
The Abstract Behavioral Specification Language
(ABS)

Martin Steffen
with thanks to Reiner, Einar, Rudi, Jan . . .

University of Oslo, Norway

FCMO’10, Graz

November 2010

http://www.ifi.uio.no/~msteffen
http://www.uio.no
http://fmco.liacs.nl/fmco10.html


The HATS project

HATS: Highly Adaptable and Trustworthy Software using
Formal Models



Ingredients

Main Ingredients

1 Executable, formal modeling language for adaptable software:
Abstract Behavioral Specification (ABS) language

2 Tool suite for ABS/executable code analysis & development:

“Hard” feature consistency, security,
property verification, code generation, type safety. . .

“Soft” simulation, visualization, test case generation,
specification mining, . . .

Develop analyses in tandem with ABS to ensure feasibility

3 Methodological and technological framework integrating
HATS tool architecture and ABS language



Project objectives

High adaptability combined with high trustworthiness

Challenges

Concurrency

Distributedness

Invasive composition

different deployment scenarios

Rapidly changing requirements

Unanticipated requirements

Trustworthiness (correctness, security, reliability, efficiency)



Main objectives of ABS

Specification gap for large systems

Implementation-oriented Spec#, Java+JML

? ?

Design-oriented UML, FDL

Specification level Modeling formalisms

Abstract behavioral Hats ABS language



Design principles

ABS is designed with analysability and verifiability in mind

Expressivity, richness, etc., represent trade-offs

More practical than “pure” formalisms such as π-calculus,
Petri-nets

State-of-art programming language concepts

Modeling of realistic software

Easier to specify/analyse than implementation-level languages

Various abstraction mechanisms:

modularize (separate concerns, encapsulate)
permit incremental algorithms

Modeling of variability a first-class concept



ABS Language Features

Core ABS

Formal semantics

Layered architecture: simplicity, separation of concerns

Executability: rapid prototyping, visualization

Abstraction: underspecification, non-determinism

Realistic, yet language-independent concurrency model

Component object groups structure composition of concurrent
objects

Assertion language: first-order contracts for methods, classes

Full ABS

Syntactic module system

Feature modeling language

Behavioural interface specifications



ABS Language Features

Core ABS

Formal semantics

Layered architecture: simplicity, separation of concerns

Executability: rapid prototyping, visualization

Abstraction: underspecification, non-determinism

Realistic, yet language-independent concurrency model

Component object groups structure composition of concurrent
objects

Assertion language: first-order contracts for methods, classes

Full ABS

Syntactic module system

Feature modeling language

Behavioural interface specifications



Abstractions in the Core ABS

Abstractions coming with the Creol subset

Communication environment: unordered asynchronous
messages

Release points: underspecified scheduling of internal activities

Interfaces as types: implementation independent, modularity

ADTs: avoid representation objects and related reasoning
problems

Abstractions coming with Concurrent Object Groups

Concurrency: lifts Creol’s concept of cooperative
scheduling to groups of objects

At most one activity inside the group,
all other activies are suspended



Core ABS

What Core ABS does

Addresses distributed and concurrent software
Features user defined ADTs to abstract from repr. objects
Synchronization in Core ABS is user-decided
Executable
Prototype tool chain and Maude interpreter finished
Rudimentary contract-based assertion language

What Core ABS does not

Support SPL development, variability, features and feature
integration
Provide structuring concepts beyond interfaces, classes, and
methods
Modules, arch. components, superclasses, traits, deltas, . . .
Behavioral interface specifications



Layered ABS Language Design

Behavioral Interface Specs

Contracts, Assertions

Feature Modeling
Language

Delta
Programming

Architectural
Components

Syntactic Modules

COGs

Object Model

CoreCreol

Side-effect free expressions
ADT

Core

Done



Abstract Datatypes

data Bool = True | False; // built−in
data Unit = Unit; // built−in
data IntList = Nil | Cons(Int, IntList);
data List<A> = Nil | Cons(A, List<A>); // Parametric type
type IntList = List<Int>; // type synonym



Functional Sublanguage

def Int length(IntList list) = //
case list { // definition by case distinction and matching
Nil => 0 ;
Cons(n, ls) => 1 + length(ls) ;
_ => 0 ; // anonymous variable matches anything

} ;

def A head<A>(List<A> list) = // parametric function
case list {
Cons(x, xs) => x;

} ;

def A fromJust<A>(Maybe<A> a) =
case a {
Just(x) => x; // unbound variable used to extract value

} ;



Interfaces and classes

No class/code inheritance

Implementation of multiple interfaces ok

Sub-interfaces ok

interface Bar extends Baz { // Baz must be interface
Method1;
Method2;
...

}

class Foo(T x, U y) implements Bar, Baz { // = constructor
T f = expr ; U g ; // fields with optional initialization
{ Initblock } // optional initialization block
Method1 // method declarations
Method2
...

}



Interfaces and classes

No class/code inheritance

Implementation of multiple interfaces ok

Sub-interfaces ok

interface Bar extends Baz { // Baz must be interface
Method1;
Method2;
...

}

class Foo(T x, U y) implements Bar, Baz { // = constructor
T f = expr ; U g ; // fields with optional initialization
{ Initblock } // optional initialization block
Method1 // method declarations
Method2
...

}



Active Classes

Objects from active classes start activity upon creation

Characterized by presence of run() method

Passive classes react only to incoming calls

Unit run() {
// active behavior ...

}



Methods

File getFile(String f, DataBase d) {
// Method Body (block)

}

Annotations

Methods (and classes, interfaces) can carry annotations:
contracts, invariants, . . .



Blocks, Statements

Blocks

Sequence of variable declarations and statements

Data type variables must be initialized

Reference type variables are null by default

Statements in block are scope for declared variables

Statements

Variable declarations

Assignments

while−do, if−then−else

await, suspend

(Method calls are expressions and appear e.g. in right sides of
assignments)



Method Calls

Synchronous Method Calls

Syntax: caller .m(e)

Java-like synatx and semantics

Execution of caller method blocks

Synchronisation is explicit decision of designer

Asynchronous Method Calls

Syntax: caller !m(e)

Execution of caller method continues

futures

Variables that contain not yet available values have future
type

Fut<T> v; ...; v = o!m(e);



Method Calls

Synchronous Method Calls

Syntax: caller .m(e)

Java-like synatx and semantics

Execution of caller method blocks

Synchronisation is explicit decision of designer

Asynchronous Method Calls

Syntax: caller !m(e)

Execution of caller method continues

futures

Variables that contain not yet available values have future
type

Fut<T> v; ...; v = o!m(e);



Component Object Groups (COGs)

COG

One activity at a time

Cooperative scheduling

One lock

Synchronous calls

Callbacks (recursion) ok

Shared access to data

COG′

COG′′

asynch. call / message pas
sin

g

no reentrance
in same thread



Scheduling and Synchronisation

Yielding execution

suspend command yields lock to other task in COG

Unconditional scheduling point

Synchronization of concurrent activities

Wait until result of an asynchronous computation is ready

await g, where g is a monotonically behaving polling guard
expression over v? and v is a future reference

Retrieve result of asynchronous computation and copy into a
future

v.get, where v is a future referring to a finished task

Programming idiom:
Fut<T> v;...; v = o!m(e );...; await v?; r = v.get;

Conditional scheduling point



Scheduling and Synchronisation

Yielding execution

suspend command yields lock to other task in COG

Unconditional scheduling point

Synchronization of concurrent activities

Wait until result of an asynchronous computation is ready

await g, where g is a monotonically behaving polling guard
expression over v? and v is a future reference

Retrieve result of asynchronous computation and copy into a
future

v.get, where v is a future referring to a finished task

Programming idiom:
Fut<T> v;...; v = o!m(e );...; await v?; r = v.get;

Conditional scheduling point



HATS Basic Tool Chain

ABS Model Files Eclipse Plugin/Emacs Mode

Parser

Raw AST

Name Resolution

Resolved AST

Type Checker

Type-Checked AST

Maude Backend Java Backend

Maude Files Java Files

Maude VM Java VM

external data

internal data

ABS tool

existing tool

Legend



Layered ABS Language Design

Behavioral Interface Specs

Contracts, Assertions

Feature Modeling
Language

Delta
Programming

Architectural
Components

Syntactic Modules

COGs

Object Model

CoreCreol

Side-effect free expressions
ADT

Core

Done




	Approach
	Core language
	Functional Sublanguage
	
	
	
	

	Object Model
	
	
	

	Imperative Sublanguage
	

	Concurrency Model
	Tool Chain
	Conclusion

