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Abstract

Credo offers tools and techniques to model and analyze highly reconfigurable distributed systems. In this
paper, we present an integrated methodology to use the Credo tool suite. In this methodology, we advertise
the use of top-down design, component-based modeling and compositional analysis to address the complexity
of highly reconfigurable distributed systems. As a running example, we model a peer-to-peer file-sharing
system and show how and when to apply the different modeling and analysis techniques of Credo.

1 Introduction

Current software development methodologies follow a component-based approach in
modeling distributed systems. A major shortcoming of the existing methods is the
lack of an integrated formalism to model highly reconfigurable distributed systems
at different phases of design, i.e., systems that can be reconfigured in terms of a
change to the network structure or an update to the components. Moreover, the
high complexity of such systems requires tool-supported analysis techniques.

In this paper, we integrate the Credo tools and techniques into the software
development life-cycle. We illustrate how and when they should be used during the
design and analysis phases. Thus, software engineers can benefit by enriching their
preferred methodology with the Credo tool suite.

The core of the Credo tool suite consists of two different executable modeling lan-
guages: Reo [1] is an executable dataflow language for high-level description of the
dynamic reconfigurable network of connections between the components; Creol [2]
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Fig. 1. Overview of modeling levels and analysis in Credo

is an object-oriented modeling language, used to provide an abstract but executable
model of the implementation of the individual components. Fig. 1 illustrates the
relation between these modeling languages and their relation to existing program-
ming languages. It also indicates the kind of analysis the Credo tool suite provides
for each modeling language.

To support top-down design and compositional analysis, we make use of behav-
ioral interfaces for the different abstraction levels of the design (cf. Fig. 2). At
the top-level, behavioral interfaces are used to describe the dataflow between the
components of a system. These interfaces abstract from the details of the internal
object-oriented model of components. Instead they describe the kind of connections
components use to communicate and interact. Credo provides as an Eclipse plug-in
an integrated tool-suite, ECT (Eclipse Coordination Tools) [3], to model and ana-
lyze the interactions between the components in a given network, e.g., absence of
deadlock can be checked at this early stage of design.

network
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Fig. 2. End user perspective of the Credo Tools

2



IMmMO GRABE, MOHAMMAD MAHDI JAGHOORI ET AL.

The functional behavior of the objects within a component is modeled in Creol.
The conformance between such a model of a component and its behavioral interface
can be checked in Credo [4]. On the other hand, given an implementation of a
component in a programming language like C, Credo also provides a technique
to check for conformance between the implementation and the model [5,6]. Both
techniques are based on testing and use the behavioral interface as an abstract model
to generate test cases and to control the execution of the test cases.

Furthermore, the Credo tool suite offers an automated technique for schedula-
bility analysis of individual objects [7]. We use the timed automata of UPPAAL to
model objects and their behavioral interfaces. Given a specification of a schedul-
ing policy (e.g., shortest deadline first) for an object, we use UpPPAAL to analyze
the object with respect to its behavioral interface in order to ensure that tasks are
accomplished within their specified deadlines.

We illustrate the Credo methodology by an example. We model and analyze a
file-sharing system with hybrid peer-to-peer architecture (like in Napster), where a
central server keeps track of the data in every node. In Section 2, we develop the
structural and behavioral interfaces for the components (nodes of the peer-to-peer
system) and the network (the broker managing the dynamic connections between
nodes); and prove our model of the network to be deadlock free. In Section 3, we
give executable Creol models for the components and analyze them by means of
simulation and testing for conformance both with respect to the behavioral inter-
faces and an implementation. We demonstrate schedulability analysis by analyzing
the broker. Section 4 concludes the paper.

2 High-Level Dataflow Modeling

Reo [1] is a channel-based coordination model for component composition. As the
formal semantics of Reo, we use constraint automata [8]. In Reo, a system consists
of a set of components connected by a network. The network exogenously controls
the data-flow between the components and may be dynamically reconfigured to
connect different components. At this level of abstraction, only a facade is visible
from each component. A facade consists of port and event declarations, and its
abstract behavior is specified using constraint automata. In this paper, we do
not go into the details of composing Reo channels for obtaining complex networks.
Instead, we model the network behavior directly using constraint automata.
Components use ports to communicate with each other via the network. Fig. 3
shows a system of components (as rectangles), their ports (as small triangles), and

i> sReq cReq >
N1
sAns cans K
,,,D sReq cReq >
N3
[ shea cReq >—~—’“ 77777 sAns cans K
N2
sAns oans K

Fig. 3. Nodes in the peer-to-peer system
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the network (as a cloud). Ports can be either inports or outports (implied by the
direction of the triangles). By exogenous coordination, we mean that a component
has no control on how its ports are connected. A component can only indirectly
influence its connections by raising events. Events include requests/announcements
of services, time-outs, or acknowledgments. These events can trigger reconfigura-
tions of the context-aware network. The network includes a network manager that
handles events and reconfigures the network according to the events.

In this section, we model the nodes of the peer-to-peer system as the compo-
nents. The network consists of the broker that manages the connections between
the component ports. Each node has two sides, a client side and a server side. On
each side, a pair of request and answer ports is needed. As a client, a node writes
its request to cReq and expects the result on cAns. A component on its server side
reads a request (‘key’ to some data) from sReq and writes the data corresponding
to the given key to sAns. For two nodes to communicate, the broker has to connect
the corresponding ports of the client and the server.

2.1 Structural Interface Description

To describe the facade of a component, we declare its ports and the events the
component may raise. Below, we define two facades, ClientSide and ServerSide. The
facade Peer inherits the ports and events declared in these two and adds another
event that is needed when the two sides are combined.

1 facade ClientSide begin

2 port cReq : outport

3 port cAns : inport

4 sync_event openCS<req:outport,ans:inport>(in k:Data; out f:Bool)
5 sync_event closeCS<req:outport,ans:inport >()

6 end

facade ServerSide begin
port sReq : inport
port sAns : outport
sync_event openSS<req:inport ,ans:outport >()
sync_event closeSS<req:inport ,ans:outport >()
register <>(in keyList : List[Data]) // async_event
end

N o O W=

1 facade Peer inherits ClientSide, ServerSide begin
update<>(in keyList : List [Data]) // async_event
3 end

The network manager in a system does not keep a centralized account of all
port bindings; these are locally stored at each component. A component cannot
directly change its port bindings. Before using ports, the component must request
a connection by raising an open session event. An event for closing the session
implies that the ports are now safe to be disconnected. These events must provide
the ports to be used in the session as parameters. In addition, they can have
extra parameters, e.g., the ‘open client session’ event (written as openCs) guides
the connection by providing the key it is looking for, and in return it is informed
whether such a node is found.
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Events are by default asynchronous. However, events expecting return values
(e.g., open and close session events) should be declared to be synchronous (using
the keyword sync_event). All events raised by the components in a system have to
be handled by the network. This has to be reflected in the structural interface
description of the network.

2.1.1 Network.
We give the structural interface description of a particular network manager called
Broker. The keyword networkmanager is used to identify such interfaces (and
distinguish them from those characterizing component facades). The Credo method-
ology also distinguishes between the concept of a network manager and the network
itself because a network in general consists of a network manager and additional co-
ordination artifacts like channels, as described later in this section. The description
of the Broker declares the event handlers that it provides. For each event handler,
it specifies the facade (representing a component) from which the handled event is
originated using the keyword with.

1 networkmanager Broker begin

2 with ServerSide

3 register <>(in keyList : List[Data])

4 sync_event openSS<in req:inport ,ans:outport>()

5 sync_event closeSS<in req:inport ,ans:outport >()

6 with ClientSide
7 sync_event openCS<in req:outport,ans:inport>(in k:Data; out f:Bool)
8 sync_event closeCS<in req:outport,ans:inport >()
9

with Peer
10 update<>(in keyList : List [Data])

2.2  Behavioral Interface Description

The behavioral description for a component facade comprises of specifying the or-
der of raising events and the port operations. This is modeled using constraint
automata [8]. In these automata, we denote port operations by specifying the port
names. The corresponding action (read or write) is understood from the port type
(given in the structural facade description).

Fig. 4 shows the behavioral specification for the facades in our example. As
mentioned earlier, the port actions are surrounded by opening and closing session
events in parts (a) and (b) of this figure. A server registers its data with the broker
to initialize its operation. We opt for a simple scenario, i.e., each server or client
handles only one request at a time. We also assume at this level of abstraction, that
openCS is always successful, i.e., every data item searched for is available somewhere
in the system.

The peer facade inherits the behavior specified for ClientSide and ServerSide facades.
The Peer facade additionally introduces extra behavior involving an update to the
data stored at the broker. This automaton synchronizes with the ServerSide facade
to make sure that an update cannot take place before the data is initally registered.
Moreover, the data at the broker should be updated after receiving new information
(on the ClientSide). This is modeled by synchronizing on the read operation on cAns.

5
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Fig. 4. Behavioral interfaces for facades

In general, the behavior of the sub-type has to be a refinement of the behavior
of its super-type [9]. This is achieved by computing the product of the automata
describing the inherited behavior (ServerSide and ClientSide) and the automaton syn-
chronizing them (Peer). In this product [8] the transitions of different automata are
interleaved while those with common action names are synchronized.

2.2.1 Network
The Broker in a peer-to-peer system connects the ports and handles the events of
the components.We show how to model the synchronization of a system consisting
of a fixed number of components, say n, for some n > 0. The observable actions
of the ith component (i € {1,...,n}), i.e.,, the communications on its ports and
its events, are denoted by openC'S;, openSS;, closeCS;, closeSS;, cReq;, sReq;,
cAns;, and sAns;. Synchronization of actions is naturally modeled in the following
automata by a transition labeled with the participating actions.

For clarity, we start by different automata for the synchronization of ports and
events. Synchronization between the ports of a pair of components i and j is
described by the following automaton.

cRegq;, sReq; C@D cAns;, sAns;

For each pair of components 7 and j, the following automaton synchronizes the
events openC'S; and openSS; to establish a connection between components ¢ and
J and the events closeC'S; and closeSS; to release the connection again. These two
consecutive synchronizations together thus model one session between the client of
component ¢ and the server of component j.

) closeC'S;, closeSS;

Combining the automata above models the port connections that need to be
made in a session between each pair of components (shown below). The interleav-
ing product of these combined automata for all pairs of components results in an

automaton describing the behavioral interface of the Broker.
cReq;, sReq;

openC'S;, openSS;

openC'S;, openSS;

closeCS;, closeSS;

cAns;, sAns;

It should be noticed that interleaving allows for components to be involved in
more than one session at a time. The synchronized product of the Broker automa-

6
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Fig. 5. Using Reo channels for modeling the network.

ton with the component automata (from the previous subsection) finally describes
the overall behavior of the system. This product constrains the Broker so that
components are involved in at most one session at a time. We can construct this
overall behavior modeling the whole system and analyze it with the Vereofy tool
[10,11], e.g., to ensure absence of deadlock. Furthermore, Vereofy includes symbolic
model checking tools for linear-time, branching-time and alternating-time temporal
logics with special operators to reason about the events and data flow at ports of
components. Due to lack of space, we do not explain the details of such analyses.

Channels. We can further refine the network model by introducing channels
(which are a specific kind of connectors) [1,12]. In general, a channel provides
two (channel)-ends. We distinguish between input-ends (to which a component can
write) and output-ends (from which a component can read). We can also describe
the synchronization between the two channel-ends by an automaton. For example,
the automaton below models a 1-place buffer. It provides an input-end in and an
output-end out. In state e the buffer is empty and in state f it is full (for simplicity,
we abstract from the data transfered and stored).

R O—)
We model the data-transfer from server j to client ¢, i.e., the connection between

the answer ports, by replacing the synchronization of cAns; and sAns; by the
following synchronization with the above 1-place buffer.

sAns;,in C@D cAns;, out

The overall behavior of the system is described by the synchronized product of
the Broker, the component automata, and the channel automata. The network itself
consists of the Broker and the channels. Fig. 5 shows a configuration in which two
buffer channels are used as the network connecting the components. The dashed
arrows in this figure show port bindings, i.e., the channel-end to which a port is
bound. The bold arrows represent the channels.

out

3 Object-Oriented Modeling

In this section, we model the components in Creol, an executable modeling lan-
guage. To model the components, we provide interfaces for the intra-component
communication and finally a Creol implementation of the components. By adding
a Creol implementation for the network manager, we get an executable model of

7
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the whole system. Since Creol models are executable we use the terms Creol model
and Creol implementation interchangeably.

We use intra-component interfaces together with the behavioral interfaces of
Section 2.2 to derive test specifications to check for conformance between the be-
havioral models and the Creol implementation. We can also use such a specification
to simulate the environment of a component while developing the component.

Given a C implementation of the system, we use the behavioral interfaces of
Section 2.2 to derive test scenarios to check for conformance between the Creol
model and an implementation in an actual programming language. The coverage of
these test scenarios is improved by symbolic execution of the Creol implementation.

Finally, we model the real-time aspects of the system using timed automata. In
the real-time model, we add scheduling policies to the objects. Here, we check for
schedulability, i.e., whether the tasks can be accomplished within their deadlines.

3.1 Executable Creol Model

Creol is an executable modeling language suited for distributed systems. Types are
separated from classes, instead (behavioral) interfaces are used to type objects. Ob-
jects are concurrent, i.e., conceptually, each object encapsulates its own processor.
Creol objects can have active behavior, i.e., during object creation a designated run
method is invoked.

Creol allows for flexible object interaction based on asynchronous method calls,
explicit synchronization points, and underspecified (i.e., nondeterministic) local
scheduling of the processes within an object. Creol supports software evolution
by means of runtime class updates[13]. This allows for runtime reconfiguration of
the components. To facilitate the exogenous coordination of the components we
have extended Creol with facades and an event system (cf. Section 2.1).

The modeling language is supported by an Eclipse modeling and analysis envi-
ronment which includes a compiler and type-checker, a simulation platform based
on Maude [14], which allows both closed world and open world simulation as well
as guided simulation, and a graphic display of the simulations.

In the rest of this section, we first specify the interfaces of a local data store for
a peer syntactically. Then, we implement parts of a peer as an example.

Each peer consists of a client object, a server object and a data-store object. The
Client interface provides the user with a search operation. The data-store provides
the client object with an add operation to introduce new data and the server object
with a find operation to retrieve data. We model these two perspectives on the
data-store by two interfaces StoreClientPerspective and StoreServerPerspective.

The interfaces are structured in terms of inheritance and cointerface require-
ments. The cointerface of a method (denoted by the with keyword) is a static
restriction on the objects that may call the method. In the model, the cointerface
reflects the intended user of an interface. In Creol, object references are always
typed by interfaces. The caller of a method is available via the implicit variable
caller. Specifying a concrete cointerface allows for callbacks. Finally, method pa-
rameters are separated into input and output parameters, using in and out keywords,
respectively.
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1 interface StoreClientPerspective begin
2  with Client

3 op add(in key:Data, info:Data)

4 end

6 interface StoreServerPerspective begin
7  with Server

8 op find(in key:Data; out info:Data)
9 end

11 interface Store
12 inherits StoreClientPerspective , StoreServerPerspective
13 begin end

The interfaces cover the intra-component communication while the facades cover
the inter-component communication (cf. Section 2.1). To implement a Creol class,
we can use only the ports and events specified in the facades. Note that the use of
porta is restricted to reading from an inport or writing to an outport. Since the
inter-component communication is coordinated exogenously by the network, the
components are not allowed to alter the port bindings; instead, they have to raise
an event to request a reconfiguration of the communication network structure.

Next, we provide implementation models for the interfaces in terms of Creol
classes. The client offers a search method to the user. To perform a search, the
client makes a request to the broker. The event openCS<req, ans>(key; found) provides
the ports req and ans to be reconfigured, plus the parameters key and found. If the
data identified by key is available, the broker connects the given ports to a server
holding the data and reports via found the success of the search. Otherwise, the
ports are left unchanged and the failure is reported via found. If successful the client
expects its ports to be connected properly and communicates the data via its ports.

For simplicity, a client only operates one search at a time. Nevertheless, the user
can issue multiple concurrent search requests. The requests are buffered and served
in an arbitrary order (due to the nondeterministic scheduling policy) one at a time.

1 class ClientImp (store:StoreClientPerspective, req:outport, ans:inport)

2 inside Peer implements Client begin

4 with User op search(in key:Data out result:Data) —
5 var found : Boolean;

6 raise_event openCS<req, ans>(key; found);
7 if (found) then

8 req.write (key;);

9 ans.take (;result);

10 ! store.add(key, result)

11 end;

12 raise_event closeCS<req, ans>()

13 end

To obtain the result of the search, the client uses a synchronous call to the ans
port. The update regarding the new data is sent to the data-store asynchronously
! store.add(key, result). Using asynchronous communication the client can already con-
tinue execution while the data-store is busy processing the changes. The client is a
passive object, i.e., it does not specify a run method.

9
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The server object is active in the sense that it starts its operation upon creation
by defining the run method. It repeatedly reads data requests from its req port and
reports the results on its ans port.

1 class ServerImp (store:StoreServerPerspective, req:inport, ans:outport)

2 inside Peer implements Server
3 begin

4 op run =—

5 var key, result:Data;

6 raise_event openSS<req, ans>();
7 req.take (;key);

8 store.find (key; result);

9 ans. write (result;);

10 raise_event closeSS<req, ans>();
11 ! run ()

12 end

By raising the event openSS<req,ans>(), a server announces its availability to the
broker. This synchronous event returns whenever a request is made for some data
on this server. Having provided the ports along the event, the server object expects
to be connected to the requesting client, and reads the key to the requested data
from its req port. The server looks up the data corresponding to the key in the
data-store using the find operation. The result is sent back on the ans port. The
event closeSS announces the accomplishment of the transaction. Finally, the server
repeats the same process by calling the run method again.

3.2 Validation of the Model

Creol programs and models can be ezecuted using the rewriting mechanism in
Maude [14]. Maude offers different modes of rewriting and additional capabilities
for validation, e.g., a search command and the means for model checking. Credo
offers techniques to analyze parts of the system in isolation; on the lowest level, to
analyze the behavior of a single (active) object in isolation.

Credo also offers techniques to analyze, in a black-box manner, the behavior of
a component modeled in Creol, by interaction via message passing. This allows for
both describing and analyzing systems in a divide-and-conquer manner. Thus the
developer has the choice of developing the system bottom-up or top-down.

Although Creol allows modeling systems on a high level, the complete model
might still be too large to be analyzed or validated as a whole. By building upon
the analysis of the individual components, compositional reasoning still allows us
to validate the system.

3.2.1 Conformance Testing of the Model

In the context of the Creol concurrency model, especially the asynchrony poses
a challenge for validation and testing. Following the black-box methodology, an
abstract component specification can be given in terms of its interaction with the
environment. However, in a particular execution, the actual order of outputs is-
sued from the component may not be preserved, due to the asynchronous nature
of communication. To solve this problem, the conformance of the output to the

10



IMmMO GRABE, MOHAMMAD MAHDI JAGHOORI ET AL.

specification is checked only up-to a notion of observability [4].

The existing Creol interpreter is combined with an interpreter for the abstract
behavior specification language to obtain a specification-driven interpreter for test-
ing and validation [4]. It allows a form of run-time assertion checking of the Creol-
models, namely for compliance with the abstract specification.

We can derive a specification for an object directly from the structural inter-
faces and the behavioral interfaces. The specification of the implementation of the
ServerSide can be derived from the facade depicted in Section 2.1 and the behav-
ioral interface depicted in Section 2.2. The facade determines the direction of a
communication, i.e., whether it is incoming or outgoing communication. For the
specification the direction is inverted - the specification ‘interacts’ with the object
to analyze it. The order of the events is determined by the behavioral interface.

The specification language features, among others, choice (between communica-
tion in the same direction, i.e., incoming only or outgoing only) and recursion. As
an example, we give the specification of a server:

ws = (event register(keyList))? . rec X . (event openSS())? .
(port s.sReq(key))! . (port s.sAns(data))? .
(event closeSS())? . X

To test our executable model Serverlmpl for conformance with respect to the be-
havioral interface description, we have to translate this specification to Creol and in
the next step to Maude. The specification in Maude is executed together with the
model. We can relate the inputs and outputs of the method calls. With the data-
store at hand, we can specify via the method parameters that the data delivered
along the sAns port of the server is actually the data identified by the key. Though
this needs to be done on the level of the Maude code.

The object is executed together with the specification in a special version of
the Maude interpreter customized for the testing purpose. The programmer can
track down the reason for a problem according to the Maude execution. This can
be either a mistake in the executable model or a flaw in the behavioral model,
i.e., the specification. The interpreter reports an error if unexpected behavior is
observed, i.e., an unspecified communication from the object to the specification,
or a deadlock occurs.

3.2.2  Simulation

The conformance testing introduced in the previous section is already a simulation
of a part of the system, i.e., the object under test. We can even use a modified
version of the above testing interpreter to get rid of the error reporting. Please
note that the Maude interpreter of Creol is a set of rewrite rules which reduces the
modification of the interpreter in this case to deletion of the rules dealing with the
error reporting.

Furthermore we can use the facades and behavioral interfaces of section 2 to
derive a Creol skeleton of network. Filling in the details of the network manager
we get a Creol model of the network. With the Creol models of the components at
hand we get a Creol model of the entire system which can be executed in Maude.

11
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We can use Maude to steer the execution of the model on different levels. We
can use the different built-in rewriting strategies, use Maude’s search command
to search for an execution leading to a designated program state, or use Maude’s
meta-level to control the details of the execution by controlling the application of
the rewrite rules.

With the above simulation strategies, we can use Maude’s model-checking facil-
ities. In general, the simulation is non-deterministic, which means, that only part
of the specified behavior is covered. Therefore, the user gets to see only part of
the wished behavior, or, worse still, unwanted, erroneous behavior is missed. Using
Maude’s search facility allows to explore the search space systematically. A general
limitation of model checkers is the state space explosion, which makes larger systems
unmanageable, when it comes to model checking. By analyzing parts of the system
in isolation we reduce the state space explosion. Furthermore, Creol as a model-
ing language allows to represent the system in a high-level, abstract manner, and
concentrate on the crucial design-choices, which furthermore increases the chances
to be able to model-check such as model. The use of the Maude-implementation
based on rewriting theory finally helps in dealing with the asynchronous nature of
communication: as mentioned, the asynchronicity is represented by some form of
equivalence on the traces, which can directly be represented as equivalence in the
Maude rewriter. This allows the execution engine to more efficiently represent the
state space (by working on the normal forms instead of exploring all re-orderings
one by one).

3.2.83 Conformance Testing of the Implementation
We use a formal testing process to provide the necessary links between behavioral
interfaces, Creol models, and the actual implementation. Behavioral interfaces pro-
vide test scenarios, patterns of interactions between the components. A test case
created according to a test scenario represents a functional description, but does
not guarantee a good coverage of the model. To optimize the coverage, dynamic
symbolic execution is used to analyzes execution paths through the Creol model to
find representative test cases while avoiding redundancies in the test suite [5].
Once a test suite is created, the next step in testing is executing the tests on
the implementation and reaching a test verdict to check the conformance between
model and implementation. Testing a concurrent system involves validating both
functional and nonfunctional aspects. Functional aspects can be covered by stan-
dard techniques like runtime assertions in the implementation and unit testing. To
test the concurrency behavior of an implementation against its model we use the
observation that typically the Creol model and the implementation share a common
structure with regard to high-level structure and control flow. It is therefore rea-
sonable to assume that, given equivalent stimuli (input data), they will behave in
an equivalent way with regard to control flow. To test this assumption, the imple-
mentation is instrumented to record events and use this instrumentation to record
traces of observable events, then instrument the model to restrict its execution flow
to the recorded trace. If the model can successfully play back the trace recorded
from the implementation (and the implementation produces the correct result(s)
without assertion failures), then the test case is successful. The Creol model is used
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Fig. 6. The behavioral interface of broker modeled in timed automata

as test oracle for the execution of the test cases on the actual implementation [6].

3.8 Schedulability Analysis

In this section, we explain how to model the real-time aspects of the peer-to-peer
system using timed automata and the UppAaAL model checker [15]. An object or
component is called schedulable if it can process all its tasks in time, i.e., within their
designated deadlines. We demonstrate the schedulability analysis process [16,7] on
the broker object in the peer-to-peer model, which is the most heavily loaded entity
in this system.

In the real-time model of an object, we add explicit schedulers to object specifi-
cations. For schedulability analysis, the model of an object consists of three parts:
the behavioral interface, the methods and the scheduler.

Behavioral interface. To analyze an object in isolation, we use the behavioral
interface as an abstract model of the environment. Thus, it triggers the object meth-
ods. Fig. 6 shows the behavioral interface of the broker augmented with real-time
information. The automata in this figure are derived from the behavioral interface
of Peer (in Section 2) by removing the port operations. To send messages, we use
the invoke channel, with the syntax invoke[message][sender]| receiver |!. For specifying the
deadlines associated to a message, we use the variable deadline.

In Fig. 6, we use the open_upd and reg_upd channels to synchronize the automata
for Peer with ClientSide and ServerSide, respectively. Additionally, the automata for
ClientSide and ServerSide are synchronized on the oc.os channel; this abstractly models
the synchronization on port communication between the components in which the
broker is not directly involved. This model allows the server side of any peer to
be able to match with the client side of any peer (abstracting from the details of
matching the peers).

The confirmCS and confirmSs messages model the confirmation sent back from the
broker to the open session requests by the peers. In the implementation, this will
be an implicit reply which is therefore not modeled in the behavioral interfaces of
the peers in Section 2. These edges synchronize with the method implementations
(explained next) in order to reduce the nondeterminism in the model.

Methods. The methods also use the invoke channel for sending messages. Fig. 7
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Fig. 7. Method automata for handling openCS and register events

shows the automata implementation of two methods for handling the opencs and
register events. In openCs, and similarly in every method, the keyword caller refers to
the object/component that has called this method. The scheduler should be able
to start each method and be notified when the method finishes, so that it can start
the next method. To this end, method automata start with a synchronization on
the start channel, and finish with a transition synchronizing on the finish channel
leading back to the initial location. The implementation of the openCs method
involves sending a message confirmCS back to the sender, while the register method
is modeled merely as a time delay.

3.8.1 Checking Schedulability

When a class is instantiated as an object, an off-the-shelf scheduler can be selected
and (possibly) tailored to the particular needs of the object. For an object, one
should make a network of timed automata in UppaAL by instantiating the automata
templates for methods, behavioral interface and the scheduler. There are two con-
ditions indicating that a system is not schedulable:

(i) The scheduler receives a new message when the message queue is already full.
In theory [7], a schedulable object needs a queue length of at most [dqz/bmin |,
where d, 4, is the biggest deadline value used and b,,,;, is the smallest execution
time of all methods.

(ii) The deadline of at least one message in the queue is missed.

In either of the above cases, the scheduler automaton goes to a location called
Error. This location has no outgoing transitions and therefore causes deadlock.
Therefore, a lack of deadlock implies schedulability, as well as correct output be-
havior for the object.

Due to the high amount of concurrency in the model, model checking is of limited
use. Nevertheless, we can use the simulation feature of UppaaL [17] for analyzing
bigger systems. In simulation, we can measure the worst-case response time for
each message, which identifies a lower bound for the deadline value in a schedulable
system.

4 Conclusions

The Credo project has been successful in developing modeling and analysis tech-
niques addressing highly reconfigurable distributed systems. In this paper, we de-
scribed when and how to use these tools and techniques at the design stage of a
software development process. At a high level of abstraction, the dynamic connec-
tions between the components are modeled using data-flow networks and verified,
e.g., for absence of deadlock. Then an abstract object-oriented model of the im-
plementation is devised in Creol, which has an executable formal semantics. This
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model can be used for further analysis of functional as well as non-functional proper-
ties, e.g., schedulability. The conformance between the object-oriented and dataflow
models as well as the conformance between an implementation in a programming
language and the Creol model is tested.

The process described in this paper can be integrated in the existing software
development methodologies which support component-based modeling, and thus
enhance them with support for formal modeling and analysis of dynamically re-
configurable distributed systems. In future, we intend to broaden the scope of the
Credo modeling language and its corresponding tool suite in order to support the
full development life-cycle of large-scale, open systems. This involves, on one hand,
integrating models of software architecture into the process; and on the other hand,
working further on deployment concerns such as scheduling.
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