
Model Testing Asynchronously Communicating
Objects using Rewriting Modulo AC

Olaf Owe1, Martin Steffen1, and Arild B. Torjusen1,2

University of Oslo

Norsk Regnesentral

MBT’10, Παφωσ

http://www.ifi.uio.no/~msteffen
http://www.uio.no

Structure

1 Introduction

2 Testing Creol objects

3 Rewriting logic implementation and experimental results

4 Conclusion

1 Introduction

2 Testing Creol objects

3 Rewriting logic implementation and experimental results

4 Conclusion

Background
• Project:

• modelling asynchronously communicating components in open
envqironments

• object-oriented

• behavioral interface descriptions
• automated verification and testing techniques

• Challenges
• asynchronicity ⇒non-determinism ⇒state space explosion.

• Approach:
• tackle complexity by “divide-and-conquer”
• black-box behavior given by interactions at the interface

General setting
Goal: Test components under environment assumptions/schedulings

Approach: Specification language over communication labels

• input interactions: environment assumptions.

• output interactions: commitments of the component.

⇒ expected observable output behavior under the assumption of a
certain scheduling of input.

Method: Specification simulates environment behavior.

• execute component and specification in parallel

• generate incoming communication from specification

• test actual outgoing communication from the component

Main contributions

1 Theoretical basis:
• formalization of the interface behavior of an asynchronous OO

modelling language.

2 Framework for scheduling asynchronous testing of objects.
• executable specification language
• method for composing specifications and components under test
• implementation of a test framework

3 Use Maude’s rewriting modulo AC to test only up to
observational equivalence.

4 Use Maude’s search for state exploration (rewriting modulo AC).

5 Experimental results, comparing:
• modulo AC rewriting.
• explicit reordering of output events.

Creol
Creol (www.uio.no/~creol): object-oriented modelling language
for distributed systems

• model distributed systems at a high level of abstraction.

• strongly typed, formal operational semantics in rewriting logic

• active concurrent objects

• communication by asynchronous method calls.

• Creol object: acts as a monitor .

• cooperative scheduling, i.e., explicit and conditional release/yields
etc.

• non-deterministic selection of suspended processes and incoming
calls.

www.uio.no/~creol

Abstract syntax

C ::= 0 | C ‖ C | ν(n:T).C | c[(F , M)] | o[c, F , L] | n〈t〉 component
F ::= l = f , . . . , l = f fields
M ::= l = m, . . . , l = m method suite
m ::= ς(n:T).λ(x :T , . . . , x :T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n′ field
t ::= v | stop | let x :T = e in t thread
e ::= t | if v = v then e else e | if undef(v .l()) then e else e expr.

| v@l(~v) | v .l(~v) | v .l() | v .l := ς(s:T).λ().v
| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | ⊤ lock status

• component: classes, objects, and (named) threads.

• active, executing entities: named threads n〈t〉

• hiding and dynamic scoping: ν -operator

Interface interactions
• Steps occurring at the interface.

• Component/environment: exchange information via call- and
return-labels:

γ ::= n〈call n.l(~v)〉 | n〈return(n)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! input and output labels

• External steps
Ξ ⊢ C a

−→ Ξ ⊢ Ć

• Ξ = “context” of C (assumptions + commitments)
• contains identities + typing of objects and threads known so far
• checked in incoming communication steps
• updated in outgoing communication steps

1 Introduction

2 Testing Creol objects

3 Rewriting logic implementation and experimental results

4 Conclusion

Behavioral interface specification language
Black-box behavior of a component described by a set of traces.

Design goals:

• concise

• fomally justified

• executable in rewriting logic.

γ ::= x〈call x .l(~x)〉 | x〈return(x)〉 | ν(x :T).γ | (x :T).γ basic labels
a ::= γ? | γ! input and output labels
ϕ ::= X | ǫ | a . ϕ | ϕ + ϕ | rec X .ϕ specifications

• specification language: uses variables

• two kinds of variable binders

• Creol communication labels: concrete names/references.

Well-formedness
• Restrict specifications to traces actually possible at the interface.

• four three main restrictions :

• typing

• scoping

• communication patterns

• polarity: specifications either well-formed input or well-formed
output.

• given as derivation/type system over trace specs.

Asynchronicity—“Observational blur”
• Asynchronicity: message order not preserved in communication.

Component Observer

a!

b!

a!

b!

• The specification is relaxed up-to observational equivalence

• Testing of output only up-to observability.

EQ-SWITCH
ν(Ξ) . γ1! . γ2! . ϕ ≡obs ν(Ξ) . γ2! . γ1! . ϕ

Eq-Switch
ν(Ξ).γ !.γ !.ϕ ≡ ν(Ξ).γ !.γ !.ϕ

Operational semantics of specifications
Given ≡obs, the meaning of a specification is given operationally and
straightforwardly, e.g.:

Ξ́ = Ξ + a
R-PREF

Ξ ⊢ a.ϕ
a
−→ Ξ́ ⊢ ϕ

Ξ ⊢ ϕ1
a
−→ Ξ́ ⊢ ϕ′

1 R-PLUS1
Ξ ⊢ ϕ1 + ϕ2

a
−→ Ξ́ ⊢ ϕ′

1

ϕ ≡obs ϕ′ Ξ ⊢ ϕ′
a
−→ Ξ ⊢ ϕ′′

R-EQUIV
Ξ ⊢ ϕ

a
−→ Ξ ⊢ ϕ′′

Asynchronous testing of Creol objects
• Combine:

• external behavior of object
• intended behavior given by specification

• interaction defined by synchronous parallel composition
• specification ϕ and component must engage in corresponding

steps:

• For incoming communication, this schedules the order of
interactions with the component

• For outgoing communication, the interaction will take place only if it
matches an outgoing label in the specification

• Error if the specification requires input and the component could do
output.

Parallel composition

Ξ ⊢ C τ

−→ Ξ ⊢ Ć
PAR-INT

Ξ ⊢ C ‖ ϕ −→ Ξ ⊢ Ć ‖ ϕ

⊢ a .σ b

Ξ1 ⊢ C a
−→ Ξ́1 ⊢ Ć Ξ1 ⊢ ϕ

b
−→ Ξ́2 ⊢ ϕ́

PAR
Ξ1 ⊢ C ‖ ϕ −→ Ξ́1 ⊢ Ć ‖ ϕ́σ

Ξ ⊢ ϕ : wf ?

ERR-CALL
Ξ ⊢ ν(Ξ′).(C ‖ n〈let x :T = o.l(~v) in t〉 ‖ ϕ) −→

Ξ ⊢ ϕ : wf ?

ERR-RET
Ξ ⊢ ν(Ξ′).(C ‖ n〈v〉 ‖ ϕ) −→

• Matching of ϕ’s step and components step (⊢ a .σ b)

• As said: specification contains:
• freshness assertions (ν(x :T))
• standard variable declarations (x :T)

1 Introduction

2 Testing Creol objects

3 Rewriting logic implementation and experimental results

4 Conclusion

Implementation in rewriting logic
• Semantics of Creol is executable in Maude

• Implementation of the spec. language in Maude, too

• Execution of Creol components synchronized with specifications
• generate input from specification
• test component behaviour for conformance

• Random generation of input parameters from predefined sets or
interval.

• No input queue, specified method calls are answered immediately

• Reentering suspended methods may interfere.

Implementation in rewriting logic
• Creol configuration:

rl Cfg => Cfg’ .
• Creol configuration: objects, classes, and messages:

rl O C Cfg => O’ C M Cfg .

• Test framework: introduce Spec for specifications.

crl Spec || O Cfg => Spec’ || O’ M Cfg if Cond .

• Implementation is close to the operational semantics which is
easily coded into Maude.

• “Observational blur”, output prefixes of specifications defined to be
AC

Experimental results
• testing by executing parallel composition of component and

specification.

rew spec || c cClass .

• outcomes:
• error reported
• stop

• Conformance relation is input-output conformance Execution of c
should only lead to output foreseen by spec.

• verification by searching for error configurations

search in PROGRAM :
spec || c cClass =>+
spec’ || conf errorMsg(S:String)

such that

Experiments
• Experiments to demonstrate usefulness of approach

• Compare rewriting specifications with same semantics but:

1 using Maude’s built in AC rewriting.
2 equivalent, expanded version of specifications.

• AC rewriting pays off wrt. time and number of rewrites.

Example 1
• Component under test consists of one object with n methods.

• Specification: all methods must have been called before any
method may return.

• Tests parametrized over n: spec for n = 3:

spec3 = n1〈call c.m1(x1)〉? .

n2〈call c.m2(x2)〉? .

n3〈call c.m3(x3)〉? .

(n1〈return(y1)〉! . n2〈return(y2)〉! . n3〈return(y3)〉!) . ǫ

Example 1

0

5.000

10.000

15.000

3 4 5 6 7 8

ms

Non AC AC

n ms CPU time

AC Non AC

3 16 47

4 38 379

5 198 1.498

6 1.030 6.782

7 5.407 49.311

8 27.894 NA

9 153.316 NA

Example 2 - broker
• a broker is an intermediary between client and several providers

Client

getP(x,k)

Broker
Provider

Provider

Provider

return(v)

getQ(x)

return(v)

• specification: broker must query a certain number of providers
before returning

specbk = nc1〈call b.getP(x , k)〉? .

Example 2

100

200

300

3 4 5 6 7 8 9

ms

Non AC AC

k ms CPU time

AC Non AC

3 13 43

4 21 73

5 33 101

6 48 257

7 63 1.965

8 86 17.796

9 106 NA

Summary

• formalization of interface behavior of a concurrent OO language
(Creol) + a behavioral interface specification language.

• how to use this specification language for black-box testing of
models for asynchronously communicating objects.

• a RW logic formalization of the testing framework for Creol

• using rewriting for conformance testing and search for verification

• one way to deal with potential reordering of communication

• using modulo AC rewriting reduces resource consumption

1 Introduction

2 Testing Creol objects

3 Rewriting logic implementation and experimental results

4 Conclusion

Future work
• from objects to multi-object components

• extensive case study, testing model for Wireless Sensor Networks.

• extend approach to C# or Java

• narrowing

• use traces from real programs

Related work
• [Tre96] ioco testing

• [VCG+08] observable and controllable actions, conformance
based on alternating simulation

• [JOT08] assumption/commitment style verification of components

• [GKST10] formal basis of the approached studied here

• [SAdB+08] testing internal state of Creol objects intra-object
scheduling

• [AGSS08] case study for model based testing, using Creol

References I
[AGSS08] Bernhard Aichernig, Andreas Griesmayer, Rudolf Schlatte, and Andries Stam.

Modeling and testing multi-threaded asynchronous systems with Creol.
In Proceedings of the 2nd International Workshop on Harnessing Theories for Tool Support in Software (TTSS’08),
ENTCS. Elsevier, 2008.

[GKST10] Immo Grabe, Marcel Kyas, Martin Steffen, and Arild B. Torjusen.
Executable interface specifications for testing asynchronous Creol components.
In Farhad Arbab and Marjan Sirjani, editors, FSEN, volume 5961 of Lecture Notes in Computer Science, pages
324–339. Springer, 2010.

[JOT08] Einar Broch Johnsen, Olaf Owe, and Arild B. Torjusen.
Validating behavioral component interfaces in rewriting logic.
Fundamenta Informaticae, 82(4):341–359, 2008.

[SAdB+08] Rudolf Schlatte, Bernhard Aichernig, Frank de Boer, Andreas Griesmayer, and Einar Broch Johnsen.
Testing (with) application-specific schedulers for concurrent objects.
2008.
Accepted for ICTAC 2008, 5th International Colloquium on Theoretical Aspects of Computing.

[Tre96] Jan Tretmans.
Test generation with inputs, outputs, and repetetive quiescence.
Software — Concepts and Tools, 17(3):103–120, 1996.

[VCG+08] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Tillmann, and Lev Nachmanson.
Model-based testing of object-oriented reactive systems with spec explorer.
In Formal Methods and Testing, volume 4949 of Lecture Notes in Computer Science, pages 39–76. Springer-Verlag,
2008.

	Introduction
	Testing Creol objects
	Rewriting logic implementation and experimental results
	Conclusion

