresponding ports are joined. E.g. we write
new FIFO1(A; B); new FIFO1(B; C) instead of new FIFO(A; B1); new FIFO1(B2; C);
B = join(B1, B2). If the name of a port is source[i] (or sink[j]) the port will be
the i-th source port (j-th sink port, respectively) of the interface of the network
manager. I.e., the network manager provides the interface shown in Table 1.

Dynamically changing network topologies. We now focus on the dynami-
cally changing part of the network, i.e., the P2PConnection. As described above the
registrationTable triggers a reconfiguration of the network topology. A P2PConnection

manages a bidirectional communication between peeri and peerj on the basis of
the incoming signals at the I/O-ports I and J. These signals are simultaneously

The Credo Methodology 55

Table 1. Interface of a network manager

I/O-ports port type usage data values

register i input register servers sides registerSignal

openSSi output opening a server session openSignal

myReqi input handling client requests key0, key1, key2

exReqi output forwarding requests key0, key1, key2

exAnsi input accepting answers from servers data0, data1, data2

myAnsi output forwarding answers data0, data1, data2

closeSSi output closing a server session closeSignal

P2PConnection

PeerLink

c3to1 c1to3

PeerLink

c1to3 c3to1

Link for
Client

myReq

Link for
Server
exReq

Link for
Server
exAns

Link for
Client
myAns

Reconf_Port I Reconf_Port J

Fig. 10. P2PConnection

forwarded into two sub-circuits – one peerLink for the requests and another peerLink

for the answers (see Fig. 10).
Both peerLinks consist of sub-circuits called c3to1 and c1to3. We select c3to1 as

a showcase for circuits with more than one (static) topology. A dynamic circuit
needs a static interface, which must not be changed within the topology descrip-
tions. The RSL code for c3to1 consisting of the interface declaration followed by
the definition of four possible topologies is shown in Fig. 11. The RSL keyword
NODE is used to create a new I/O-port. In the RSL code of the c3to1 in Fig. 11
four nodes are created – three nodes for the input ports and one for the output
port constituting the interface of the circuit.

In the first three topologies (topology 0, 1, 2) exactly one of the source ports is
connected to the sink via a synchronous channel. In the last topology (topology 3)
there are no connections between the sources and the sink port.

The circuit dynamically switches to topology i ∈ [0..3] when receiving a recon-
figuration signal i. As shown in Fig. 12 the initial topology can be selected on
the instantiation of the sub-circuit providing the initial topo option as shown

56 I. Grabe et al.

1 CIRCUIT c3to1{

2 outport = NODE;

3 sink[0] = outport;

5 for (i=0;i<3;i=i+1){

6 inport[i] = NODE;

7 source[i] = inport[i];

8 }

10 TOPO(0) = {

11 new SYNC(inport[0];outport);

12 }

14 TOPO(1) = {

15 new SYNC(inport[1];outport);

16 }

18 TOPO(2) = {

19 new SYNC(inport[2];outport);

20 }

22 TOPO(3) = {

23 // unconnected

24 }

25 }

1 CIRCUIT c1to3{

2 inport = NODE;

3 source[0] = inport;

5 for (i=0;i<3;i=i+1){

6 outport[i] = NODE;

7 sink[i] = outport[i];

8 }

10 TOPO(0) = {

11 new SYNC(inport;outport[0]);

12 }

14 TOPO(1) = {

15 new SYNC(inport;outport[1]);

16 }

18 TOPO(2) = {

19 new SYNC(inport;outport[2]);

20 }

22 TOPO(3) = {

23 // unconnected

24 }

25 }

Fig. 11. RSL script for a building block in the P2PConnection

for the peerLink. From the RSL code one can also see how the reconfiguration
port becomes an additional interface port of the sub-circuits c3to1 and c1to3 and
how it can be accessed. The P2PConnection is composed out of two peerLinks, one
for the requests and one for the answers.

3.2 Analysis of the Model

Vereofy provides model checking for branching time properties via the CTL-like
logic BTSL[24] and the alternating-time logic ASL[23], for linear time properties
via LTLIO[5], as well as bisimulation checking [9]. The three logics allow reasoning
about the coordination principles and the dataflow in the network, i.e., between
components, as well as the internal states of the components and component
interfaces. BTSL (Branching Time Stream Logic) is a CTL-like logic with path
quantifiers and formulas built by standard temporal operators, extended by spe-
cial modalities to specify regular properties for data stream prefixes. LTLIO is
likewise an extended version of LTL adapted to the constraint automata setting,
where the atomic propositions are either state predicates or I/O-guards. ASL
(Alternating Stream Logic) extends BTSL by means to allow reasoning about
compatibility and the existence (and absence) of strategies for (alliances of) com-
ponents. In this section we illustrate the type of properties expressible in BTSL,

The Credo Methodology 57

1 #include "c3to1.rsl"

2 #include "c1to3.rsl"

4 CIRCUIT peerLink{

5 // instantiation with port names including the reconf. ports:

6 first = new c3to1(A[0],A[1],A[2],

7 here_is_reconf_port_first; C) with initial_topo=3;

9 second = new c1to3(C, here_is_reconf_port_second;

10 B[0],B[1],B[2]) with initial_topo=3;

12 /*

13 defining the interface using

14 two differnt ways in accessing

15 the reconf_port of dynamic sub-circuits

16 */

17 source[0] = first.RECONF_PORT;

18 source[1] = here_is_reconf_port_second;

20 // defining the rest of the interface

21 for (i=0;i<3;i=i+1){

22 source[i+2] = A[i];

23 sink[i] = B[i];

24 }

25 }

Fig. 12. RSL script composing a peer link

ASL and LTLIO by providing some examples that can be checked with the help
of Vereofy . For this, we make use of the following notations inside the formulas:

– {A, B} indicates that ports A and B are active and no other port is.
– #A refers to the data item observed at port A.
– step indicates an arbitrary step with or without observable dataflow.
– the operators ; (concatenation), ∗ (star), and + (plus) correspond to the

standard operators for regular languages.

1. Deadlock freedom, in the sense that on all paths there is always a next step,
can be formalized by means of the following CTL formula.

AG[EX[true]]

2. With BTSL we can formalize a condition stating the existence of a path
with specific regular form. A sequence of actions is specified by a regular ex-
pression, where the atoms are constraints on a single step of the observable
dataflow. This can e.g. be instrumented to check the conformance between
the behavioral interfaces and the RSL model. The following formula states
the existence of a path, where the first server registers, the second client
opens a session and sends a request for the data with key0, the data is trans-
ferred, and the connections closed. The formula also requires that the path
leads to a state where both the request and the release buffer are empty.

58 I. Grabe et al.

E<"{register[0]} & #register[0]==registerSignal";"step"*;
"{openCS[1]} & #openCS[1]==openSignal";
"{request[1],openSS[0]} & #request[1]==key0
& #openSS[0]==openSignal";"#sendRequest[0]==key0";

"{theAnswerIn[0],theAnswerOut[1]}
& #theAnswerIn[0]==#theAnswerOut[1]
& #theAnswerOut[1]==data0";

"{closeSS[0],closeCS[1]} & #closeSS[0]==closeSignal
& #closeCS[1]==closeSignal">

"Manager.request_buffer.state==EMPTY
& Manager.release_buffer.state==EMPTY"

3. We now provide a BTSL formula for the requirement stating that for all
possible executions whenever the dataflow satisfies the dataflow specification
(i.e., it is part of the language defined by the regular expression) then both
buffers will be empty at the end of the execution.

A["{register[0]} & #register[0]==registerSignal";("step"*;
"{openCS[1]} & #openCS[1]==openSignal";
"{request[1],openSS[0]} & #request[1]==key0
& #openSS[0]==openSignal";"#sendRequest[0]==key0";

"{theAnswerIn[0],theAnswerOut[1]}
& #theAnswerIn[0]==#theAnswerOut[1]
& #theAnswerOut[1]==data0";

"{closeSS[0],closeCS[1]} & #closeSS[0]==closeSignal
& #closeCS[1]==closeSignal")+]"

Manager.request_buffer.state==EMPTY
& Manager.release_buffer.state==EMPTY"

4. The next property given in terms of an LTLIO formula asserts that whenever
a server session has been closed in the next step the release buffer of the
network manager will be empty.

G (("#closeSS[0]==closeSignal"
| "#closeSS[1]==closeSignal"
| "#closeSS[2]==closeSignal") ->

X "Manager.release_buffer.state==EMPTY")

5. The following LTLIO formula represents a fairness condition and ensures that
enabled requests can not be ignored forever. Stated differently, if the request
of a client is enabled at infinitely many positions along a path, then the
request fires at infinitely many locations.

G F "enabled sendRequest[1]" -> G F "sendRequest[1]"

6. The ASL formula given below states that whether there is a strategy that con-
trols, i.e. constraints, the possible dataflow at the three ports (theAnswerOut[0],
theAnswerOut[1], and theAnswerOut[2]), such that for all remaining paths the re-
lease buffer of the network manager stays globally empty.

The Credo Methodology 59

E{theAnswerOut[0], theAnswerOut[1], theAnswerOut[2]}
G["Manager.release_buffer.state==EMPTY"]

All properties that have been presented in this section have successfully been
validated for our model of the peer-to-peer network for which the full source code
is available on the web [30]. Besides model checking for temporal logics, Vereofy
supports checking bisimilarity of two automata, e.g., that two implementations
of the network manager are bisimilar.

4 Object-Oriented Model of the Components

In this section, we model the components in Creol, an executable modeling lan-
guage. To model the components, we provide interfaces for the intra-component
communication and a Creol implementation of the components. Together with
a Creol implementation of the network manager, we get an executable model
of the whole system. Since Creol models are executable we use the terms Creol
model and Creol implementation interchangeably.

We use intra-component interfaces together with the behavioral interfaces of
Section 2.2 to derive test specifications to check for conformance between the
behavioral models and the Creol implementation. We also use this specification
to simulate the environment of a component while developing the component.

Given a C implementation of the system, we use the behavioral interfaces of
Section 2.2 to derive test scenarios for checking conformance between the Creol
model and an implementation in an actual programming language. Dynamic
symbolic execution on the Creol implementation is used to compute test inputs
for the scenarios for an improved coverage of the model [18].

Finally, we model the real-time aspects of the system using timed automata. In
the real-time model, we add scheduling policies to the objects. Here, we check for
schedulability, i.e., whether the tasks can be accomplished within their deadlines.

4.1 Modeling in Creol

Creol is an executable modeling language suited for distributed systems. Types
are separated from classes, instead (behavioral) interfaces are used to type ob-
jects. Objects are concurrent, i.e., conceptually, each object encapsulates its own
processor. Creol objects can have active behavior, i.e., during object creation a
designated run method is invoked.

Creol allows for flexible object interaction based on asynchronous method
calls, explicit synchronization points, and underspecified (i.e., nondeterminis-
tic) local scheduling of the processes within an object. Creol supports software
evolution by means of runtime class updates [31]. This allows for runtime re-
configuration of the components. To facilitate the exogenous coordination of
the components we have extended Creol with facades and an event system (cf.
Section 2.1).

The modeling language is supported by an Eclipse modeling and analysis
environment which includes a compiler and type-checker, a simulation platform

60 I. Grabe et al.

based on Maude [12], which allows both closed world and open world simulation
as well as guided simulation, and a graphic display of the simulations.

In the rest of this section, we specify the interfaces of a local data store for a
peer syntactically. Then, we implement parts of a peer as an example.

Each peer consists of a client object, a server object and a data-store object.
The Client interface provides the user with a search operation. The data-store pro-
vides the client object with an add operation to introduce new data and the server
object with a find operation to retrieve data. We model these two perspectives
on the data-store by two interfaces StoreClientPerspective and StoreServerPerspective.

The interfaces are structured in terms of inheritance and cointerface require-
ments. The cointerface of a method (denoted by the with keyword) is a static
restriction on the objects that may call the method. In the model, the cointerface
reflects the intended user of an interface. In Creol, object references are always
typed by interfaces. The caller of a method is available via the implicit variable
caller. Specifying a concrete cointerface allows for callbacks. Finally, method
parameters are separated into input and output parameters, using in and out

keywords, respectively.

1 interface Sto r eC l i en tPe r sp e c t i v e begin

2 with Cl i en t

3 op add (in key : Data , i n f o : Data)

4 end

6 interface S to r eS e rve rPe r sp e c t i v e begin

7 with Server

8 op f i nd (in key : Data ; out i n f o : Data)

9 end

11 interface Store

12 inherits Sto r eC l i en tPe r sp e c t i v e , S to r eS e rve rPe r sp e c t i v e

13 begin end

The interfaces cover the intra-component communication while the facades cover
the inter-component communication (cf. Section 2.1). To implement a Creol
class, we can use only the ports and events specified in the facades. Note that
the use of ports is restricted to reading from an inport or writing to an outport.
Since the inter-component communication is coordinated exogenously by the
network, the components are not allowed to alter the port bindings; instead,
they have to raise an event to request a reconfiguration of the communication
network structure.

Next, we provide implementation models for the interfaces in terms of Creol
classes. The client offers a search method to the user. To perform a search, the
client makes a request to the broker. The event openCS<req, ans>(key; found) pro-
vides the ports req and ans to be reconfigured, plus the parameters key and found.
If the data identified by key is available, the broker connects the given ports to a
server holding the data and reports via found the success of the search. Otherwise,
the ports are left unchanged and the failure is reported via found. If successful the

The Credo Methodology 61

client expects its ports to be connected properly and communicates the data via
its ports.

For simplicity, a client only operates one search at a time. Nevertheless, the
user can issue multiple concurrent search requests. The requests are buffered and
served in an arbitrary order (due to the nondeterministic scheduling policy) one
at a time.

1 class ClientImp (s t o r e : S t o r eC l i en tPe r spe c t i v e , req : outport , ans : i npo r t)

2 inside Peer implements Cl i en t begin

4 with User op search (in key : Data out r e s u l t : Data) ==

5 var found : Boolean ;

6 raise event openCS<req , ans>(key ; found) ;

7 i f (found) then

8 req . wr i te (key ;) ;

9 ans . take (; r e s u l t) ;

10 ! s t o r e . add (key , r e s u l t)

11 end ;

12 raise event closeCS<req , ans >()

13 end

To obtain the result of the search, the client uses a synchronous call to the ans

port. The update regarding the new data is sent to the data-store asynchronously
! store .add(key, result). Using asynchronous communication the client can already
continue execution while the data-store is busy processing the changes. The client
is a passive object, i.e., it does not specify a run method.

The server object is active in the sense that it starts its operation upon cre-
ation. The active behavior is specified in the run method. This involves read-
ing data requests from the req port and delivering the results on the ans port.
To repeat the process, the run method issues an asynchronous self call before
termination.

1 class ServerImp (s t o r e : S to r eSe rve rPer spec t i ve , req : inport , ans : outport)

2 inside Peer implements Server

3 begin

4 op run ==

5 var key , r e s u l t : Data ;

6 raise event openSS<req , ans >() ;

7 req . take (; key) ;

8 s t o r e . f i nd (key ; r e s u l t) ;

9 ans . wr i te (r e s u l t ;) ;

10 raise event c loseSS<req , ans >() ;

11 ! run ()

12 end

By raising the event openSS<req,ans>(), a server announces its availability to the
broker. This synchronous event returns whenever a request is made for some
data on this server. Having provided the ports along the event, the server ob-
ject expects to be connected to the requesting client, and reads the key to the

62 I. Grabe et al.

requested data from its req port. The server looks up the data corresponding to
the key in the data-store using the find operation. The result is sent back on the
ans port. The event closeSS announces the accomplishment of the transaction.
Finally, the server prepares for a new session by calling the run method again.

4.2 Analysis of the Model

Creol programs and models can be executed using the rewriting logic of Maude
[12]. Maude offers different modes of rewriting and additional capabilities for
validation, e.g., a search command and the means for model checking. Credo
offers techniques to analyze parts of the system in isolation; on the lowest level,
to analyze the behavior of a single (active) object in isolation.

Credo offers techniques to analyze, in a black-box manner, the behavior of a
component modeled in Creol, by interaction via message passing. This allows for
the description and analysis of systems in a divide-and-conquer manner. Thus
the developer has the choice of developing the system bottom-up or top-down.

Although Creol allows modeling systems on a high level, the complete model
might still be too large to be analyzed or validated as a whole. By building upon
the analysis of the individual components, compositional reasoning still allows
us to validate the system.

Conformance Testing of the Model. In the context of the Creol concurrency
model, especially the asynchrony poses a challenge for validation and testing.
Following the black-box methodology, an abstract component specification is
given in terms of its interaction with the environment. However, in a particular
execution, the actual order of outputs issued from the component may not be
preserved, due to the asynchronous nature of communication. To solve this prob-
lem, the conformance of the output to the specification is checked only up-to a
notion of observability [17].

The existing Creol interpreter is combined with an interpreter for the abstract
behavior specification language to obtain a specification-driven interpreter for
testing and validation [17]. It allows for run-time assertion checking of the Creol-
models, namely for compliance with the abstract specification.

We derive a specification for an object directly from the structural interfaces
and the behavioral interfaces. The specification of the implementation of the
ServerSide is derived from the facade depicted in Section 2.1 and the behavioral
interface depicted in Section 2.2. The facade determines the direction of a com-
munication, i.e., whether it is incoming or outgoing communication. For the spec-
ification the direction is inverted - the specification ‘interacts’ with the object to
analyze it. The order of the events is determined by the behavioral interface.

The specification language features, among others, choice (between communi-
cation in the same direction, i.e., incoming only or outgoing only) and recursion.
As an example, we give the specification of a server:

ϕS = 〈event register(keyList)〉? . rec X . 〈event openSS()〉? .
〈port s.sReq(key)〉! . 〈port s.sAns(data)〉? .
〈event closeSS()〉? . X

The Credo Methodology 63

To test our executable model ServerImpl for conformance with respect to the behav-
ioral interface description, we translate the specification to Creol and in the next
step to Maude. The specification in Maude is executed together with the model.
With the data-store at hand, we specify via the method parameters that the data
delivered along the sAns port of the server is actually the data identified by the key.
This needs to be done on the level of the Maude code.

The object is executed together with the specification in a special version of
the Maude interpreter customized for the testing purpose. The programmer can
track down the reason for a problem according to the Maude execution. This can
be either a mistake in the executable model or a flaw in the behavioral model,
i.e., the specification. The interpreter reports an error if unexpected behavior is
observed, i.e., an unspecified communication from the object to the specification,
or a deadlock occurs.

Simulation. The conformance testing introduced in the previous section is al-
ready a simulation of a part of the system, i.e., the object under test. We use a
modified version of the above testing interpreter to eliminate the error reporting.
Notice that the Maude interpreter of Creol is a set of rewrite rules which reduces
the modification of the interpreter in this case to the deletion of the rules dealing
with the error reporting.

Furthermore, we use the facades and behavioral interfaces of section 2 to derive
a Creol skeleton of the network. By filling in the details of the network manager,
we get a Creol model of the network. The model of the network and the models of
the components together form a model of the entire system, which can be executed
in Maude.

We use Maude to steer the execution of the model on different levels. We use
the different built-in rewriting strategies to simulate different executions of the
system. We use Maude’s search command to search for a specific execution lead-
ing to a designated program state. And we use Maude’s meta-level to control an
execution by controlling the application of the rewrite rules.

To supplement the above simulation strategies, we use Maude’s model-checking
facilities. In general, the simulation is non-deterministic, which means, that only
part of the specified behavior is covered. Therefore erroneous behavior might be
missed. Maude’s search facility allows us to explore the search space systemati-
cally. A general limitation of model checkers is the state space explosion, which
makes larger systems unmanageable, when it comes to model checking. By ana-
lyzing parts of the system in isolation we reduce the state space explosion. Fur-
thermore, Creol as a modeling language allows us to represent the system in a
high-level, abstract manner, and concentrate on the crucial design-choices, which
furthermore increases the chances of being able to model-check such a model. Since
Maude is based on rewriting, dealing with the asynchronous nature of communi-
cation is natural: the asynchronicity is represented by trace–equivalence, which
is directly represented as equivalence in the Maude rewriting system. This allows
the execution engine to more efficiently represent the state space (by working on
the normal forms instead of exploring all re-orderings one by one).

64 I. Grabe et al.

Conformance Testing of the Implementation. The testing process uses for-
mal methods (e.g., automata and simulation of a model’s formal program seman-
tics) to provide the necessary links between behavioral interfaces, Creol models,
and the actual implementation.

Behavioral interfaces provide test scenarios, patterns of interactions between
the components. A test case created according to a test scenario represents a func-
tional description, but does not guarantee a good coverage of the model. To opti-
mize the coverage, dynamic symbolic execution is used to analyze execution paths
through the Creol model to find representative test cases while avoiding redun-
dancies in the test suite [18].

Once a test suite is created, the next step in testing is executing the tests on
the implementation and reaching a test verdict to check the conformance between
model and implementation. Testing a concurrent system involves validation of
both functional and non–functional aspects. Functional aspects are covered by
standard techniques like runtime assertions in the implementation and unit test-
ing. To test the concurrency behavior of an implementation against its model we
use the observation that typically the Creol model and the implementation share a
common structure with regard to high-level structure and control flow. It is there-
fore reasonable to assume that, given equivalent stimuli (input data), they will
behave in an equivalent way with regard to control flow.

We instrument the implementation to record events and use the instrumented
implementation to record traces of observable events. Then we restrict the exe-
cution of the model to these traces. If the model can successfully play back the
trace recorded from the implementation (and the implementation produces the
correct result(s) without assertion failures), then the test case is successful. The
Creol model is used as a test oracle for the execution of the test cases on the actual
implementation [1].

4.3 Schedulability Analysis

In this section, we explain how to model the real-time aspects of the peer-to-peer
system using timed automata and the Uppaal model checker [25]. An object or
component is called schedulable if it can accomplish all its tasks in time, i.e., within
their designated deadlines. We demonstrate the schedulability analysis process
[14,20] on the network manager object in the peer-to-peer model, which is the
most heavily loaded entity in this system.

In the real-time model of an object, we add explicit schedulers to object specifi-
cations. For schedulability analysis, the model of an object consists of three parts:
the behavioral interface, the methods and the scheduler.

Behavioral interface. To analyze an object in isolation, we use the behavioral
interface as an abstract model of the environment. Thus, it triggers the object
methods. Fig. 13 shows the behavioral interface of the network manager
augmented with real-time information. The automata in this figure are derived
from the behavioral interface of Peer (see Section 2.2) by removing the port
operations. To send messages, we use the invoke channel, with the syntax

The Credo Methodology 65

oc_os?
x = 0

reg_upd[Peer]! invoke[confirmSS][Peer][self]?

x > 5
invoke[closeSS][self][Peer]!

deadline = MD, x = 0

x > 5
invoke[openSS][self][Peer]!

deadline = XD

invoke[register][self][Peer]!

deadline = MD

oc_os!
x = 0

open_upd[Peer]!

invoke[confirmCS][Peer][self]?

x > 5
invoke[closeCS][self][Peer]!

deadline = MD, x = 0

x > 5
invoke[openCS][self][Peer]!

deadline = XD open_upd[Peer]?

invoke[update][self][Peer]!

deadline = XD

reg_upd[Peer]?

Fig. 13. The behavioral interface of broker modeled in timed automata

invoke[message][sender][receiver]! . To specify the deadlines associated to a message, we
use the variable deadline.

In Fig. 13, we use the open upd and reg upd channels to synchronize the automata
for Peer with ClientSide and ServerSide, respectively. Additionally, the automata for
ClientSide and ServerSide are synchronized on the oc os channel; this abstractly mod-
els the synchronization on port communication between the components in which
the network manager is not directly involved. This model allows the client side of
any peer to connect to the server side of any peer (abstracting from the details of
matching the peers).

The confirmCS and confirmSS messages model the confirmation sent back from the
network manager to the open session requests by the peers. In the implementa-
tion, this is an implicit reply which is therefore not modeled in the behavioral
interfaces of the peers in Section 2.2. These edges synchronize with the method
implementations (explained next) in order to reduce the nondeterminism in the
model.

Methods. The methods also use the invoke channel for sending messages. Fig. 14
shows the automata implementation of two methods for handling the openCS and
register events. In openCS, and similarly in every method, the keyword caller refers
to the object/component that has called this method. The scheduler should be
able to start each method and be notified when the method finishes, so that it can
start the next method. To this end, method automata start with a synchroniza-
tion on the start channel, and finish with a transition synchronizing on the finish

x <= 1
x == 1

invoke[confirmClient][caller][self]!

start[openCS][self]?
x = 0

finish[self]!
x <= 1 finish[self]!

x >= 1

start[register][self]?
x = 0

Fig. 14. Method automata for handling openCS and register events

66 I. Grabe et al.

channel leading back to the initial location. The implementation of the openCS

method involves sending a message confirmCS back to the sender, while the register
method is modeled merely as a time delay.

Checking Schedulability. When an object is instantiated, an off-the-shelf
scheduler is selected and tailored to the particular needs of the object. For an
object, we get a network of timed automata in Uppaal by instantiating the au-
tomata templates for methods, behavioral interface and the scheduler. There are
two conditions indicating that a system is not schedulable:

1. The scheduler receives a new message when the message queue is already full.
In theory [20], a schedulable object needs a queue length of at most
�dmax/bmin�, where dmax is the biggest deadline value used and bmin is the
smallest execution time of all methods.

2. The deadline of at least one message in the queue is missed.

In either of the above cases, the scheduler automaton goes to a location called
Error. This location has no outgoing transitions and therefore causes deadlock.
Therefore, absence of deadlock implies schedulability, as well as correct output
behavior for the object.

Due to the high amount of concurrency in the model, model checking is of lim-
ited use. Nevertheless, we can use the simulation feature of Uppaal [29] to analyze
bigger systems. We measure the worst-case response time for each message, which
identifies a lower bound for the deadline value in a schedulable system.

5 Conclusions

We presented an extended version of the Credo methodology now covering also the
detailed modeling and analysis of the network. The Credo modeling and analysis
techniques addressing highly reconfigurable distributed systems presented cover
a broader spectrum of the software development process. The Vereofy tool set
is added to the picture providing modeling and analysis techniques for detailed
network models.

At a high level of abstraction, the dynamic connections between the components
are modeled using behavioral interface specifications. The detailed model of the
network is given in terms of a Reo model specified in Vereofy . The detailed model
of the components is given in terms of an object–orientedCreolmodel.Bothmodels
are used for analysis of functional as well as non-functional properties, e.g.,
schedulability, deadlock freedom. The conformance between the component and
the network models is established via the behavioral interface specifications. Fur-
thermore we can establish conformance between the Creol model and a given im-
plementation by conformance testing.

The process described in this paper can be integrated in the existing software
development methodologies which support component-based modeling, and thus
enhance them with support for formal modeling and analysis of dynamically re-
configurable distributed systems. In the future, we intend to broaden the scope

The Credo Methodology 67

of the Credo modeling language and its corresponding tool suite in order to sup-
port the full development life-cycle of large-scale, open systems. This involves, on
one hand, integrating models of software architecture into the process; and on the
other hand, working further on deployment concerns such as scheduling.

Case Studies

The Credo methodology has been successfully applied to two industrial case
studies.

ASK System. The Credo methodology has been applied to model and analyze
the ASK system, an industrial software system developed by Almende [2]. The
purpose of the ASK system is to improve communication between people by pro-
viding a mediating communication platform with knowledge about the availabil-
ity, schedules, skills and past experience of users. Typical applications for ASK are
workforce planning, customer service, knowledge sharing, social care and emer-
gency response. Various communication channels can be incorporated. The ASK
system is a learning system, trying to improve the quality of service according to
self–monitoring and feedback mechanisms. An important part of all core compo-
nents of the system are thread pools. They are used to manage the (varying) work-
loads of the system by distribution of individual tasks, creation of new threads to
handle tasks, and destruction of threads in case of low workload to minimize the
idle time. We have modeled and analyzed the different kinds of thread pools in the
ASK system according to the Credo methodology [15].

BSN. The Credo methodology has been applied to model and analyze a biomed-
ical sensor network (BSN). For the BSN case study we modeled and analyzed dif-
ferent routing protocols for a biomedical sensor network. The BSN case study is
focused on the application of the sensor network in a hospital. Patients are moni-
tored via medical sensors which communicate their observations via radio signals
to a sink, representing the entry point to the (wired) hospital communication net-
work. The signals are not broadcasted directly to the sink but via other sensor
nodes, used as hubs. Among functional properties, like emiting an emergency sig-
nal in certain scenarios, non–functional properties, like energy consumption are of
interest. Two different routing protocols have been modeled, analyzed, and com-
pared [26,27].

References

1. Aichernig, B., Griesmayer, A., Schlatte, R., Stam, A.: Modeling and testing multi-
threaded asynchronous systems with Creol. In: Proc. TTSS 2008. ENTCS, vol. 243,
pp. 3–14. Elsevier, Amsterdam (2009)

2. The Almende research company, http://www.almende.com/
3. Arbab, F.: Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science 14, 329–366 (2004)

http://www.almende.com/

68 I. Grabe et al.

4. Arbab, F., Baier, C., Rutten, J.J., Sirjani, M.: Modeling component connectors in
Reo by constraint automata. In: Proc. FOCLASA 2003. ENTCS, vol. 97, pp. 25–46.
Elsevier, Amsterdam (2004)

5. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal Verification for Com-
ponents and Connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009)

6. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A Uniform Framework for Mod-
eling and Verifying Components and Connectors. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg
(2009)

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling Component Connec-
tors in Reo by Constraint Automata. In: Proceedings of the 2nd International Work-
shop on Foundations of Coordination Languages and Software Architectures. Sci-
ence of Computer Programming, vol. 61, pp. 75–113 (2006)

8. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W., Hen-
driks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society, Los Alami-
tos (2006)

9. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. In: Electronic
Notes in Theoretical Computer Science, vol. 215, pp. 209–226 (2008)

10. Blechmann, T., Klein, J., Klüppelholz, S.: Vereofy, http://www.vereofy.de
11. Blechmann, T., Klein, J., Klüppelholz, S.: Vereofy User Manual. TU Dresden

(2008 –2009), http://www.vereofy.de
12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,

J.F.: Maude: Specification and programming in rewriting logic. Theoretical Com-
puter Science (2001)

13. CWI Coordination Group. Eclipse coordination tools,
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools

14. de Boer, F., Chothia, T., Jaghoori, M.M.: Modular schedulability analysis of con-
current objects in Creol. In: Arbab, F., Sirjani, M. (eds.) Fundamentals of Software
Engineering. LNCS, vol. 5961, pp. 212–227. Springer, Heidelberg (2010)

15. de Boer, F.S., Grabe, I., Jaghoori, M.M., Stam, A., Yi, W.: Modeling and Analysis
of Thread-Pools in an Industrial Communication Platform. In: Breitman, K., Cav-
alcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 367–386. Springer, Heidelberg
(2009)

16. Grabe, I., Jaghoori, M.M., Aichernig, B., Baier, C., Blechmann, T., de Boer, F.,
Griesmayer, A., Johnsen, E.B., Klein, J., Klüppelholz, S., Kyas, M., Leister, W.,
Schlatte, R., Stam, A., Steffen, M., Tschirner, S., Liang, X., Yi, W.: Credo method-
ology. Modeling and analyzing a peer-to-peer system in Credo. In: Johnsen, E.B.,
Stolz, V. (eds.) Proceedings of the 3nd International Workshop on Harnessing The-
ories for Tool Support in Software (TTSS 2009), ICTAC 2009 satellite Workshop.
Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2010)

17. Grabe, I., Steffen, M., Torjusen, A.B.: Executable Interface Specifications for Test-
ing Asynchronous Creol Components. In: Arbab, F., Sirjani, M. (eds.) Fundamen-
tals of Software Engineering. LNCS, vol. 5961, pp. 324–339. Springer, Heidelberg
(2010)

18. Griesmayer, A., Aichernig, B.K., Johnsen, E.B., Schlatte, R.: Dynamic symbolic ex-
ecution for testing distributed objects. In: Dubois, C. (ed.) Tests and Proofs. LNCS,
vol. 5668, pp. 105–120. Springer, Heidelberg (2009)

19. Jaghoori, M.M.: Coordinating object oriented components using data-flow net-
works. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2007. LNCS, vol. 5382, pp. 280–311. Springer, Heidelberg (2008)

http://www.vereofy.de
http://www.vereofy.de
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools

The Credo Methodology 69

20. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. J. Logic and Alg. Prog. 78(5), 402–416 (2009)

21. Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and com-
patibility of real time asynchronous objects. In: Proc. Real Time Systems Sympo-
sium, pp. 70–79. IEEE Computer Society Press, Los Alamitos (2008)

22. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed con-
current objects. Software and Systems Modeling 6(1), 35–58 (2007)

23. Klüppelholz, S., Baier, C.: Alternating-time stream logic for multi-agent systems.
Science of Computer Programming. Corrected Proof (2009) (in Press)

24. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Science of Computer Programming 74(9), 688–701 (2009)

25. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152
(1997)

26. Leister, W., Björk, J., Schlatte, R., Griesmayer, A.: Validation of Creol models for
routing algorithms in wireless sensor networks. Report 1024, Norsk Regnesentral,
Oslo, Norway (2010)

27. Leister, W., Liang, X., Klüppelholz, S., Klein, J., Owe, O., Kazemeyni, F., Bjørk,
J., Østvold, B.M.: Modelling of biomedical sensor networks using the Creol tools.
Report 1022, Norsk Regnesentral, Oslo, Norway (2009)

28. Rumpe, B., Klein, C.: Automata describing object behavior. In: Object-Oriented
Behavioral Specifications, pp. 265–286. Springer, Heidelberg (1996)

29. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of QoS properties of
biomedical sensor networks. In: Proc. Embedded software (EMSOFT 2008), pp. 69–
78. ACM Press, New York (2008)

30. Vereofy source code of the peer-to-peer example (2010),
http://www.vereofy.de/download/examples/vereofy_p2p_example.zip

31. Yu, I.C., Johnsen, E.B., Owe, O.: Type-safe runtime class upgrades in Creol. In:
Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 202–217.
Springer, Heidelberg (2006)

http://www.vereofy.de/download/examples/vereofy_p2p_example.zip

	The Credo Methodology
	Introduction
	High-Level Dataflow Model
	Structural Interface Description
	Behavioral Interface Description

	Dataflow Model
	Modeling in Vereofy
	Analysis of the Model

	Object-Oriented Model of the Components
	Modeling in Creol
	Analysis of the Model
	Schedulability Analysis

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

