
Safe Commits for Transactional Featherweight Java?

Thi Mai Thuong Tran and Martin Steffen
Department of Informatics, University of Oslo, Norway

Abstract. Transactions are a high-level alternative for low-level concurrency-
control mechanisms such as locks, semaphores, monitors. A recent proposal for
integrating transactional features into programming languages is Transactional
Featherweight Java (TFJ), extending Featherweight Java by adding transactions.
With support for nested and multi-threaded transactions, its transactional model
is rather expressive. In particular, the constructs governing transactions —to start
and to commit a transaction— can be used freely with a non-lexical scope. On
the downside, this flexibility also allows for an incorrect use of these constructs,
e.g., trying to perform a commit outside any transaction. To catch those kinds of
errors, we introduce a static type and effect system for the safe use of transactions
for TFJ. We prove the soundness of our type system by subject reduction.

1 Introduction

With CPU speeds and memory capacities ever increasing, and especially with the advent
of multiprocessor and multi-core architectures, effective parallel programming models
and suitable language support are in need to take full advantage of the architectural ad-
vances. Transactions, a well-known and successful concept originating from database
systems, have recently been proposed to be directly integrated into programming lan-
guages. As known from databases, transactions offer valuable safety and failure guar-
antees: atomicity, consistency, isolation, and durability, or ACID for short. Atomicity
means that the code inside a transaction is executed completely or not at all, consis-
tency that all transactions have the same “view” on shared data, isolation says that
when a transaction is running, other transactions cannot interfere, and durability states
successfully committed changes are persistent. One characteristic difference of transac-
tions compared to locks is a non-blocking behavior. All threads/transactions may run in
parallel provided that they guarantee the mentioned ACID properties. As a result, trans-
actional programming languages may make better use of parallelism and resources in
concurrent systems, and may avoid also deadlock situations.

As mechanism for concurrency control, they can be seen as a high-level, more ab-
stract, and more compositional alternative to more conventional means for concurrency
control, such as locks, semaphores, monitors, etc. How to syntactically capture transac-
tional programming in the language may vary. One option is lexical scoping, e.g., us-
ing an atomic keyword, similar to the synchronized keyword in Java for lock-handling.
More flexible is non-lexical scoping, where transactions can be started and finished (i.e.,
committed) freely. One proposal supporting non-lexical scoping of transaction handling

? The work has been partly supported by the EU-project FP7-231620 HATS (Highly Adaptable
and Trustworthy Software using Formal Methods).

2

is Transactional Featherweight Java (TFJ) [15]. In the free use of the transactional con-
structs, it resembles also the way Java 5.0 allows for lock handling (using the lock and
unlock methods via the Lock-interface). The start of a transaction in TFJ programs is
marked by the onacid keyword and the end by the commit keyword. The transactional
model of TFJ is quite general and supports nested transactions which means a transac-
tion can contain one or more child transactions, which is very useful for composability
and partial rollback. Furthermore, TFJ supports multi-threaded transactions, i.e., one
transaction can contain internal concurrency. To commit an entire transaction, all child
transaction must have committed and the child threads and the thread itself must com-
mit at the same time. The flexibility of non-lexical use of onacid and commit comes
at a cost: not all usages of starting and committing transactions “make sense”. In par-
ticular, it is an error to perform a commit without being inside a transaction; we call
such an error a commit error. In this paper, we introduce a static type and effect system
to prevent these errors by keeping track of starting and committing transactions. The
static analysis is formulated as a type and effect system [18]. We concentrate on the
effect part, as the part dealing with the ordinary types works in a standard manner and
is straightforward. See [20] for details.

The paper is organized as follows. After Section 2, which recapitulates the syntax
and the operational semantics of the calculus, Section 3 defines the effect system to
prevent commit errors. The soundness of the type system relative to the given semantics
is shown in Section 4. Section 5 concludes with related and future work. In particular
we draw some parallel to the lock handling in Java 5.

2 An object-oriented calculus with transactions

Next we present the syntax and semantics of TFJ. It is, with some adaptations, taken
from [15] and a variant of Featherweight Java (FJ) [13] extended with transactions and
a construct for thread creation. The main adaptations are: we added standard constructs
such as sequential composition (in the form of the let-construct) and conditionals. Be-
sides that, we did not use evaluation-context based rules for the operational semantics.

2.1 Syntax

FJ is a core language originally introduced to study typing issues related to Java, such as
inheritance, subtype polymorphism, type casts. A number of extensions have been de-
veloped for other language features, so FJ is today a generic name for Java-related core
calculi. Following [15] we include imperative features such as destructive field updates,
further concurrency and support for transactions. Table 1 shows the abstract syntax
of TFJ. A program consists of a number of processes/threads t〈e〉 running in parallel,
where t is the thread’s identifier and e is the expression being executed.. The syntac-
tic category L captures class definitions. In absence of inheritance, a class class C{~f :
~T ;K; ~M} consists of a name C, a list of fields ~f with corresponding type declarations ~T
(assuming that all fi’s are different), a constructor K, and a list ~M of method definitions.
A constructor C(~f :~T){this.~f := ~f} of the corresponding class C initializes the fields of

3

P ::= 0 | P ‖ P | t〈e〉 processes/threads
L ::= class C{~f : ~T ;K; ~M} class definitions
K ::= C(~f : ~T){this.~f := ~f} contructors
M ::= m(~x:~T){e} : T methods
e ::= v | v. f | v. f := v | if vtheneelsee | let x : T = e in e | v.m(~v) expressions
| new C(~v) | spawn e | onacid | commit

v ::= r | x | null values

Table 1. Abstract syntax

instances of that class, these fields are mentioned as the formal parameters of the con-
structor. We assume that each class has exactly one constructor; i.e., we do not allow
constructor overloading. Similarly, we do not allow method overloading by assuming
that all methods defined in a class have a different name; likewise for fields. A method
definition m(~x:~T){e} : T consists of the name m of the method, the formal parameters
~x with their types ~T , the method body e, and finally the return type T of the method.

In the syntax, v stands for values, i.e., expressions that can no longer be evalu-
ated. In the core calculus, we leave unspecified standard values like booleans, integers,
. . . , so values can be object references r, variables x or null. The expressions v. f and
v1. f := v2 represent field access and field update respectively. Method calls are written
v.m(~v) and object instantiation is new C(~v). The next two expressions deal with the
basic, sequential control structures: if v thene1 elsee2 represents conditions, and the
let-construct let x : T = e1 in e2 represents sequential composition: first e1 is evaluated,
and afterwards e2, where the eventual value of e1 is bound to the local variable x. Conse-
quently, standard sequential composition e1;e2 is syntactic sugar for let x : T = e1 in e2
where the variable x does not occur free in e2. The language is multi-threaded: spawne
starts a new thread of activity which evaluates e in parallel with the spawning thread.
Specific for TFJ are the two constructs onacid and commit, two dual operations dealing
with transactions. The expression onacid starts a new transaction and executing commit
successfully terminates a transaction. The syntax is restricted concerning where to use
general expressions e. E.g., Table 1 does not allow field updates e1. f := e2, where the
object whose field is being updated and the value used in the right-hand side are repre-
sented by general expressions. It would be straightforward to relax the abstract syntax
that way. We have chosen this presentation, as it slightly simplifies the operational se-
mantics and the (presentation of the) type and effect system later. Of course, this is not
a real restriction in expressivity.

2.2 Semantics

This section describes the operational semantics of TFJ with some adaptations at two
different levels: a local and a global semantics. The local semantics is given in Table 2.
These local rules deal with the evaluation of one single expression/thread and reduce
configurations of the form E ` e. Thus, local transitions are of the form E ` e−→ E ′ ` e′,

4

where e is one expression and E a local environment. At the local level, the relevant
commands only concern the current thread.

Definition 1. A local environment E of type LEnv is a finite sequence of the form
l1:ρ1, . . . lk:ρk, i.e., of pairs of transaction labels li and a corresponding log ρi. We write
|E| for the size of the local environment (number of pairs l:ρ in the local environment).

Transactions are identified by labels l, and as transactions can be nested, a thread can
execute “inside” a number of transactions. So, the E in the above definition is ordered,
with e.g. lk to the right refers to the inner-most transaction, i.e., the one most recently
started and commiting removes bindings from right to left. The number |E| of a thread
represents the nesting depth of the thread, i.e., how many transactions the thread has
started but not yet committed. The corresponding logs ρi can, in a first approximation,
be thought of as “local copies” of the heap including bindings from references to ob-
jects. The log ρi keeps track of changes of the threads actions concerning transaction li.
The exact structure of such environments and the logs have no influence on our static
analysis, and indeed, the environments may be realized in different ways (e.g., [15]
gives two different flavors, a “pessimistic”, lock-based one and an “optimistic” one).
Relevant for our type and effect system will be only a number of abstract properties
of the environments, formulated in Definition 3 later. As the local rules in Table 2 are
pretty standard, and correspond to the ones of [15]. The first four rules deal straightfor-
wardly with the basic, sequential control flow. Unlike the first four rules, the remain-
ing ones do access the heap. Thus, the local environment E is consulted to look up
object references and then changed in the step. The access and update of E is given
abstractly by corresponding access functions read, write, and extend (which look-up a
reference on the heap, update a reference, resp. allocate an entry for a new reference
on the heap). The details can be found in [15] but note that also the read-function used
in the rules actually changes the environment from E to E ′ in the step. The reason is
that in a transaction-based implementation, read-access to a variable may be logged,
i.e., remembered appropriately, to be able to detect conflicts and to do a roll-back if
the transaction fails. This logging may change the local environment. The premises as-
sume the class table is given implicitly where fields(C) looks up fields of class C and
mbody(m,C) looks up the method m of class C. Otherwise, the rules for field lookup,
field update, method calls, and object instantiation are standard.

The five rules of the global semantics are given in Table 3. The semantics works on
configurations of the form Γ ` P, where P is a program and Γ is a global environment.
Besides that, we need a special configuration error representing an error state. Basically,
a program P consists of a number of threads evaluated in parallel (cf. Table 1), where
each thread corresponds to one expression, whose evaluation is described by the local
rules. Now that we describe the behavior of a number of (labeled) threads t〈e〉, we need
one E for each thread t. This means, Γ is a “sequence” (or rather a set) of t:E bindings
where t is the name of a thread and E is its corresponding local environment.

Definition 2. A global environment Γ of type GEnv is a finite mapping, written as
t1:E1, . . . tk:Ek, from threads names ti to local environments Ei (the order of bindings
does not play a role, and each thread name can occur at most once).

5

So global steps are of the form Γ ` P =⇒ Γ ′ ` P′ or Γ ` P =⇒ error. As for the
local rules, the formulation of the global steps makes use of a number of functions ac-
cessing and changing the (this time global) environment. As before, those functions are
left abstract and only later we will formalize abstract properties that Γ and E consid-
ered as abstract data types must satisfy. Rule G-PLAIN simply lifts a local step to the
global level, using the reflect-operation, which roughly makes local updates of a thread
globally visible. Rule G-SPAWN deals with starting a thread. The next three rules treat
the two central commands of the calculus, those dealing directly with the transactions.
The first one G-TRANS covers onacid, which starts a transaction. The start function
creates a new label l in the local environment E of thread t. The two rules G-COMM
and G-COMM-ERROR formalize the successful commit resp. the failed attempt to com-
mit a transaction. In G-COMM, the label of the transaction l to be committed is found
(right-most) in the local context E. Furthermore, the function intranse(l,Γ) finds the
identities t1 . . . tk of all concurrent threads in the transaction l and which all join in the
commit. In the erroneous case of G-COMM-ERROR, the local environment E is empty;
i.e., the thread executes outside of any transactions, which constitutes an error.

The next section continues with the effect system, as part of a “type and effect”
system. The underlying types T include names C of classes, basic types B (natural
numbers, booleans, etc.) and Void for typing side-effect-only expressions. The corre-
sponding type system for judgements of the form Γ ` e : T (“under type assumptions
Γ , expression e has type T ”) is standard and omitted here (cf. the technical report [20]).

3 The effect system

The effect system assures that starting and committing transactions is done “properly”,
in particular to avoid committing when outside a transaction, which we call commit
errors. To catch commit errors at compile time, the system keeps track of onacids and

E ` letx : T = v in e −→ E ` e[v/x] R-RED

E ` letx2 : T2 = (letx1 : T1 = e1 in e) in e′ −→ E ` letx1 : T1 = e1 in (letx2 : T2 = e in e′) R-LET

E ` letx : T = (if true then e1 else e2) in e −→ E ` letx : T = e1 in e R-COND1

E ` letx : T = (if false then e1 else e2) in e −→ E ` letx : T = e2 in e R-COND2

read(r,E) = E ′,C(~u) fields(C) = ~f
R-LOOKUP

E ` letx:T = r. fi in e−→ E ′ ` letx:T = ui in e

read(r,E) = E ′,C(~r) write(r 7→C(~r) ↓r′
i ,E ′) = E ′′

R-UPD

E ` letx:T = r. fi := r′ in e−→ E ′′ ` letx:T = r′ in e

read(r,E) = E ′,C(~r) mbody(m,C) = (~x,e)
R-CALL

E ` letx:T = r.m(~r) in e′ −→ E ′ ` letx : T = e[~r/~x][r/this] in e′

r fresh E ′ = extend(r 7→C(~null),E)
R-NEW

E ` letx:T = newC() in e−→ E ′ ` letx = r in e

Table 2. Semantics (local)

6

E ` e−→ E ′ ` e′ Γ ` t : E reflect(t,E ′,Γ) = Γ ′

G-PLAIN

Γ ` P ‖ t〈e〉=⇒ Γ
′ ` P ‖ t〈e′〉

t ′ fresh spawn(t, t ′,Γ) = Γ ′

G-SPAWN

Γ ` P ‖ t〈letx : T = spawne1 in e2〉=⇒ Γ
′ ` P ‖ t〈letx : T = null in e2〉 ‖ t ′〈e1〉

l fresh start(l, t,Γ) = Γ ′

G-TRANS

Γ ` P ‖ t〈letx : T = onacid in e〉=⇒ Γ
′ ` P ‖ t〈letx : T = null in e〉

Γ = Γ ′′, t:E E = E ′, l:ρ intranse(l,Γ) =~t = t1 . . . tk
commit(~t,~E,Γ) = Γ ′ t1:E1, t2:E2, . . . tk :Ek ∈ Γ ~E = E1,E2, . . . ,Ek

G-COMM

Γ ` P ‖ . . . ‖ ti〈letx : Ti = commit in ei〉 ‖ . . . =⇒ Γ
′ ` P ‖ . . . ‖ ti〈letx : Ti = null in ei〉 ‖ . . .

Γ = Γ ′′, t:E E = /0
G-COMM-ERROR

Γ ` P ‖ t〈letx : T = commit in e〉=⇒ error

Table 3. Semantics (global)

l1

t1
t2

(a) Multi-threaded transaction

l1

t1 e′1
t2

(b) Sequential composition

Fig. 1. Transactions and multi-threading

commits; we refer to the number of onacids minus the number of commits as the bal-
ance. E.g., for an expression e = onacid; e1; commit; commit, the balance equals
1−2 =−1. An execution of a thread is balanced, if there are no pending transactions,
i.e., if the balance is 0. The situation gets slightly more involved when dealing with
multi-threading. TFJ supports not only nested transactions, but multi-threaded transac-
tions: inside one transaction there may be more than one thread active at a time. Due to
this internal concurrency, the effect of a transaction may be non-deterministic. Figure 1
shows a simple situation with two threads t1 and t2, where t1 starts a transaction with
the label l1 and spawns a new thread t2 inside the transaction. An example expression
resulting in the depicted behavior of Figure 1(b) is e1 = onacid;spawne2;e′1, where e1
is the expression evaluated by thread t1, and e2 by the freshly created t2. In TFJ’s con-
currency model, to terminate the parent transaction l1, both t1 and t2 must join via a
common commit. To keep track we must take into account that e2 and the rest e′1 of
the original thread are executed in parallel, and furthermore, that when executing e2
in the new thread t2, one onacid has already been executed by t1, namely before the
spawn-operation. Hence, we need to keep track of the balance not just for the thread
under consideration, but take into account the balance of the newly created threads, as
well. Even if a spawning thread and a spawned thread run in parallel, the situation wrt.

7

the analysis is not symmetric. Considering the balance for the left of onacid;spawne2,
the balance for both “threads” after execution amounts to +1, i.e., both threads are
executing inside one enclosing transaction. When calculating the combined effect for
onacid;spawne2;e′1, the balance value of onacid is treated differently from the one of
e2, as the control flow of the sequential composition connects the trailing e′1 with onacid,
but not with the thread of e2

To sum up: to determine the effect in terms of the balance, we need to calculate the
balance for all threads potentially concerned, which means for the thread executing the
expression being analysed plus all threads (potentially) spawned during that execution.
From all threads, the one which carries the expression being evaluated plays a special
role, and is treated specially. Therefore, we choose a pair of an integer n and a (finite)
multi-set S of integers to represent the effect after evaluating an expression as follows:

n,S : Int× (Int→ Nat) . (1)

The integer n represents the balance of the thread of the given expression, the multi-set
the balance numbers for the threads potentially spawned by the expression. We write /0
for the empty multi-set, ∪ for the multi-set union. The multi-set can be seen as a func-
tion of type Int→ Nat (the multi-set’s characteristic function), and we write dom(S)
for the set of elements of S, ignoring their multiplicity. As an example: we use also
the set-like notation {−3,1,1,2} to represent the finite mapping −3 7→ 1,1 7→ 2,2 7→ 1
(and all other integers to 0). As a further operation, we use “addition” and “substrac-
tion” of such multisets and integers illustrated on a small example: {−3,1,1,2}+ 5
gives {2,6,6,7}. Based on S, we know how many newly created threads with their cor-
responding balances in the current expression, including threads with the same balance.
The judgements of the analysis are thus of the following form:

n1 ` e :: n2,S , (2)

which reads as: starting with a balance of n1, executing e results in a balance of n2 and
the balances for new threads spawned by e are captured by S. The balance for the new
threads in S is calculated cumulatively; i.e., their balance includes n1, the contribution
of e before the thread is spawned, plus the contribution of the new thread itself.

The effect system is given in Table 4. For clarity, we do not integrate the effect
system with the underlying type system. Instead, we concentrate on the effects in iso-
lation. Variables, the null-expression, field lookup, and object creation have no effect
(cf. T-VAR, T-NULL, T-LOOKUP, and T-NEW in Table 4). A field update has no effect
(cf. T-UPD), as we require that the left- and the right-hand side of the assignment are
already evaluated. In contrast, the two dual commands of onacid and commit have the
expected effect: they simply increase, resp. decrease the balance by one (cf. T-ONACID
and T-COMMIT). A class declaration (cf. T-CLASS) has no effect and no newly cre-
ated threads, therefore the balance is zero and the multiset of balances equals /0. Rule
T-METH deals with method declarations. In this rule, we require that all spawned
threads in the method body must have the balance 0 after evaluating the expression
e, that the balance of the method itself has the form n1 → n2 where n1 is interpreted
as pre-condition, i.e., it is safe to call the method only in a state where the balance is

8

T-VAR

n ` x :: n, /0
T-NULL

n ` null :: n, /0
T-LOOKUP

n ` v. f :: n, /0
T-NEW

n ` newC :: n, /0

n ` v1 :: n, /0 n ` v2 :: n, /0
T-UPD

n ` v1. fi := v2 :: n, /0

T-ONACID

n ` onacid :: n+1, /0

n≥ 1
T-COMMIT

n ` commit :: n−1, /0

K = C(~f : ~T){this.~f := ~f} ` ~M :: ~n1→~n2,~S
T-CLASS

` class C{~f : ~T ;K; ~M} :: 0, /0

n1 ` e :: n2,{0, . . .}
T-METH

` m(~x : ~T){e} :: n1→ n2,{0, . . .}

n ` e :: n′,S1 S1 ≤ S2
T-SUB

n ` e :: n′,S2

n0 ` e1 :: n1,S1 n1 ` e2 :: n2,S2
T-LET

n0 ` let x : T = e1 in e2 :: n2,S1 ∪S2

n ` e :: n′,S
T-SPAWN

n ` spawne :: n,S∪{n′}

n ` v :: n, /0 n ` e1 :: n′,S1 n ` e2 :: n′,S2
T-COND

n ` if v thene1 else e2 :: n′,S1 ∪S2

n ` v :: n, /0 n ` vi :: n, /0 mtype(C,m) :: n′1→ n′2,S n = n′1
T-CALL1

n ` v.m(~v) :: n′2−n′1 +n,S−n′1 +n

n ` v :: n, /0 n ` vi :: n, /0 mtype(C,m) :: n′1→ n′2, /0 n > n′1
T-CALL2

n ` v.m(~v) :: n′2−n′1 +n, /0

|E| ` e :: 0,{0,0, . . .}
T-THREAD

t:E ` t〈e〉 : ok

Γ1 ` P1 : ok Γ2 ` P2 : ok
T-PAR

Γ1,Γ2 ` P1 ‖ P2 : ok

Table 4. Effect system

at least n1. The number n2 as the post-condition corresponds to the balance after exit-
ing the method, when called with balance n1 as pre-condition. The precondition n1 is
needed to assure that at the call-sites the method is only used where the execution of the
method body does not lead to a negative balance (see also the T-CALL-rules below).
Rule T-SUB captures a notion of subsumption where by S1 ≤ S2 we mean the subset
relation on multi-sets.1 In a let-expression (cf. T-LET), representing sequential compo-
sition, the effects are accumulated. Creating a new thread by executing spawne does not
change the balance of the executing thread (cf. T-SPAWN). The spawned expression e in
the new thread is analyzed starting with the same balance n in its pre-state. The result-
ing balance n′ of the new thread is given back in the conclusion as part of the balances
of the spawned threads, i.e., as part of the multi-set. For conditionals if v thene1 elsee2
(cf. T-COND), the boolean condition v does not change the balance, and the rule insists
that the two branches e1 and e2 agree on a balance n′.

For method calls, we distinguish two situations (cf. T-CALL1 and T-CALL2), de-
pending on whether the method being called creates new threads or not. In the latter
case, the multi-set of balances for method m in class C is required to be empty by the
third premise of the rule. In that situation, the precondition of the method can be in-
terpreted in a “loose” manner: the current balance n in the state before the call must
be at least as big as the pre-condition n′1. If, however, the method may spawn a new

1 The non-structural rule of subsumption makes the system non syntax-directed. To turn it to an
algorithm, one would have to disallow subsumption and derive a minimal multiset instead.

9

thread (cf. T-CALL1), the pre-condition is interpreted strictly, i.e., we require n = n′1
(with this equality, T-CALL1 could be simplified; we chose this representation to stress
the connection with T-CALL2, where n > n′1). Allowing the loose interpretation also
in that situation would make the method callable in different levels of nestings at the
caller side; however, only exactly one level actually is appropriate, as with concurrent
threads inside a transaction, all threads must join in a commit to terminate the transac-
tion. A thread t〈e〉 is well-typed (cf. T-THREAD), if the expression has balance 0 after
termination, starting with a balance corresponding to the length |E| of the local environ-
ment E. We use ok to indicate that the thread is well-typed, i.e., without commit-error.
This balance in the pre-state corresponds to the level of nesting inside transactions, the
thread t〈e〉 currently executes in. A program is well typed, if all threads in the system
are well-typed (cf. T-PAR). We illustrate the system with the following two examples:

Example 1. The following derivation applies the effect system to the expression e1;
spawn(e2;spawne3); e4 :: n4,{n2,n3}, when starting with a balance of 0.

0 ` e1 :: n′1,{}

n′1 ` e2 :: n2,{}

n2 ` e3 :: n3,{}

n2 ` spawne3 :: n2,{n3}

n′1 ` (e2;spawne3) :: n2,{n3}

n′1 ` spawn(e2;spawne3) :: n′1,{n2,n3} n′1 ` e4 :: n4,{}

n′1 ` spawn(e2;spawne3);e4 :: n4,{n2,n3}

0 ` e1;spawn(e2;spawne3);e4 :: n4,{n2,n3}

The derivation demonstrates sequential composition and thread creation with a starting
balance of 0 for simplicity. Remember that sequential composition e1;e2 is syntactic
sugar for letx:T = e1 in e2, where x does not occur free in e2; i.e., assume that the ex-
pressions e1,. . . e4 themselves have the following balances 0 ` ei :: n′i,{}, which implies
n′1 ` e2 :: n′1 +n′2 = n2,{}, n2 ` e3 :: n2 +n′3 = n3,{}, and n′1 ` e4 :: n′1 +n′4 = n4,{}. ut

Example 2. Assume the following code fragment:

. . .
vo id n (){ onacid ; m(1 0) ; }

vo id m(i){ commit ;
i f (i ≤ 0)
t h e n onacid ;
e l s e ; onacid ; t h i s .m(i −1); }

vo id main (){ n () ; commit ; }

First observe that the program shows no commit-errors during run-time. Method m
calls itself recursively and the two branches of the conditional in its body both execute
one onacid each. Especially, method m is called (in this fragment) only via method
n, especially after n has performed an onacid, i.e., m is called inside one transaction.
If m were called outside a transaction it would result in an error, as the body of m
starts by executing a commit-statement. In our effect system, method m can be declared
as of effect 1→ 1, which expresses not only that the body of m does not change the
balance, but that as a precondition, it must be called only from call-sites where the
balance is ≥ 1, as is the case in the body of n (cf. also T-METH and T-CALL). So the

10

declarations of the two shown methods are of the form n() : Void→ Void,0→ 1 and
m(i) : Int→ Void,1→ 1. For recursive calls, an effect like 1→ 1 can be interpreted as
loop invariant: the body of the method must not change the balance to be well-typed.
However, not every method needs to be balanced; the non-recursive method n is one
example which (together with the call to m) has a net-balance of 1. ut

4 Soundness of the type and effect system

Next we prove that the type and effect system does what it is designed to do, namely
absence of commit errors.

Lemma 1 (Subject reduction (local)). Let n = |E|. If n ` e :: n′,S′ and E ` e−→ E ′ ` e′,
then |E ′|= n and n ` e′ :: n′,S′.

Proof. By straightforward induction on the rules of Table 2, observing that by the prop-
erties of read, write, and extend, |E|= |E ′|. ut

The global semantics accesses and changes the global environments Γ . These ma-
nipulations are captured in various functions, which are kept “abstract” in this semantics
(as in [15]). To perform the subject reduction proof, however, we need to impose certain
requirements on those functions:

Definition 3. The properties of the abstract functions are specified as follows:

1. The function reflect satisfies the following condition: if reflect(t,E,Γ) = Γ ′ and
Γ = t1:E1, . . . , tk:Ek, then Γ ′ = t1:E ′1, . . . , tk:E ′k with |Ei|= |E ′i | (for all i).

2. The function spawn satisfies the following condition: Assume Γ = t : E,Γ ′′ and
t ′ /∈ Γ and spawn(t, t ′,Γ) = Γ ′, then Γ ′ = Γ , t ′:E ′ s.t. |E|= |E ′|.

3. The function start satisfies the following condition: if start(l, ti,Γ) = Γ ′ for a Γ =
t1:E1, . . . , ti:Ei, . . . , tk:Ek and for a fresh l, then Γ ′ = t1:E1, . . . , ti:E ′i , . . . , tk:Ek, with
|E ′i |= |Ei|+1.

4. The function intranse satisfies the following condition: Assume Γ = Γ ′′, t:E s.t.
E = E ′, l:ρ and intranse(l,Γ) =~t, then
(a) t ∈~t and
(b) for all ti ∈~t we have Γ = . . . , ti : (E ′i , l:ρi),
(c) for all threads t ′ with t ′ /∈~t and where Γ = . . . , t ′:(E ′, l′:ρ ′), . . ., we have l′ 6= l.

5. The function commit satisfies the following condition: if commit(~t,~E,Γ) = Γ ′ for
a Γ = Γ ′′, t:(E, l:ρ) and for a~t = intranse(l,Γ) then Γ ′ = . . . , t j:E ′j, . . . , ti:E

′
i , . . .

where ti ∈~t, t j /∈~t, t j:E j ∈ Γ , with |E ′j|= |E j| and |E ′i |= |Ei|−1.

Lemma 2 (Subject reduction). If Γ ` P : ok and Γ ` P =⇒ Γ ′ ` P′, then Γ ′ ` P′ : ok.

Proof. Proceed by case analysis on the rules of the operational semantics from Table
3 (except rule G-COMMERROR for commit errors). For simplicity (and concentrating
on the effect, not the values of expressions) we use ; for sequential composition in the
proof, and not the more general let-construct.

11

Case: G-PLAIN
From the premises of the rule, we get for the form of the program that P = P′′ ‖ t〈e〉,
furthermore for t’s local environment Γ ` t : E and E ` e −→ E ′ ` e′ as a local step.
Well-typedness Γ ` P : ok implies n ` e :: n′,S′ for some n′ and S′, where n = |E|. By
subject reduction for the local steps (Lemma 1) n ` e′ :: n′,S′. By the properties of the
reflect-operation, |E ′|= n, so we derive for the thread t

n ` e′ :: 0,{0, . . .}

Γ
′, t:E ′ ` t〈e′〉 : ok

from which the result Γ ′ ` P′′ ‖ t〈e′〉 : ok follows (using T-PAR and the properties of
reflect from Definition 3.1).
Case: G-SPAWN
In this case, P = P′′ ‖ t〈spawne1;e2〉 and P′= P′′ ‖ t〈null;e2〉 ‖ t ′〈e1〉 (from the premises
of G-SPAWN). The well-typedness assumption Γ ` P : ok implies the following sub-
derivation:

n ` e1 : 0,S1

n ` spawne1 : n,S1 ∪{0} n ` e2 : 0,S2

n ` spawne1;e2 : 0,{0, . . .}

t:E ` t〈spawne1;e2〉 : ok

(3)

with S1 = {0, . . .} and S2 = {0, . . .}. By the properties of reflect, the global environment
Γ ′ after the reduction step is of the form Γ , t ′:E ′ where t ′ is fresh and |E ′| = |E| (see
Definition 3.2). So we can derive

t:E ` t〈null;e2〉 : ok

n ` e1 : 0,{0, . . .}

t ′:E ′ ` t ′〈e1〉 : ok

t:E, t ′:E ′ ` t〈null;e2〉 ‖ t ′〈e1〉 : ok

The left sub-goal follows from T-THREAD,T-SEQ, T-NULL, and the right sub-goal of
the previous derivation (3). The right open sub-goal directly corresponds to the left
sub-goal of derivation (3).
Case: G-TRANS
In this case, P = P′′ ‖ t〈onacid;e〉 and P′ = P′′ ‖ t〈null;e〉. The well-typedness assump-
tion Γ ` P : ok implies the following sub-derivation (assume that |E|= n):

n ` onacid :: n+1, /0 n+1 ` e :: 0,{0, . . .}

n ` onacid;e :: 0,{0, . . .}

t:E ` t〈onacid;e〉 : ok

(4)

For the global environment Γ ′ after the step, we are given Γ ′ = start(l, t,Γ) from the
premise of rule G-TRANS. By the properties of start from Definition 3.3, we have
Γ ′ = Γ ′′, t:E ′ with |E ′| = n + 1. So with the help of right sub-goal of the previous
derivation (4), we can derive for thread t after the step:

n+1 ` e :: 0,{0, . . .}

t:E ′ ` t〈e〉 : ok

12

Since furthermore the local environments of all other threads remain unchanged (cf.
again Definition 3.3), the required Γ ′ ` P′ : ok can be derived, using T-PAR.
Case: G-COMM
In this case, P = P′′ ‖~t〈commit;~e〉 and P′ = P′′ ‖~t〈~e〉. The well-typedness assumption
Γ ` P : ok implies the following sub-derivation for thread t:

n ` commit :: n−1, /0 n−1 ` ei : 0,{0, . . .}

n ` commit;ei : 0,{0, . . .}

ti:Ei ` ti〈commit;ei〉 : ok

(5)

For the global environment Γ ′ after the step, we are given Γ ′ = commit(~t,~E,Γ) from
the premise of rule G-TRANS, where~t = intranse(l,Γ) and ~E are the corresponding
local environments. By the properties of commit from Definition 3.5, we have for the
local environments ~E ′ of threads ~t after the step that |E ′i | = n− 1. So we obtain by
T-THREAD, using the right sub-goal of derivation (5):

n−1 ` ei :: 0,{0, . . .}

ti:E ′i ` ti〈ei〉 : ok

For the threads t j〈e j〉 different from~t, according to the Definition 3.5, we have |E ′j| =
|E j| so t j:E ′j ` t j〈e′j〉 : ok straightforwardly. As a result, we have Γ ′ ` P′ : ok. ut

Lemma 3. If Γ ` P : ok then it is not the case that Γ ` P =⇒ error.

Proof. Let Γ ` P : ok and assume for a contradiction that Γ ` P −→ error. From the
rules of the operational semantics it follows that P = t〈commit;e〉 ‖ P′ for some thread
t, where the step Γ ` P −→ error is done by t (executing the commit-command). Fur-
thermore, the local environment E for the thread t is empty:

E = /0
G-COMM

Γ
′, t:E ` t〈commit;e〉 ‖ P′ −→ error

To be well-typed, i.e., for the judgment Γ ` t〈commit;e〉 ‖ P′ : ok to be derivable, it is
easy to see that the derivation must contain Γ ′, t: /0 ` t〈commit;e〉 : n,S as sub-derivation
(for some n and S). By inverting rule T-THREAD, we get that 0 ` let commit in e :
0,{0,0, . . .} is derivable (since |E| = 0). This is a contradiction, as the balance after
commit would be negative (inverting rules T-LET and T-COMMIT). ut

Corollary 1 (Well-typed programs are commit-error free). If Γ ` P : ok then it is
not the case that Γ ` P =⇒∗ error,

Proof. A direct consequence of the subject reduction Lemma 2 and Lemma 3. ut

5 Conclusion

This work took the TFJ language design from [15] as starting point. That paper is not
concerned with static analysis, but develops and investigates two different operational

13

semantics for TFJ that assure transactional guarantees. As mentioned, however, the flex-
ibility of the language may lead to run-time errors when executing a commit outside
any transaction; we called such situations commit-errors. To statically prevent commit-
errors, we presented a static type and effect system, which keeps track of the commands
for starting and finishing transactions. We proved soundness of the type system.

A comparison with explicit locks of Java The built-in support for concurrency control
in Java is lock-based; each object comes equipped with a (re-entrant) lock, which can
be used to specify synchronized blocks and, as a special case, synchronized methods.
The lock can achieve mutual exclusion between threads that compete for the lock before
doing something critical. Thus, the built-in, lock-based (i.e., “pessimistic”) concurrency
control in Java offers lexically scoped protection based on mutual exclusion. While
offering basic concurrency control, the scheme has been criticized as too rigid, and
consequently, Java 5 now additionally supports explicit locks with non-lexical scope.
The ReentrantLock class and the Lock interface allow more freedom, offering explicit
lock and unlock operations. Locking and unlocking can be compared, to some extent,
to starting and committing a transaction, even if there are differences especially wrt.
failure and progress properties. See e.g., [3] for a discussion of such differences. Besides
the more behavioral differences, such as different progress guarantees or deadlocking
behavior, the lock handling in Java 5 and the transactional model of TFJ differ in the
following aspects, as relevant for the type analysis (cf. Table 5).

One basic difference is that we proposed a static scheme to catch commit errors,
whereas in Java, improper use of locking and unlocking is checked at run-time. Both
schemes, as mentioned, have all the flexibility of non-lexical scoping. The rest of Table
5 deals with the structure of protected areas (the transaction or the execution protected
by a lock) and the connection to the threading model. One difference is that locks have
an identity available at the program level, whereas transactions have not. Furthermore,
locks and monitors in Java are re-entrant, i.e., one particular thread holding a lock
can recursively re-enter a critical section or monitor. Re-entrance is not an issue in
TFJ: a thread leaves a transaction by committing it (which terminates the transaction),
hence re-entrance into the same transaction makes no sense. Transactions in TFJ can
be nested. Of course, in Java, a thread can hold more than one lock at a time; however,
the critical sections protected by locks do not follow a first-in-last-out discipline, and
the section are not nested as they are independent. For nested transactions in contrast,
a commit to a child transaction is propagated to the surrounding parent transaction,
but not immediately further, until that parent commits its changes in turn. Finally, TFJ
allows multi-threaded transactions, whereas monitors and locks in Java are meant to
ensure mutual exclusion. In particular, if an activity inside a monitor spawns a new
thread, the new thread starts executing outside any monitor, in other words, a new thread
holds no locks. In [17], we discuss the differences and similarities in more depth by
comparing the analysis developed here with a corresponding one that deals with the
safe use of a statically allocated number of locks.

Related work There have been a number of further proposals for integrating transac-
tional features into programming languages. For transactional languages, lexical scope
for transactions, so called atomic blocks, have been proposed, using e.g., an atomic-

14

construct or similar. Examples are Atomos [4], the AME calculus [1], and many pro-
posals for software transactional memory [8, 21], but none of them deals with assuring
statically proper use of the corresponding constructs. When dealing with concurrency,
most static analyses focus on avoiding data races and deadlocks, especially for multi-
threaded Java programs. Static type systems have also been used to impose restrictions
assuring transactional semantics, e.g. in [9, 1, 14]. A type system for atomicity is pre-
sented in [7, 6]. [2] develops a type system for statically assuring proper lock handling
for the JVM, i.e., on the level of byte code. Their system assures what is known as
structured locking, i.e., (in our terminology), each method body is balanced as far as
the locks are concerned, and at no point, the balance reaches below 0. Since the work
does not consider non-lexical locking as in Java 5, the conditions apply per method
only. Also the Rcc/Java type system tries to keep track of which locks are held (in an
approximate manner), noting which field is guarded by which lock, and which locks
must be held when calling a method. Especially safe lock analysis, supported e.g. by
the Indus tool [19] as part of Bandera, is a static analysis that checks whether a lock
is held indefinitely (in the context of multi-threaded Java). Software model checking
is a prominent, alternative way to assure quality of software. By using some form of
abstraction (typically ignoring data parts and working on an abstract, automata-based
representation), model checking can be used as a form of static analysis of concrete
programs, as well. The Blast analyzer [11] allows automatic verification for checking
temporal safety properties of C programs (using counter-example guided abstraction
refinement), and has been extended to deal with concurrent programs, as well [5]. Sim-
ilarly, Java PathFinder is an automatic, model-checking tool (based on Spin) to analyze
Java programs [10].

Future work The work presented here can be extended to deal with more complex lan-
guage features, e.g. when dealing with higher-order functions. In that setting, the effect
part and its connection to the type system become more challenging. Furthermore, we
plan to adopt the results for a different language design, more precisely to the language
Creol [16], which is based on asynchronously communicating, active objects, in con-
trast to Java, whose concurrency is based on multi-threading. As discussed, there are
similarities between lock-handling in Java 5 and the transactions as treated here. We
plan to use similar techniques as explored here to give static guarantees for lock-based
concurrency, as well. Of practical relevance is to extend the system from type checking
to type inference, potentially along the lines [12].

Java 5.0 TFJ
when? run-time compile time
non-lexical scope yes yes
program level identity yes no
re-entrance yes no
nested transactions/critical sections no yes
internal multi-threading no yes

Table 5. Transactional Featherweight Java and explicit locks of Java

15

Acknowledgements We thank the anonymous reviewers for their helpful suggestions.

References
1. M. Abadi, A. Birell, T. Harris, and M. Isard. Semantics of transactional memory and auto-

matic mutual exclusion. In Proceedings of POPL ’08. ACM, 2008.
2. G. Bigliardi and C. Laneve. A type system for JVM threads. In In Proceedings of 3rd ACM

SIGPLAN Workshop on Types in Compilation (TIC2000, page 2003, 2000.
3. C. Blundell, E. C. Lewis, and M. K. Martin. Subtleties of transactional memory atomicity

semantics. IEEE Computer Architecture Letters, 5(2), 2006.
4. B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis, and K. Oluk-

tun. The ATOMOΣ transactional programming language. In ACM Conference on Program-
ming Language Design and Implementation (Ottawa, Ontario, Canada). ACM, 2006.

5. A. Davare. Concurrent BLAST, 2003. Internal Report, EECS Berkely. Mentors: Mentors
Rupak Majumdar and Ranjit Jhala.

6. C. Flanagan and S. Freund. Atomizer: A dynamic atomicity checker for multithreaded pro-
grams. In Proceedings of POPL ’04, pages 256–267. ACM, 2004.

7. C. Flanagan and S. Quadeer. A type and effect system for atomicity. In ACM Conference on
Programming Language Design and Implementation (San Diego, California). ACM, 2003.

8. T. Harris and K. Fraser. Language support for lightweight transactions. In Eighteenth OOP-
SLA ’03. ACM, 2003. In SIGPLAN Notices.

9. T. Harris, S. M. S. Peyton Jones, and M. Herlihy. Composable memory transactions. In
PPoPP’05: 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 48–60, June 2005.

10. K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer, 2(4):366–381, 2000.

11. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with BLAST. In
T. Ball and S. K. Rajamani, editors, Proc. SPIN2003, volume 2648 of LNCS, pages 235–239.
Springer, 2003.

12. A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Transactions on Programming
Languages and Systems, 27(2):264–313, 2005.

13. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for
Java and GJ. In OOPSLA ’99, pages 132–146. ACM, 1999. In SIGPLAN Notices.

14. M. Isard and A. Birell. Automatic mutual exclusion. In Proceedings of the 11th Workshop
on Hot Topics in Operating Systems, 2007.

15. S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional object calculus. Science
of Computer Programming, 57(2):164–186, 2005.

16. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for distributed
concurrent systems. Theoretical Computer Science, 365(1–2):23–66, 2006.

17. T. Mai Thuong Tran, O. Owe, and M. Steffen. Safe typing for transactional vs. lock-based
concurrency in multi-threaded Java. In Proceedings of the Second International Conference
on Knowledge and Systems Engineering, KSE 2010, 2010. Accepted for publication.

18. F. Nielson, H.-R. Nielson, and C. L. Hankin. Principles of Program Analysis. Springer,
1999.

19. V. P. Ranganath and J. Hatcliff. Slicing concurrent Java programs using Indus and Kaveri.
International Journal of Software Tools and Technology Transfer, 9(5):489–504, 2007.

20. M. Steffen and T. M. T. Tran. Safe commits for Transactional Featherweight Java. Technical
Report 392, University of Oslo, Dept. of Computer Science, Oct. 2009.

21. A. Welc, S. Jagannathan, and A. Hosking. Transactional monitors for concurrent objects. In
M. Odersky, editor, 18th European Conference on Object-Oriented Programming (ECOOP
2004), volume 3086 of LNCS, pages 519–542. Springer, 2004.

