
Safe Locking for Multi-Threaded Java?

September 27, 2010

Einar Broch Johnsen, Thi Mai Thuong Tran, Olaf Owe, and Martin Steffen

Institute of Informatics, University of Oslo, Norway

1 Motivation

Many concurrency models have been developed for high-level programming lan-
guages such as Java. A trend here is more flexible concurrency control protocols,
going beyond the original Java multi-threading treatment based on lexically-
scoped locking. A recent proposal for Java supports flexible, non-lexical lock-
handling via the Lock-classes in Java 5. The added flexibility of non-lexical use
of the corresponding concurrency operators comes at a price: improper usage
leads to run-time exceptions and unwanted behavior. This is in contrast with
the more disciplined use under a lexically scoped regime, where each entrance
to a critical region is syntactically accompanied by a corresponding exit as with
traditional synchronized methods.

2 A Type and Effect System for Safe Locking

To assure safe use of locking we present a static type and effect system which
assures that e.g., no lock is released more often than it is being held, or released
by a thread which does not hold it. We call such erroneous situations lock errors.
To prevent them, we basically keep track per thread of the number of locking
and unlocking on the individual locks. As straightforwards as it sounds, there
are three main challenges

Dynamic lock creation: locks can be dynamically created as instances of a
lock class.

Aliasing: As locks are accessed via references to a lock instance, they are sub-
ject to aliasing: two different variables may refer to the same lock.

Lock passing: Lock references can be passed via method calls (between ob-
jects) and via instance fields (between threads).

The type and effect system resembles partly an earlier one for safe transac-
tion handling [6], but the mentioned challenges such as aliasing and passing of
identities arise from the crucial difference between transactions and locks: the
latter have an identity at the level of the programming language, whereas trans-
actions have not (see also [5] or [1] for a comparison of the differences between
the two concurrency control mechanisms as far as static typing is concerned).
? The authors are listed in alphabetical order. The work has been partly supported

by the EU-project FP7-231620 HATS.

http://www.ifi.uio.no
http://www.uio.no
http://www.cse.chalmers.se/research/hats/


2

To capture effects related to locks, the general form of judgments for a single
expression, i.e., inside one thread, is of the form

σ;Γ ;∆1 ` e : T :: ∆2 . (1)

It is read as “given the heap σ and under the lock assumptions ∆1 and type
assumptions Γ , expression e has type T and some effect which changes ∆1 into
∆2”. The lock environment keeps the assumptions for locks, i.e. whether a lock
is free (denoted by 0), or taken by some thread in which the environment need
to remember how many times it is taken, to capture re-entrance.

The following rules sketch 4 typical effect rules for expressions, concentrating
on the aspects of lock handling and multi-threading:

σ;Γ ; • ` e : T :: ∆′ ∆′ ` free
T-Spawn

σ;Γ ` spawn e : Unit

∆ 6` l
T-NewL

σ;Γ ;∆ ` newL : L :: ∆, (l:0)

Γ ` l : L ∆ ` l
T-Lock

σ;Γ ;∆ ` l. lock: L :: ∆+ l

σ ` l : L ∆ ` l : n+ 1
T-Unlock

σ;Γ ;∆ ` l. unlock: L :: ∆− l

The type and effect system is not only concerned with checking expressions,
the declarations of methods are generalized, as well. We do not require that
method bodies are balanced wrt. lock usage: a method may just take one lock
without releasing it, or vice versa. To ensure, however, that this flexibility does
not lead to lock errors, the declaration of a method does not only contains the
expected balances for all lock parameters but also a requirement on where that
method can be used as a form of precondition for the actual parameters. So
the specification of a method, as far as its effects are concerned, is of the form
m(~x : ~T ){e} : ∆1 → ∆2, and the corresponding rule looks as follows:

` C.m : ~T → T :: ∆1 → ∆2 •; ~x:~T , this:C;∆1 ` e : T :: ∆2
T-Meth

` C.m(~x:~T ){e} : ok

The formal system must make sure that for all client code of the form o.m(~v),
where m is the mentioned method, the call is issued only at a location, where
the balance is at least ∆1:

σ;Γ ` o : C ` C.m : ~T → T :: ∆′
1 → ∆′

2 σ;Γ ` ~v : ~T

∆̂1 = ∆1 ↓~v ~v′ = locksσ(~v) ~x = dom(∆′
1) ∆̂1 ≥ ∆′

1[~v
′/~x]

∆2 = ∆1 + (∆′
2 −∆

′
1)[~v

′/~x]
T-Call

σ;Γ ;∆1 ` o.m(~v) : T :: ∆2

The mentioned pre-condition for method calls corresponds to the premise
∆̂1 ≥ ∆′1[~v′/~x] in the premise of T-Meth. Further premises of that rule handled
well-typedness, but especially make sure that the lock environment ∆2 after the



3

call is calculated from ∆1 before the call by taking the declared net effect of the
method ∆′2 −∆′1 into account.

Since the locks assure mutual exclusion, a lock can be taken only by one
thread at a time, which means the static analysis does not need to take into
account interference between concurrent threads when analysing these balances.

3 Results

Our contributions are:

Semantics: We present an operational semantics for a multi-threaded variant
of Featherweight Java [2] supporting non-lexical use of locks.

Type and effect system: For that calculus, we present a type and effect sys-
tem in terms of a formal derivation system following the ideas sketched
above, to avoid improper use of lock operations.

Soundness : Based on the operational semantics, we prove the soundness of
our formal system by standard subject reduction.

The type and effect system also gives insight about “good” usage of locks in
practice which says that users should pass locks via method calls rather than
via instance fields.

References

1. C. Blundell, E. C. Lewis, and M. K. Martin. Subtleties of transactional memory
atomicity semantics. IEEE Computer Architecture Letters, 5(2), 2006.

2. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In Object Oriented Programming: Systems, Languages,
and Applications (OOPSLA) ’99, pages 132–146. ACM, 1999. In SIGPLAN Notices.

3. E. B. Johnsen, T. Mai Thuong Tran, O. Owe, and M. Steffen. Safe locking for
multi-threaded Java. In Submitted for conference publication, 2010.

4. E. B. Johnsen, T. Mai Thuong Tran, O. Owe, and M. Steffen. Safe locking for multi-
threaded Java. Technical report, University of Oslo, Dept. of Computer Science, Oct.
2010. to appear.

5. T. Mai Thuong Tran, O. Owe, and M. Steffen. Safe typing for transactional vs.
lock-based concurrency in multi-threaded Java. In Proceedings of the Second In-
ternational Conference on Knowledge and Systems Engineering, KSE 2010. IEEE
Computer Society, Oct. 2010. Accepted for publication.

6. T. Mai Thuong Tran and M. Steffen. Safe commits for Transactional Featherweight
Java. In D. Méry and S. Merz, editors, Proceedings of the 8th International Con-
ference on Integrated Formal Methods (iFM 2010), volume 6396 of Lecture Notes in
Computer Science, pages 290–304 (15 pages). Springer-Verlag, Oct. 2010. An earlier
and longer version has appeared as UiO, Dept. of Comp. Science Technical Report
392, Oct. 2009 and appeared as extended abstract in the Proceedings of NWPT’09.

7. M. Steffen and T. M. T. Tran. Safe commits for Transactional Featherweight Java.
Technical Report 392, University of Oslo, Dept. of Computer Science, Oct. 2009. 23
pages. A shorter version (extended abstract) has been presented at the NWPT’09.


	Safe Locking for Multi-Threaded Java[0.1em] September 27, 2010 
	Einar Broch Johnsen, Thi Mai Thuong Tran, Olaf Owe, and Martin Steffen

