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Abstract

Testing and verification of asynchronously communicating objects in open environments are challenging
due to non-determinism. We explore a formal approach for black-box testing by proposing an interface
specification language that gives an assumption-commitment style description of an object’s behavior. The
approach is applied to Creol objects. Creol is a high-level, object-oriented modelling language, hence we do
model-based testing of behavioral models. The testing is done by synchronising execution of a specification
and the component under test. Due to the asynchronous nature of communication, testing should be done
up-to observational equivalence. This leads to a large increase in the reachable state space for the test cases.
We reduce the state space by using facilities for rewriting modulo AC (associativity and commutativity)
built into the rewriting logic system Maude, and explore the state space by breadth first search. We present
experimental results that show the usefulness of this approach.

Keywords: Testing and verification, asynchronous method calls, active objects, rewriting logic, formal
semantics.

1 Introduction

Systematic testing is indispensable to assure reliability and quality of software and

systems. Hosts of different testing approaches and frameworks have been proposed

and put to (good) use over the years. Formal methods and program language theory

have proven valuable to render testing practice a more formal, systematic discipline

(cf. e.g. [16,2]). Formal approaches to testing have gained momentum in recent

years, as for instance witnessed by the trend towards model-based testing [12,4].

In previous work [19] we presented a formal approach for black-box specification-

based testing of asynchronously communicating components in open environments

together with an implementation of a testing framework. In this paper we show

how to extend the approach to verification of components and present experimental

results that show the usefulness of our approach.
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We do this in the context of Creol [11,27], a high-level, object-oriented modelling

language for distributed systems. Object-orientation is a natural choice, as object

modelling is the fundamental approach to open distributed systems as recommended

by RM-ODP [24]. For such systems an asynchronous communication model is

advantageous as it decouples caller and callee thus avoiding unnecessary waiting

for method returns. On the downside, asynchronicity makes verifying and testing

models more challenging. In an asynchronous system, communication delays due

to the network or to queuing may lead to message overtaking and the resulting

non-determinism leads to a state space explosion.

It is generally accepted that the way to tackle complex systems is to “divide-and-

conquer”, i.e., consider components interacting with their environment. Abstracting

from internal executions, the black-box behavior of Creol components is given by

interactions at their interface. We use a concise language over communication labels

to specify components and the expected behavior of a component is given as a set

of traces at the interface. Both input and output interactions are specified but play

quite different roles. As input events are not under the control of the object, in-

put is considered as assumptions about the environment whereas output describes

commitments of the object. This separation of concerns between interaction un-

der the control of the component and coming from the environment leads to an

assumption-commitment style specification of a component’s behavior by defining

the valid observable output behavior, assuming a certain scheduling.

For input interactions, we ensure that the specified assumptions on the environ-

ment are fulfilled by scheduling the incoming calls in the order specified, while for

output events, which are controlled by the component, we test that the events occur

as specified. Scheduling and testing of a component are done by synchronizing the

component’s execution with the specification. As a result, the scheduling is enforced

in the execution of the component and the actual outgoing interactions from the

component are tested against the output events in the specification. This gives a

framework for testing whether an implementation of a component conforms with

the interface specification. Incorrect or nonconforming behavior of the component

under a given scheduling is reported as an error by the testing framework.

Due to message delays and overtaking, the order in which outgoing messages

from a component are observed by an external observer does not necessarily reflect

the order in which they were actually sent. Testing is based on behavior observable

at the interface, and the order of outgoing communication should therefore not affect

the test results. The operational semantics of the specification language takes the

asynchronous nature of the communication model into consideration by treating

certain reorderings of output events as observationally equivalent, and testing is

done up-to observational equivalence.

Reordering of output events can be expressed by defining sequences of out-

put events as associative and commutative. We argue that our testing framework

is especially well suited to implement this since, using the rewriting logic system

Maude, associativity and commutativity can be declared using equational attributes

[9] which allows efficient evaluation of such specifications.

This paper extends [19] which introduced and gave the formal basis for the

approach to testing that we explore further here, the main contributions are:
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Verification We provide an implementation in the rewriter Maude and use Maude’s

search functionality for state exploration (for rewriting modulo AC) for verifica-

tion of components and investigate how the support for AC reasoning built in

into Maude contributes to state space reduction in verification of asynchronously

communicating components.

Experimental results We present experimental results from using the Maude

rewriting tool which give empirical evidence of the benefits of our method. We

compare, in two series of experiments, the influence on the state space of us-

ing Maude’s built in AC support against explicit representation of all possible

reorderings of output events. Using AC rewriting may considerably reduce the

resource consumption when testing asynchronously communicating objects. AC

rewriting significantly pays off in terms of time and the number of rewrites.

We review the formalisation of Creol in Sect. 2, some technicalities from the pre-

vious paper are repeated when necessary. The corresponding behavioral interface

specification language and an explanation of how this is used for testing are given

in Sect. 3. In Sect. 4, we describe the executable implementation of the theory. The

experimental results are in Sect. 5.

2 The Creol modeling language

We formalise Creol, a high-level, object-oriented modelling language for distributed

systems, Creol features active objects and asynchronous method calls.

In contrast with object-oriented languages based on multi-threading, such as

Java or C#, the language features active objects. The unit of activity is the ob-

ject; every process belongs to an object, and activity does not cross object borders.

Communication is based on exchanging messages asynchronously, and is asymmet-

ric in the sense that there are linguistic means to send a message, but not to accept

a message: objects are always input-enabled. On the callee side of a method call

therefore each object possesses an input “queue” in which incoming messages are

waiting to be served by the object. To avoid uncontrolled interference, each object

acts as a monitor ; at most one method body is executing at each point in time.

By default the choice of which method call in the input queue that enters the ob-

ject next is non-deterministic. After the abstract syntax, we sketch the operational

semantics, concentrating on the external behavior, i.e., the message exchange with

the environment.

2.1 Syntax

The abstract syntax, in the style of standard object calculi, is given in Tab. 1.

Names n represent references to classes, to objects, and to threads. To facilitate

reading, we allow ourselves to write o and its syntactic variants for names referring

to objects, c for classes, and n when being unspecific. A component C is a collection

of classes, objects, and (named) threads, with 0 representing the empty component.

The sub-entities of a component are composed using the parallel-construct ‖. The

entities executing in parallel are the named threads n〈t〉, where t is the code being

executed and n the name of the thread. The name n of the thread is at the same
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C ::= 0 | C ‖ C | ν(n:T ).C | c[(F, M)] | o[c,F, L] | n〈t〉 component

F ::= l = f, . . . , l = f fields

M ::= l = m, . . . , l = m method suite

m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method

f ::= ς(n:T ).λ().v | ς(n:T ).λ().⊥n′ field

t ::= v | stop | let x:T = e in t thread

e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.

| v@l(v) | v.l(v) | v.l() | v.l := ς(s:T ).λ().v

| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values

L ::= ⊥ | ⊤ lock status

Table 1
Abstract syntax

time the future reference under which the result value of t, if any, will be available.

In this paper we restrict ourselves to the situation where the component consists

of one object only, plus arbitrary many threads. A class c[(F,M)] carries a name c

and defines its fields and methods in F and M . An object o[c, F, L] with identity

o keeps a reference to the class c it instantiates, stores the current value F of its

fields, and maintains a binary lock L indicating whether any code is currently active

inside the object (in which case the lock is taken) or not (in which case the lock is

free). The symbols ⊤ and ⊥ indicate that the lock is taken or free respectively.

The named threads n〈t〉 are incarnations of method bodies “in execution”. Each

thread belongs to one specific object “inside” which it executes, i.e., whose instance

variables it has access to. Built in object locks are used to rule out unprotected

concurrent access to the object states: Though each object may have more than

one method body incarnation partially evaluated, at each time point at most one

of those bodies (the lock owner) can be active inside the object. The ν-operator is

used for hiding and dynamic scoping, as known from the π-calculus.

Besides components, the grammar specifies the lower level syntactic constructs,

in particular, methods, expressions, and (unnamed) threads, which are basically

sequences of expressions. The further expressions claim, get, suspend, grab, and

release deal with synchronization. They take care of releasing and acquiring the

lock of an object appropriately. All of the features and their representation is

pretty standard and (apart from the communication via method calls) not visible

at the interface, we omit further details here and refer to the technical report [20].

2.2 Operational semantics

The operational semantics of a program being tested is given in two stages: steps

internal to the program, and those occurring at the interface.

The internal rules deal with steps not interacting with the object’s environment,

such as sequential composition, conditionals, field look-up and update, etc. The

rules are standard and we omit them here. More interesting and relevant are the

“external” rules which describe the interaction of a component with its environ-

ment, by exchanging communication labels. The communication labels, the basic

building blocks of the interface interactions, are given in Tab. 2. A component

or object exchanges information with the environment via call- and return-labels,

and the interactions is either incoming or outgoing (marked ? resp. !). The label
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n〈call o.l(v)〉 represents a call of method l in object o. In that label, n is a name

identifying the thread that executes the method in the callee and is therefore the

(future) reference under which the result of the method call will be available (if

ever) for the caller. The incoming label n〈return(v)〉? hands the value from the

corresponding call back to the object, which renders it ready to be read. Its coun-

terpart, the outgoing return, passes the value to the environment. Besides that,

labels can be prefixed by bindings of the form ν(n:T ) which express freshness of the

transmitted name, i.e., scope extrusion. .

The interface behavior is given by rules as those of Tab. 3 (we show 2 of the

four rules, dealing with incoming communication, the missing 2 for outgoing com-

munication are similar). The external steps are given as transitions of the form

Ξ ⊢ C
a
−→ Ξ́ ⊢ Ć, where Ξ and Ξ́ represents the assumption/commitment contexts

of C before and after the step, respectively. In particular, the context contains the

identities of the objects and threads known so far, and the corresponding typing

information. This information is checked in incoming communication steps, and up-

dated when performing a step (input or output). These two operations are captured

by the following notation

Ξ ⊢ a : T and Ξ + a (1)

which constitute part of the rule premises in Tab. 3. Intuitively, they mean the

following: label a is well-formed and well-typed wrt. the information Ξ and refers

to an asynchronous call which results in a value of type T . The right-hand notation

of (1) extends the binding context Ξ by the bindings transmitted as part of label

a appropriately. For lack of space, we omit the formal definitions here. Intuitively,

they make sure that only well-typed communication can occur and that the context

is kept up-to date during reduction. Rule CallI deals with incoming calls, and

basically adds the new thread n (which at the same time represents the future

reference for the eventual result) in parallel with the rest of the program. The

notation M.l(o)(v) represents the parameter passing of the actual values to the

γ ::= n〈call n.l(v)〉 | n〈return(n)〉 | ν(n:T ).γ basic labels

a ::= γ? | γ! input and output labels

Table 2
Structured communication labels

a = ν(Ξ′). n〈call o.l(v)〉? Ξ ⊢ a : T Ξ́ = Ξ + a
CallI

Ξ ⊢ C ‖ o[c, F,⊥]
a
−→ Ξ́ ⊢ C ‖ o[c, F,⊤] ‖ n〈let x:T = M.l(o)(v) in release(o); x〉

a = ν(Ξ′). n〈return(v)〉? Ξ ⊢ a : ok Ξ́ = Ξ + a
RetI

Ξ ⊢ C
a
−→ Ξ́ ⊢ C ‖ n〈v〉

Table 3
External steps
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method body t, where s is the “self”-parameter, which is substituted by the identity

o of the callee. We write Ξ1 ⊢ C1
t

=⇒ Ξ2 ⊢ C2 if Ξ1 ⊢ C reduces in a number of

internal and external steps to Ξ2 ⊢ C2, exhibiting t as the trace of the external

steps.

3 A behavioral interface specification language

The behavior of an object in a particular execution is, at the interface, described

by a sequence of labels as given by Tab. 2. The black-box behavior of an object

can therefore be described by a set of traces, each consisting of a finite sequence

of labels. This would be the same also for a component consisting of a set of

objects, for that matter. To specify sets of label traces, we employ a simple trace

language with prefix, choice and recursion. Table 4 contains its syntax. The syntax

of the labels in the specification language, naturally, quite resembles the labels of

Tab. 2. Comparing Tabs. 2 and 4, there are two differences: first, instead of names

or references n, the specification language here uses variables. Second, the labels

here allow a binding of the form (x:T ).γ, which has no analog in Tab. 2; the form

ν(x:T ).γ corresponds to ν(n:T ).γ, of course. Both binding constructs act as variable

declarations, with the difference that ν(x:T ).γ not just introduces a variable, but

in addition asserts that the names represented by that variable must be fresh. The

binding (x:T ).γ corresponds to a conventional variable declaration, introducing the

variable x which represents arbitrary values.

The grammar given in Tab. 4 allows to specify sets of traces. Not all specifica-

tions, however, are meaningful. We rule out ill-formed specifications by introducing

restrictions on: typing: Values handed over must correspond to the expected types

for that methods; scoping: Variables must be declared before their use; and com-

munication patterns: No value can be returned before a matching outgoing call has

been seen at the interface. In addition we take care to consider the polarity of the

specification. In the specification, it is important to distinguish between input and

output interactions, as input messages are under the control of the environment,

whereas the outputs are to be provided by the object as specified. This splits the

specification into an assumption part under the responsibility of the environment,

and a commitment part, controlled by the component. To specify non-deterministic

behavior, the language supports a choice operator, and we distinguish between

choices taken by the environment—external choice—and those the object is respon-

sible for—internal choice. Especially, we do not allow so-called mixed choice. Cf.

[20] for details about the formalization of these restrictions, presently just note that

it is required that specifications are well-formed, and Ξ ⊢ ϕ : wf p stands for the

corresponding judgment. The metavariable p (for polarity) stands for either ?, !, or

γ ::= x〈call x.l(x)〉 | x〈return(x)〉 | ν(x:T ).γ | (x:T ).γ basic labels

a ::= γ? | γ! input and output labels

ϕ ::= X | ǫ | a . ϕ | ϕ + ϕ | rec X.ϕ specifications

Table 4
Specification language
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Eq-Switch

ν(Ξ) . γ1! . γ2! . ϕ ≡obs ν(Ξ) . γ2! . γ1! . ϕ

⊢ (ϕ1 + ϕ2) : wf !

Eq-Plus

γ! . (ϕ1 + ϕ2) ≡obs γ! . ϕ1 + γ! . ϕ2

rec X.ϕ ≡obs ϕ[rec X.ϕ/X] Eq-Rec

Table 5
Observational equivalence

?!, where ?! indicates the polarity for an empty sequence or for a process variable,

and ? and ! indicate well-formed input and output specifications respectively.

3.1 Observational blur

Creol objects communicate asynchronously and the order of messages might not be

preserved during communication. The order observed by an external observer or

tester does not necessarily reflect the order in which the messages were sent, there-

fore an observed “wrong” order of communication should not be taken to be an error

and we must relax the specification up-to some appropriate notion of observational

equivalence, denoted by ≡obs and defined by the rules of Tab. 5. Note that the pur-

pose is not to reconstruct some “correct” order of communication. When testing

a component, we control the communication, the test specification and framework

plays the role of both environment (generating input to the CUT) and observer

(controlling output), but want to retain the external perspective in order to test

up-to observability. When testing a given object, we specify the order in which the

inputs are consumed by the object, rather than the time they have been generated.

In this way we specify the input scheduling of the object, which makes our speci-

fications more expressive than in the case of blurring input. At the same time, we

specify the outputs of the object as seen from the environment. We therefore blur

the output, but not the input. This setting allows synchronous parallel composition.

Input blur may be beneficial in other settings, and has e.g. been applied in a rea-

soning system [14] for Creol based on Hoare logic. In the presented compositional

reasoning system, message generation is considered observable, but not messages

consumption. Hence, in that system, input is blurred, but not output.

Rule Eq-Switch captures the asynchronous nature of communication, in that

the order of outgoing communication does not play a role. Rule Eq-Plus allows

to distribute an output over a non-deterministic choice. Rule Eq-Rec expresses

the standard unrolling of recursive definitions. The operational semantics of the

specification language is straightforward reduction.

3.2 Asynchronous testing of objects

Table 6 defines the interaction of the interface specification, ϕ, with the component,

basically by synchronous parallel composition. Both ϕ and the component must

engage in corresponding steps, which, for incoming communication schedules the

order of interactions with the component whereas for outgoing communication the

interaction will take place only if it matches an outgoing label in the specification
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Ξ ⊢ C
τ
−→ Ξ ⊢ Ć

Par-Int

Ξ ⊢ C ‖ ϕ −→ Ξ ⊢ Ć ‖ ϕ

⊢ a .σ b

Ξ1 ⊢ C
a
−→ Ξ́1 ⊢ Ć Ξ1 ⊢ ϕ

b
−→ Ξ́2 ⊢ ϕ́

Par

Ξ1 ⊢ C ‖ ϕ −→ Ξ́1 ⊢ Ć ‖ ϕ́σ

Ξ ⊢ ϕ : wf ?

Err-Call

Ξ ⊢ ν(Ξ′).(C ‖ n〈let x:T = o.l(v) in t〉 ‖ ϕ) −→  

Ξ ⊢ ϕ : wf ?

Err-Ret

Ξ ⊢ ν(Ξ′).(C ‖ n〈v〉 ‖ ϕ) −→  

Table 6
Parallel composition

and an error is raised if input is required by the specification. The component

can proceed on its own via internal steps (cf. rule Par-Int). Rule Par requires

that, in order to proceed, the component and the specification must engage in the

“same” step, where ϕ’s step b is matched against the step a of the component. Here

⊢ a .σ b states that there exist a substitution σ such that the label a produced

by the component and the label b specified by the interface description can be

matched. Note that after a successful application of the Par rule, variables in the

specification may have been substituted with concrete values. We omit the details

of the matching and refer to the technical report [20]. The rules Err-Call and

Err-Ret report an error if the specification requires an input as the next step and

the object however could do an output, either a call or a return. In the rule  

indicates the occurrence of an error. Note that the equivalence relation, according

to the rule Eq-Switch, allows the reordering of outputs, but not of inputs.

4 A specification-driven interpreter for Creol

The operational semantics of Creol is formalized in rewriting logic [31] and exe-

cutable on the Maude rewriting engine [8], this gives an interpreter for Creol. Our

executable framework for testing Creol components includes: the specification lan-

guage formalized in rewriting logic and a modified version of the Creol interpreter.

We obtain a specification-driven interpreter for testing by synchronizing the com-

munication between specification terms and objects. Input to the component is

generated non-deterministically within the bounds of the specification, and at the

same time it is tested that the output behavior of the object conforms to the spec-

ification, the internal activity is unmodified compared to the standard interpreter.

The default behavior for Creol is to place incoming method calls into the callee’s

input queue from which calls are non-deterministically selected for execution. For

the specification-driven interpreter if an incoming call is specified and the lock of

the object is free the corresponding method code should start executing immedi-

ately. In the implementation the incoming messages are generated directly from the

specification.

Standard simulation of a Creol model in Maude is achieved by rewriting an in-

tial model configuration together with the interpreter. Maude’s search command

may also be used to search for specific result configurations. For testing a compo-

nent, instead of using the initial configuration as input, we extract from the model

one object and its class definitions. This becomes the component under test (CUT).
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The CUT, its specification and the modified interpreter is then rewritten by Maude.

Thus specific behavioral properties of selected objects from a large model may be

tested. A standard Creol state configuration (Cfg) is a multiset of objects, classes,

and messages and the Maude rewrite rules for transitions are of the form rl Cfg =>

Cfg’. For the specification-driven interpreter, we introduce terms Spec for specifi-

cations and add rules on the form (Spec || O) Cfg => (Spec’ || O’) Cfg’ to

test the object O with respect to Spec, where || represents the synchronous parallel

composition. Each rule evolves the state of a specification and the state of an object

in a synchronized manner: an interaction only takes place when it matches a com-

plementary label in the specification. E.g., the Par rule in Tab. 6 is implemented

by several Maude rules for the different kinds of communication events that may

occur. We refer the reader to [19] for some examples.

In the implementation, we define associative and commutative (AC) output pre-

fixes by declaring the prefix operator to be AC in the cases where an output label

is prefixed to an output specification. Together with a Maude rule that imple-

ments distribution over choice (the rule Eq-Plus above), this enables the testing

framework to do testing up-to observational equivalence.

5 Experimental results

This section describes two series of experiments, using the implementation sket-

ched in the previous section. The experiments demonstrate the usefulness of the

approach: using AC rewriting may considerably reduce the resource consumption,

when testing asynchronously communicating objects. AC rewriting significantly

pays off in terms of time and the number of rewrites. With regards to the state

space, the effects are not so definite.

The first example is tailor-made to show the effects for a simple component. The

second example is an abstracted version of the “loan quote example” known from the

area of enterprise application integration [23]. The examples also illustrate how to

use the interface specification language for testing component behavior and how to

employ model checking via the search command of Maude to also achieve verification

of a component with a trace specification. When using the search command, Maude

not just explores one trace, but explores the set of behaviors given by the component

together with the interface trace description. That the system in general explores

a set of traces, as opposed to just one, has the following reasons: first, exploring a

trace (trivially) means exploring all prefixes; that, of course, does not only apply to

using Maude’s search, but to simple rewriting as well. Second, the specification may

contain non-determinism (besides the fact that also the component may behave non-

deterministically). Finally, and most important in our context, one trace is always

meant up-to the “observational blur”, as specified in Tab. 5.

To measure the effect of AC rewriting, both series of experiments are carried out

two times, either with AC rewriting switched on, or else off. When AC equivalence

on the specification is switched off, we use an equivalent but expanded version of

the specification to compare the results.

In the first example, the component under test consists of one object with n

methods m1 through mn. The specification prescribes that all methods must have
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been called before any method may return. In Creol this is implemented by com-

bining processor release points and await guards [27]. The behavioral specification

for 3 methods reads:

ϕc3 = n1〈call c.m1(x1)〉? . n2〈call c.m2(x2)〉? . n3〈call c.m3(x3)〉? .

(n1〈return(y1)〉! . n2〈return(y2)〉! . n3〈return(y3)〉!) . ǫ

A test is executed by giving the Maude command: rew (ϕc3 || c) cClass .,

where c represents the Creol object. Maude rewrites the configuration, either re-

sulting in an error reported when the component is about to execute an unspecified

output, or stopping when no more rules apply. In the latter case, if the original

specification is fully consumed this gives evidence that the component conforms to

the specification, in the sense that test execution of c only leads to output foreseen

by the specification ϕc3. This conformance relation is similar to the input-output

conformance relation (ioco) of [35].

Definition 5.1 Let out(ϕ after t) represent the set of all possible output events

that is specified by ϕ after execution of the trace t. Let out(c after t) represent the

set of possible output events for the component c after execution of t. Let traces(ϕ)

be the set of traces that the specification designates. Our conformance relation conf

is defined as follows:

c conf ϕ ⇔def ∀t ∈ traces(ϕ) : out(c after t) ⊆ out(ϕ after t)

Depending on the internal interleaving of the threads initiated by the method

calls, different outcomes are possible. Maude’s search command can be used to do

a breadth first search for error configurations in the reachable state space:

search in PROGRAM : ϕc3 || c cClass =>+

ϕ || conf errorMsg(S:String) .

By altering the order of the input labels in the specification, we can easily check

how different scheduling of input affect the execution of the object. E.g., a search

for error states from a specification ϕ′
c3 where the order of calls are to m1,m3, and

m2 gives no solutions, which means that with the methods called in this order, the

component cannot fail to conform to the specification.

The two series of data, plotted in Fig. 1, show the time needed for exploring

the state space with or without AC rewriting, where n is the number of methods.

The figures show that with AC rewriting the increase in number of rewrites is

considerably less than using the equivalent, expanded version of the specification.

In the second example, a broker acts as an intermediary between a client and

several providers of some service (cf. [23]). Initially we consider a broker that after

being requested to do so by a client queries a fixed number of providers for a (price)

quote and returns an answer to the client giving the best alternative found. A

specification for a broker querying two service providers can be given as:

ϕb = nc1〈call b.getP (x)〉? .

(n1〈call p1.getQ(x)〉! . n2〈call p2.getQ(x)〉! ) .

n1〈return(v1)〉? . n2〈return(v2)〉? . nc1〈return(v)〉! . ǫ.
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n ms CPU time
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3 16 47

4 38 379

5 198 1.498

6 1.030 6.782

7 5.407 49.311

8 27.894 NA

9 153.316 NA

Fig. 1. Validation of c with and without AC rewriting.

Note that whereas the previous example illustrated generation of incoming calls to

the component and testing of outgoing returns from the component, this example

also includes testing of outgoing calls, and generation of incoming returns. For

incoming returns, the test framework generates pseudo-random, type correct return

values. For this specification a broker component would be non-conforming if it

were to call the providers before receiving a call from the client and also if it were

to return the initial call from the client before finishing its interaction with the

providers.

In an open setting, the number of providers that a broker knows is likely to

change over time, hence we assume that a broker will be notified by new providers

and establish connections with them as well as losing connections with others. A

further developed version of the broker supports this by allowing the client to give

the number of providers that the broker must query before giving a response as a

parameter to the call to the method getP. The method getP now takes two param-

eters, the name of the service for which a quote is requested, and the number of

providers the broker should contact. To validate the behaviour of this new broker

we use a series of specifications on the following form

ϕbk = nc1〈call b.getP (x, k)〉? .

(provider registration) .

(n1〈call p1.getQ(x)〉! . . . . . nk〈call pk.getQ(x)〉! ) .

n1〈return(v1)〉? . . . . . nk〈return(vk)〉? . nc1〈return(v)〉! . ǫ ,

where k is the number of providers. Figure 2 plots the times of AC rewriting,

resp. explicit rewriting against k.

6 Conclusion

We have presented a formalization of a concurrent object-oriented language and

a behavioral specification language, for testing and validation of asynchronously

communicating objects. Potential reorderings of communication events occur due

to network properties. Our approach describes one way to deal with such situ-

ations, namely by defining rewriting specifications modulo AC for output events.

One advantage of this approach is that we can define precisely the scheduling of
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Fig. 2. Validation of the broker component

input, and test internal synchronization properties of the object. When evaluating

our approach by experimental case studies we get evidence that using modulo AC

rewriting enable us to cover more extensive test cases than we could do otherwise.

Testing of Creol models is relevant also for testing of implementations in lan-

guages like C or Java: First indirectly, since many forms of non-determinism inher-

ent in distributed system can be formalized by means of associativity and commu-

tativity, our results are relevant also for other languages with asynchronous com-

munication, and for alternative definitions of observational equivalence. Second,

and more directly, in [22] and [1] it is shown how different testing techniques can

be employed to check for conformance between a Creol model and an industrial

distributed system implemented in C. In [22] the technique of dynamic symbolic

execution is used to test for conformance between the Creol model and the imple-

mentation. Using the same case study, the authors of [1] show how to instrument

existing Creol models for testing. Aspect-C is used to insert event recording points

into the existing code of the SuT. The model is likewise instrumented with syn-

chronisation points. A tester process is used to replay the recorded events in the

model and synchronises with events recorded by the tester, only allowing the model

to proceed beyond synchronisation points if the corresponding event was recorded

in the SuT. Thus conformance of implementation and Creol model may be verified.

Combining these methods with our method for verification of conformance between

the Creol model and the specification yields a method for conformance testing of

implementations against a specification.

6.1 Related work

Systematic testing is indispensable to assure quality of software and systems. [6]

presents an approach to integrate black-box and white-box testing for object-oriented

programs. Equivalence is based on the idea of observably equivalent terms and fun-

damental pairs as test cases, but not in an asynchronous setting.

Godefroid et.al. [18] describe how state-space reductions can be achieved for

input sequences in the context of constraint-based programming languages. A test

algorithm is proposed which systematically generates all possible behavior by se-

lecting input events non-deterministically from a predefined set. By exploiting the

inability of constraint languages to observationally distinguish permutations of un-
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ordered sets of inputs, the combinatorial explosion is reduced, and a significantly

more effective test algorithm is presented. A main difference from our approach is

that the reduction in the state space is derived from the structure of the constraint-

program itself and not from commutativity of the communicated events. The testing

process is driven by the state-space exploration tool VeriSoft [17].

The paper [13] describes compositional analysis based on combining compo-

nents with specifications. Also here VeriSoft is used for bounded model checking of

assume/guarantee specifications, built-in partial order reduction contributes to effi-

ciency of the analysis. However, both the object interaction model, shared variables,

and the specifications, invariant based, using Hoare logic, differ from ours.

In [3] assumptions are used as environments to drive individual components for

unit testing. LTSs are used to model the behavior of components. An interesting

feature of this work, absent in ours, is techniques for automatic generation of exactly

the assumptions that a component needs to make about the environment for some

property to hold.

Testing for concurrent object-oriented programs based on synchronization se-

quences is investigated in [7], using Petri nets and OBJ as foundation. In his thesis

[29], Long presents ConAn (“concurrency analyser”), which generates test drivers

from test scripts. The method allows to specify sequences of component method calls

and the order in which the calls should be issued (see also [30,33]). For scheduling

the intended order, an external clock is used, introduced for the purpose of test-

ing. The NModel-framework, comprehensively covered in [25], offers model-based

analysis and model-based testing for C#, where abstract models, generally speak-

ing transition systems, of object-oriented programs are used for testing. Related

and likewise developed at Microsoft is the Spec Explorer approach (and its prede-

cessor AsmLT), a tool for testing reactive, object-oriented programs. Underlying

the model programs, given e.g., in the Spec# specification language, are “model

automata” which can be seen as a combination of interface automata and abstract

state machines (ASMs), and which are used for test case generation. Dealing with

non-determinism, the models separate observable and controllable actions, similar

as we distinguish between inputs and output actions in our specification language.

Relying on game theoretic foundations, their notion of conformance is based on al-

ternating simulation, not on comparing traces, as in this work. To cope with large

and potentially infinite state spaces, Spec Explorer uses different abstraction and

pruning techniques. One is based on building a quotient of the model automaton by

identifying states which are considered equivalent (“state groupings”, cf. [21] and

[5]). These state groupings correspond to predicate abstraction known from model

checking and serve a similar purpose as the observable equivalence presented here.

I.e., the are used to reduce the state space, but are user-given and not specifically

capturing observably equivalent states due to asynchronous communication. For a

thorough discussion of Spec Explorer and links to further results in that context,

see [37].

Another well-established approach for functional testing is input/output con-

formance testing (ioco for short) [34,35]. Ioco is based on input-output transition

systems, our conformance relation is closely related. Component-based testing and

testing in context, using the ioco test theory, are studied in [36]. A number of
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test-tools are based on variants of the ioco test theory, such as TGV, TestGen,

and TorX. In the context of ioco testing, [15] uses symbolic transition systems to

counter the state explosion problem. Unit testing framework for actors, i.e., active

concurrent objects, is presented in [10], using the discrete event based simulation en-

vironment OPNET. Validation of component interfaces specified in rewriting logic is

the subject also of [26]. [32] considers Creol and investigates how different schedul-

ing of object activity restrict the behavior. The focus is on intra-object scheduling,

and on test purposes as assertions on the internal state of the object. This is in

contrast to our focus on the interface communication.

6.2 Future work

Creol has successfully been used to model complex and highly dynamic communi-

cation systems, e.g. wireless sensor networks in [28], where the Ad hoc On-Demand

Distance Vector (AODV) routing algorithm is used as a case study. ASK is an

industrial size multi-threaded, asynchronous application for connecting people. A

substantial part of ASK has been modelled in Creol [1]. Both these models are com-

plex. The similarity of Creol and an object-oriented programming language, and

Creol’s expressiveness allow for models that are structurally close to the AODV

algorithm resp. the ASK system itself. This leads to a need for testing the models.

We are currently working on applying our method for model-based testing of Creol

models to the AODV model.
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