
Safe Typing for Transactional vs. Lock-Based Concurrency
in Multi-threaded Java

Thi Mai Thuong Tran and Olaf Owe and Martin Steffen
Department of Informatics

University of Oslo
Oslo, Norway

{tmtran,olaf,msteffen}@ifi.uio.no

Abstract—Many concurrency models have been developed
for high-level programming languages such as Java. A trend
here is towards more flexible concurrency control protocols,
going beyond the original Java multi-threading treatment
based on lexically-scoped concurrency control mechanism.
Two proposals supporting flexible, non-lexical concurrency
control are the lock-handling via the Lock-classes in Java
5 and Transactional Featherweight Java (TFJ), an extension
of Featherweight Java by transactions. Even if these two
take quite different approaches towards dealing with con-
currency —“pessimistic” or lock-based vs. “optimistic” or
based on transactions— the added flexibility of non-lexical
use of the corresponding concurrency operators comes at a
similar price: improper usage leads to run-time exceptions
and unwanted behavior. This is in contrast with the more
disciplined use under a lexically scoped regime, where each
entrance to a critical region is syntactically accompanied by a
corresponding exit (as e.g. with traditional synchronized
methods or as with so-called atomic blocks).

To assure safe use of locking, resp. transactions in these
settings, we present in this paper abstractions in the form of
two static type and effect systems, which make sure that for
instance, no lock is released by a thread which does not hold
it, resp., that no commit is executed outside any transaction.
We furthermore compare the two mentioned approaches to
concurrency control on the basis of these type abstractions.

I. INTRODUCTION

With the advent of multiprocessor and multi-core ar-
chitectures and distributed web-based programs, effec-
tive parallel programming models and suitable language
support are becoming main stream. This includes Java
as the current “default” object-oriented language, where
much research and development concerning support for
concurrency is done.

How to syntactically represent corresponding mecha-
nisms in the language may, of course, vary. One option is
lexical scoping, for instance based on synchronized-
methods/blocks for lock handling in Java, or using an
atomic keyword designating protected regions, or similar
approaches. One trend, however, is towards more flexi-
ble ways going beyond more traditional lexically-scoped
concurrent control where the region protected against
unwanted interference can be started and finished freely.

In this paper, we are concerned with two typical re-
cent proposals in that field, one is the lock-handling
as introduced in Java 5, and the other extends Java by
transactions, namely Transactional Featherweight Java
(TFJ) [1]. Where Java 5 uses lock and unlock for ac-
quiring and releasing re-entrant locks, TFJ uses onacid

and commit as keywords to start, resp. terminate a trans-
action. Even if these two take quite different approaches
towards dealing with concurrency —“pessimistic” or lock-
based vs. “optimistic” or based on transactions— the
added flexibility of non-lexical use of the corresponding
concurrency operators comes at a similar price: improper
use leads to run-time exceptions and unwanted behaviors.
This is in contrast with the more disciplined use under
a lexically scoped regime, where each entering a critical
region is syntactically accompanied by a corresponding
exit of it (as for instance with traditional synchronized
methods). In this paper we compare the two approaches,
in particular we present and compare two type-and-effect
based abstractions for both concurrent models that prevent
unsafe uses of the concurrency operators.

The paper is organized as follows. After comparing the
two languages in Section II, we sketch corresponding type
and effect systems for each in the Section III. Section IV
gives the conclusion by discussing related and future work.

II. TRANSACTIONAL VS. LOCK-BASED CONCURRENCY
CONTROL

In this section we shortly highlight aspects of transac-
tional Java resp. of lock handling in Java 5, relevant for
our abstractions. Concerning details for safe commits in
TFJ, we refer to [2].

Transactional Featherweight Java: Transactions, a
well-known and successful concept originating from
database systems [3], [4], have recently been proposed
to be directly integrated into programming languages.
As mechanism for concurrent control, they can be seen
as a high-level, more abstract, and more compositional
alternative to more conventional means for concurrent
control, such as locks, semaphores, monitors, etc.

A recent proposal for integrating transactional features
into programming languages is TFJ. The start of a transac-
tion in TFJ programs is marked by onacid keyword and the
end by commit keyword. The transactional model of TFJ
is quite general. Transactions can be started and committed
with non-lexical scope. It supports nested transactions
which means a transaction can contain one or more child
transactions, which is very useful for composability and
partial rollback. Furthermore, TFJ supports multi-threaded
transactions, i.e., one transaction can contain internal
concurrency. TFJ threads in a parent transaction can exe-
cute concurrently with threads in nested transactions. To

http://www.ifi.uio.no/~tmtran
http://www.ifi.uio.no/~owe
http://www.ifi.uio.no/~msteffen

commit an entire parent transaction, all its child threads
must join (via a commit), in other words all threads in the
parent transaction including the parent thread must commit
at the same time. Table I sketches the abstract syntax used
in our analysis, a variant of Featherweight Java.

P ::= 0 | P ‖ P | t〈e〉 processes/threads
L ::= class C{~f : ~T ;K; ~M} class definitions
K ::= C(~f : ~T){this.~f := ~f} contructors
M ::= m(~x:~T){e} : T methods
e ::= v | v. f | v. f := v expressions

| if vtheneelsee | e; e | v.m(~v) expressions
| new C(~v) | spawn e
| onacid | commit

v ::= r | x | null values

Table I
ABSTRACT SYNTAX

Java 5 locks: The built-in support for concurrent con-
trol in Java is lock-based; each object comes equipped
with a (re-entrant) lock, which can be used to specify
synchronized blocks and, as a special case, synchronized
methods. The lock can achieve mutual exclusion between
threads that compete for the lock before doing something
critical. Thus, the built-in, lock-based (i.e., “pessimistic”)
concurrent control in Java offers lexically scoped pro-
tection based on mutual exclusion. While offering basic
concurrent control, the scheme has been criticized as too
rigid, and consequently, Java 5 now supports explicit locks
with non-lexical scope. The ReentrantLock class and
the Lock interface allow more freedom. Thus, on a
purely syntactical level, Java 5 allows to handle locks
similar as TFJ handles transactions: instead of onacid and
commit in TFJ, the methods lock and unlock are used.
Basically, the syntax therefore is the one of Table I with
the mentioned replacement (and additionally, we consider
exceptions, which are good practice when programming
with locks.) Apart from those syntactical similarities,
there are of course differences especially wrt. failure and
progress properties. See e.g., [5] for a discussion of such
differences.

Comparison

Besides the more behavioral differences, such as dif-
ferent progress guarantees, deadlocking behavior etc., the
lock handling in Java 5 and the transactional model of TFJ
differ in the following aspects, which are relevant for type
analysis. The differences are summarized in Table II.

One basic difference is that we proposed a static scheme
to catch commit errors, whereas in Java, improper use of
locking and unlocking is checked at run-time. In Section
III-B, we sketch a static type and effect system to avoid
such run-time checks. Both languages, as mentioned, have
all the flexibility of non-lexical scoping. The rest of
Table II deals with the structure of protected areas (the
transaction or the execution protected by a lock) and the
connection to the threading model.

Java 5.0 TFJ
when? run-time compile time
non-lexical scope yes yes
program level identity yes no
re-entrance yes no
nested transactions (critical
sections)

no yes

internal multi-threading no yes

Table II
TRANSACTIONAL FEATHERWEIGHT JAVA AND EXPLICIT LOCKS OF

JAVA

One difference is that locks have an identity available
at the program level, whereas transactions have not. Fur-
thermore, locks and monitors in Java are re-entrant, i.e.,
one particular thread holding a lock can recursively re-
enter a critical section or monitor. Re-entrance is not an
issue in TFJ: a thread leaves a transaction by committing
it (which terminates the transaction), hence re-entrance
into the same transaction makes no sense. Transactions
in TFJ can be nested. Of course, in Java, a thread can
hold more than one lock at a time; however, the critical
sections protected by locks do not follow a first-in-last-
out discipline, and the sections are not nested as they
are independent. For nested transactions in contrast, a
commit to a child transaction is propagated to the sur-
rounding parent transaction, but not immediately further,
until that parent commits its changes in turn. Finally, TFJ
allows concurrency within a transaction (supporting multi-
threaded transactions), whereas monitors and locks in Java
are meant to ensure mutual exclusion. In particular, if an
activity inside a monitor spawns a new thread, the new
thread starts executing outside any monitor, in other words,
a new thread holds no locks.

III. STATIC ABSTRACTIONS FOR SAFE CONCURRENCY
CONTROL

The flexibility of non-lexical use of onacid and commit
comes at a cost: not all usages “make sense”. In particular,
it is an error to perform a commit without being inside
a transaction. This similarly happens in Java 5 when
releasing a lock, i.e., calling the unlock method on a
lock without actually owning it.

In Section III-A and III-B, we sketch two type and effect
systems which statically allow to prevent such errors. The
two effect systems share some similarities: The basic idea
in both is to abstractly keep track of the number of onacids
and commit, resp. of lock and unlock. The differences
in the analysis, on the other hand, reflect the differences
discussed earlier and summarised in Table II.

A. Type and effects for transaction handling

The purpose of our formal system is to determine
correct usage of starting and committing transactions, in
particular to avoid committing when one is not inside
a transaction. We call such erroneous situations commit
errors. To prevent them, we basically keep track per thread
of the number of onacids minus the number of commits

encountered (which we call the balance) at a given point
in the code. The general form of a judgment for a single
expression (i.e., inside one thread) is of the form:

Γ; n1 ` e : T & n2,S (1)

The judgment is read as “under the assumption Γ, the
expression e has the type T and evaluating e which starts
with a balance of n1 will lead to a balance of n2”. The
multi-set S of integers mentioned in the post-condition
takes care of the balance of new threads spawned by e.

The situation is slightly more involved, as TFJ supports
nested and multi-threaded transactions. For instance, to
commit a transaction, all threads inside must join to
commit at the same time. To adequately take care of
this form of multi-threading inside a transaction, the
multi-set S of equation (1) is needed, which calculates
the balance for potentially all threads concerned, i.e, all
threads (potentially) spawned during that execution.

Table III sketches four typical rules for expressions,
concentrating on the aspects of transaction handling and
multi-threading.

T-ONACID
Γ; n ` onacid : Void & n+1, /0

n≥ 1
T-COMMIT

Γ; n ` commit : Void & n−1, /0

Γ; n0 ` e1 : T1 & n1,S1 Γ; n1 ` e2 : T2 & n2,S2
T-SEQ

Γ; n0 ` e1; e2 : T2 & n2,S1∪S2

Γ; n ` e : T & n′,S
T-SPAWN

Γ; n ` spawn e : Void & n,S∪{n′}

Table III
TYPE AND EFFECTS FOR TFJ

The first basic two rules (cf. rule T-ONACID and
T-COMMIT) are to start and commit a transaction. The
dual two commands of onacid and commit simply in-
crease, resp. decrease the balance by 1. In a sequential
composition (cf. rule T-SEQ), the effects are accumulated.
Creating a new thread by executing spawne has the type
of Void and does not change the balance of the executing
thread (cf. rule T-SPAWN). The spawned expression e in
the new thread is analyzed starting with the same balance
n in its pre-state.

The type and effect system is not only concerned with
checking expressions, the declarations of methods are gen-
eralized, as well. We do not require that method bodies are
balanced (which would correspond to a lexically scoped
discipline for transactions): a method may perfectly well
be used to implement code for committing a transaction.
To ensure, however, that this flexibility does not lead to
commit errors, the declaration of a method does not only
contains the expected balance of the method body, but also
a requirement on where that method can be used as a form

of precondition. So the specification of a method, as far
as its effects are concerned, is of the form

m(~x : ~T){e} : n1→ n2 ,

where n1 is the balance after evaluating the previous
expression before calling the method m and n2 is the
balance after evaluating the body e of the method. The
corresponding rule looks as follows:

~x:~T , this:C; n1 ` e : T & n2,{0, . . .}
T-METH

` m(~x : ~T){e} : T & n1→ n2,{0, . . .}

In this rule, we require that all spawned threads in the
method body must have the balance 0 after evaluating the
expression e, that the balance of the method itself has the
form n1 → n2 where n1 is interpreted as pre-condition,
i.e., it is safe to call the method only in a state where the
balance is at least n1. The number n2 as the post-condition
corresponds to the balance after exiting the method, when
called with balance n1 as pre-condition. The precondition
n1 is needed to assure that at the call-sites the method is
only used where the execution of the method body does
not lead to a negative balance.

B. Type and effects for lock handing

As mentioned, in comparison to earlier Java versions,
Java 5 introduced a more flexible way to use re-entrant
locks. The types we use in our calculus are given in
equation (2).

T ::= C | B | Void | L (2)

In a nominal type system, class names C serve as types.
In addition, B represents basic types (left unspecified)
such as booleans, integers etc. Void expresses the absence
of a value, i.e., it is used for expressions evaluated for
their side-effect, only. Specially, the distinguished type
L is used for ReentrantLock objects. In order to capture
effects related to locks, we use locks environment ∆ as an
additional part to the type environment for building the
type and effect system. The ∆’s are the abstractions of
balances of the locks, i.e., they can be seen as mapping
of type L→ Nat and defined in (3).

∆ ::= /0 | {l1 : n1, l2 : n2 . . .} (3)

Here ∆ = /0 says that there is no lock taken by some thread;
it can be an empty set or a set of free locks l[0]. (l : n)
says that the lock l is taken n times by some thread.

Next we present a generalization of the type and effect
system to deal with locks. The most important difference is
that locks have an identity and thus can be shared between
threads. Indeed, locks are meant to be shared between
threads and one could say, a crucial advantage of trans-
actions over lock-based concurrency from the perspective
of the user is that the user can obtain non-interference
without the need of identifying individual locks.

In our setting, we assume in the analysis that the locks
are statically known. For example, in concrete Java, the

locks are public static fields of classes in the system. Under
this assumption the generalization from the transactional
setting is straightforward: it is no longer enough to use the
nesting depth inside transactions, we need to keep track
of the “balance” of a thread individually per lock. So the
type judgments for expressions are of the form:

Γ;∆1 ` e : T & ∆2 (4)

It is read as (“under lock and type assumptions Γ,
expression e has type T and some effect which changes
∆1 into ∆2”).

The type environment Γ keeps the type assumptions
for local variables, basically the formal parameters of a
method body and the fields. Environments Γ are of the
form x1:T1, . . . ,xn:Tn, where we silently assume the xi’s
are all different. This way, Γ is also considered as a finite
mapping from variables to types. By dom(Γ) we refer to
the domain of that mapping and write Γ(x) for the type of
variable x in Γ. Furthermore, we write Γ,x:T for extending
Γ with the binding x:T , assuming that x /∈ dom(Γ).

The lock environment ∆ keeps the lock assumptions for
locks, whether a lock is free (denoted by 0) or taken, where
the natural number indicates how many times it is taken,
which captures re-entrance. Since the locks assure mutual
exclusion, a lock can be taken only by one thread at a
time, which means the static analysis does not need to take
into account interference between concurrent threads when
analysing these balances. Another difference between the
judgements for lock handling and the one for transactions
is that the multi-set in the post-environment is not needed
here (cf. again equation (1)).

This highlights another difference between transactions
and locks from Table II, namely transactions in TFJ allow
internal non-determinism whereas locks assure mutual
exclusion: A newly spawned thread in Java does not
“inherit” the locks of its spawning thread, whereas a new
thread in TFJ starts executing inside the same transactions
as its spawner. The latter is the reason why one needs the
multi-set S of balances of spawned threads in equation (1).

Typical rules of the type and effect system are given
inductively in Table IV. The first 2 rules deal with
acquiring and releasing a lock. Here each lock has a
name; therefore, the dual two method invocations on the
lock object l simply increase, resp. decrease the balance
of that specific lock by 1, leaving all others in Γ un-
changed. The first rule T-LOCK deals with acquiring a
lock, which increases the balance of the lock by 1 in
the post-configuration. The next rule T-UNLOCK deals
with unlocking. Note, of course, there is no rule that
allows unlocking a free lock, i.e., such a situation does
not type check and represents a lock error. Rule T-SEQL
is the standard rule for sequential composition, where
the post-condition of the first expression is taken as the
precondition of the second. As for the typing part, the
type of the sequential composition corresponds to the type
of the second expression, but the effect is accumulated.
This rule assumes that no exception is raised in e1; we

Γ ` l : L
T-LOCK

Γ;∆, l:n ` l.lock : Void & ∆, l:(n+1)

Γ ` l : L n≥ 1
T-UNLOCK

Γ;∆, l:n ` l.unlock : Void & ∆, l:(n−1)

Γ;∆ ` e1 : T1 & ∆1 Γ;∆1 ` e2 : T2 & ∆2
T-SEQL

Γ;∆ ` e1; e2 : T2 & ∆2

Γ; /0 ` e : T & /0
T-SPAWNL

Γ;∆ ` spawn e : Void & ∆

~x:~S,this:C;∆1 ` e : T & ∆2
T-METHL

` m(~x : ~S){e} : ~S→ T & ∆1→ ∆2

Table IV
TYPE AND EFFECTS FOR JAVA 5

omit exceptions here for simplicity. Creating a new thread
by spawne does not change the balance of the lock in
the executing thread (cf. rule T-SPAWNL). The spawned
expression e in the new thread is analyzed starting from
the abstraction where all locks are assumed to be free,
i.e., more precisely, from the perspective of the thread that
executes the spawned e, no lock has been taken yet. Note
again the contrast to the corresponding rule T-SPAWN for
the transactional setting. The final rule T-METHL deals
with method declaration. Note that the effect on the lock
is assumed to be part of the interface specification of the
method, in the same way as the input/output types are.

IV. CONCLUSION

In this paper, we have presented a comparison between
TFJ, an extended version of Featherweight Java with
support for transaction-based concurrent control, and Java
5, an extended version of Java for lock-based concurrent
control. Both languages provide users syntactic constructs
to deal with transactions and locks with non-lexical scope.
TFJ paper [1] is not concerned with static analysis, but de-
velops and investigates two different operational semantics
for TFJ that assure transactional guarantees.

As mentioned, however, the flexibility of TJF may lead
to run-time errors when executing a commit outside any
transaction; we called such situations commit-errors. Java
5.0 also introduces a similar problem when it allows users
to explicitly use operations acquiring and releasing lock
objects with non-lexical scope. It is always possible that
users can incorrectly use these operations, and hence cause
unexpected situations. Java 5 deals with this by throwing
an exception which interrupts the whole system. There-
fore, in this paper, we sketched some rules of our type
and effect systems for both TFJ and Java 5 to statically
prevent such errors. We proved the soundness of our type
and effect system for TFJ in [2] resp. the corresponding
technical report. Further considerations about exceptions
related to incorrect usage of locks which might happen in

Java 5 will be discussed in our future work.

Future work

The work presented here can be extended to deal
with more complex language features, for instance when
dealing with higher-order functions. In that setting, the
effect part and its connection to the type system become
challenging. Furthermore, we plan to adopt the results for
a different language design, more precisely to the language
Creol [6], which is based on asynchronously communicat-
ing, active objects, in contrast to Java, whose concurrency
is based on multi-threading. We plan to use generalize the
techniques described for Java locking to handle dynamic
creation of locks, as well. That will complicate the account
quite a bit, as one has to deal with aliasing and passing
around identities of newly created locks. Interesting and
of practical relevance is also to extend the system from
considering type and effect checking to type inference,
potentially along the lines [7].

Related work

There has been a number of further proposals for
integrating transactional features into programming lan-
guages, e.g. AtomCaml [8], X10 [9], Fortress [10], Chapel
[11]. [12] proposes to reconcile transactions and locking
in the context of Java monitors. The goal there is to
“get the best of both worlds”, i.e. pessimistic, lock-based
concurrency in high-contention situations and using trans-
actional computing when there is little contention. The
formal development to assure sound co-existence of lock-
based and transaction-based implementation is based on a
formal calculus similar to the one used here (CJ “Classic
Java” [13]). The paper [14] presents the AME calculus,
a calculus for automatic mutual conclusion, a concept
proposed in [15]. The sequential core is a λ -calculus
with references and imperative update, extended by the
possibility to create asynchronous threads and means for
atomic execution. Unlike other approaches, where the user
is required to mark parts of the code intended for atomic
execution, in AME, atomic execution is the default. For
code parts where transactional behavior is not intended or
possible (for instance, legacy code from libraries) can be
marked as unprotected. A calculus and a proof method
(implemented in the tool QED) for atomic actions is
presented in [16].

For transactional languages, lexical scope for trans-
actions, so-called atomic blocks, have been proposed,
using e.g., an atomic-construct or similar. Examples
are Atomos [17], the AME calculus [14], and many
proposals for software transactional memory [18], [19],
[11]. Besides, many early language designs, especially for
data base programming, supported non-lexical scoping of
the transactional constructs, cf. e.g. CICS [20], Camelot
[21], Argus [22]. A recent proposal to integrate software
transactional memory into a full-fledged general purpose
language is Clojure [23], an extension of Lisp.

Static analysis is a well-established method to assure
desired properties ranging from resource consumption

(e.g., concerning memory, time . . .), absence of deadlocks
and race conditions. When dealing with concurrency,
most authors (e.g., [24], [25] . . .) focus on avoiding data
races and deadlocks, especially for multi-threaded Java
programs. Static type systems have also been used to
impose restrictions assuring transactional semantics, for
instance in [26], [14], [15]. A type system for atomicity is
presented in [27], [28]. Also the Rcc/Java type system tries
to keep track of which locks are held (in an approximate
manner), noting which field is guarded by which lock, and
which locks must be held when calling a method. [29]
present a Hoare-logic, more precisely a separation logic,
for re-entrant locks, but without exceptions. The treatment
of the locks, resp. the transactions in this paper is related
also to type systems governing resource usage where the
possession of the lock or the having started a transaction
is corresponds to the resource in question. There have
been quite a number type-based approaches to assure
proper usage of resources of different kinds (for instance
file access, i.e., to govern the opening and closing of
files). See[7] for a recent, rather general formalization for,
what the authors call, the resource usage analysis problem
(see the paper also for further pointer to the literature
for approaches to safe resource usage). Unlike the type
system explained here, [7] consider also type inference (or
type reconstruction). Their language, a variant of the λ -
calculus, however, is sequential. The approach is applied
in [30] in a concurrent setting for the π-calculus. [31],
[32] present a type system for statically assuring proper
lock handling for the JVM, i.e., on the level of byte code.
Their system assures what is known as structured locking,
i.e., (in our terminology), each method body is balanced
as far as the locks are concerned, and at no point, the
balance reaches below 0. Since the work does not consider
non-lexical locking as in Java 5, the conditions apply per
method only.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful
comments and suggestions. The work has been partly sup-
ported by the EU-project and FP7-231620 HATS (Highly
Adaptable and Trustworthy Software using Formal Meth-
ods).

REFERENCES

[1] S. Jagannathan, J. Vitek, A. Welc, and A. Hosking, “A
transactional object calculus,” Science of Computer Pro-
gramming, vol. 57, no. 2, pp. 164–186, August 2005.

[2] T. Mai Thuong Tran and M. Steffen, “Safe commits for
Transactional Featherweight Java,” in Proceedings of the
8th International Conference on Integrated Formal Meth-
ods (iFM 2010), ser. Lecture Notes in Computer Science,
D. Méry and S. Merz, Eds. Springer-Verlag, Oct. 2010,
accepted for publication. An earlier an longer version has
appeared as UiO, Dept. of Comp. Science Technical Report
392, Oct. 2009.

[3] G. Weikum and G. Vossen, Fundamentals of Transactional
Information Systems: Theory, Algorithms, and the Practice
of Concurrency Control and Recovery. Morgan Kaufmann,
2001.

http://www.cse.chalmers.se/research/hats/

[4] J. Gray and A. Reuter, Transaction Processing. Concepts
and Techniques. Morgan Kaufmann, 1993.

[5] C. Blundell, E. C. Lewis, and M. K. Martin, “Subtleties
of transactional memory atomicity semantics,” IEEE Com-
puter Architecture Letters, vol. 5, no. 2, 2006.

[6] E. B. Johnsen, O. Owe, and I. C. Yu, “Creol: A type-safe
object-oriented model for distributed concurrent systems,”
Theoretical Computer Science, vol. 365, no. 1–2, pp. 23–
66, Nov. 2006.

[7] A. Igarashi and N. Kobayashi, “Resource usage analysis,”
ACM Transactions on Programming Languages and Sys-
tems, vol. 27, no. 2, pp. 264–313, 2005.

[8] M. F. Ringenburg and D. Grossman, “AtomCaml: First-
class atomicity via rollback,” in ACM International Con-
ference on Functional Programming. ACM, 2005, pp.
92–104, in SIGPLAN Notices.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An
object-oriented approach to non-uniform cluster comput-
ing,” in Twentieth Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA) ’05. ACM, 2005,
pp. 519–538, in SIGPLAN Notices.

[10] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. S. Jr., and S. Tobin-Hochstadt, “The Fortress language
specification,” Sun Microsystems, 2005.

[11] Cray, “Chapel specification,” Feb. 2005.

[12] A. Welc, A. L. Hosking, and S. Jagannathan, “Transpar-
ently reconciling transactions with locking for Java syn-
chronization,” in European Conference on Object-Oriented
Programming (ECOOP 2006), ser. Lecture Notes in Com-
puter Science, D. Thomas, Ed., vol. 4067. Springer-Verlag,
2006, pp. 148–173.

[13] M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and
mixins,” in Proceedings of POPL ’98. ACM, 1998, pp.
171–183.

[14] M. Abadi, A. Birell, T. Harris, and M. Isard, “Semantics
of transactional memory and automatic mutual exclusion,”
in Proceedings of POPL ’08. ACM, Jan. 2008.

[15] M. Isard and A. Birell, “Automatic mutual exclusion,”
in Proceedings of the 11th Workshop on Hot Topics in
Operating Systems, 2007.

[16] T. Elmas, S. Qadeer, and S. Tasiran, “A calculus of atomic
actions,” in Proceedings of POPL ’09. ACM, Jan. 2009.

[17] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C.
Minh, C. Kozyrakis, and K. Oluktun, “The ATOMOΣ

transactional programming language,” in ACM Conference
on Programming Language Design and Implementation
(Ottawa, Ontario, Canada). ACM, Jun. 2006.

[18] T. Harris and K. Fraser, “Language support for lightweight
transactions,” in Eighteenth Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA) ’03.
ACM, 2003, in SIGPLAN Notices.

[19] A. Welc, S. Jagannathan, and A. Hosking, “Transactional
monitors for concurrent objects,” in 18th European Con-
ference on Object-Oriented Programming (ECOOP 2004),
ser. Lecture Notes in Computer Science, M. Odersky, Ed.,
vol. 3086. Springer-Verlag, 2004, pp. 519–542.

[20] P. Helland, “Transaction monitoring facility,” Database
Engineering, vol. 8, no. 1, pp. 9–18, Jun. 1988.

[21] J. L. Eppinger, L. B. Mummert, and A. Z. Spector, Camelot
and Avalon: A Distributed Transaction Facility. Morgan
Kaufmann, 1991.

[22] B. Liskov, D. Curtis, P. Johnson, and R. Scheifler, “The
implementation of Argus,” in Proceedings of SOSP’87:
Symposium on Operating Systems Principles, 1987, pp.
111–122.

[23] R. Hickey, “The Clojure language home page,” 2010.
[Online]. Available: http://clojure.org

[24] C. Boyapati, R. Lee, and M. Rinard, “A type system for
preventing data races and deadlocks in Java programs,” in
In Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, 2002,
pp. 211–230.

[25] M. Abadi, C. Flanagan, and S. N. Freund, “Types for
safe locking: Static race detection for Java,” ACM Trans.
Program. Lang. Syst., vol. 28, no. 2, pp. 207–255, 2006.

[26] T. Harris, S. M. S. Peyton Jones, and M. Herlihy, “Compos-
able memory transactions,” in PPoPP’05: 10th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, Jun. 2005, pp. 48–60.

[27] C. Flanagan and S. Quadeer, “A type and effect system
for atomicity,” in ACM Conference on Programming Lan-
guage Design and Implementation (San Diego, California).
ACM, Jun. 2003.

[28] C. Flanagan and S. Freund, “Atomizer: A dynamic atom-
icity checker for multithreaded programs,” in Proceedings
of POPL ’04. ACM, Jan. 2004, pp. 256–267.

[29] C. Haack, M. Huisman, and C. Hurlin, “Reasoning about
Java’s reentrant locks,” in APLAS 2008, ser. Lecture Notes
in Computer Science, G. Ramalingam, Ed., vol. 5356.
Springer-Verlag, 2008, pp. 171–187.

[30] N. Kobayashi, K. Suenaga, and L. Wischik, “Resource
usage analysis for the π-calculus,” in Proceedings of VM-
CAI 2006, ser. Lecture Notes in Computer Science, E. A.
Emerson and K. S. Namjoshi, Eds., vol. 3855. Springer-
Verlag, 2006, pp. 298–312.

[31] G. Bigliardi and C. Laneve, “A type system for JVM
threads,” in In Proceedings of 3rd ACM SIGPLAN Work-
shop on Types in Compilation (TIC2000, 2000, p. 2003.

[32] C. Laneve, “A type system for JVM threads,” Theoretical
Computer Science, vol. 290, no. 1, pp. 741 – 778, 2003.

http://clojure.org

	Introduction
	Transactional vs. lock-based concurrency control
	Static abstractions for safe concurrency control
	Type and effects for transaction handling
	Type and effects for lock handing

	Conclusion
	References

