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Background
• Project:

• modelling asynchronously communicating components in open
envqironments

• object-oriented

• behavioral interface descriptions
• automated verification and testing techniques

• Challenges
• asynchronicity ⇒non-determinism ⇒state space explosion.

• Approach:
• tackle complexity by “divide-and-conquer”
• black-box behavior given by interactions at the interface



General setting
Goal: Test components under environment assumptions/schedulings

Approach: Specification language over communication labels

• input interactions: environment assumptions.

• output interactions: commitments of the component.

⇒ expected observable output behavior under the assumption of a
certain scheduling of input.

Method: Specification simulates environment behavior.

• execute component and specification in parallel

• generate incoming communication from specification

• test actual outgoing communication from the component



Main contributions

1 Theoretical basis:
• formalization of the interface behavior of an asynchronous OO

modelling language.

2 Framework for scheduling asynchronous testing of objects.
• executable specification language
• method for composing specifications and components under test
• implementation of a test framework

3 Use Maude’s rewriting modulo AC to test only up to
observational equivalence.

4 Use Maude’s search for state exploration (rewriting modulo AC).

5 Experimental results, comparing:
• modulo AC rewriting.
• explicit reordering of output events.



Creol
Creol (www.uio.no/~creol): object-oriented modelling language
for distributed systems

• model distributed systems at a high level of abstraction.

• strongly typed, formal operational semantics in rewriting logic

• active concurrent objects

• communication by asynchronous method calls.

• Creol object: acts as a monitor .

• cooperative scheduling, i.e., explicit and conditional release/yields
etc.

• non-deterministic selection of suspended processes and incoming
calls.

www.uio.no/~creol


Abstract syntax

C ::= 0 | C ‖ C | ν(n:T ).C | c[(F , M)] | o[c, F , L] | n〈t〉 component
F ::= l = f , . . . , l = f fields
M ::= l = m, . . . , l = m method suite
m ::= ς(n:T ).λ(x :T , . . . , x :T ).t method
f ::= ς(n:T ).λ().v | ς(n:T ).λ().⊥n′ field
t ::= v | stop | let x :T = e in t thread
e ::= t | if v = v then e else e | if undef(v .l()) then e else e expr.

| v@l(~v) | v .l(~v) | v .l() | v .l := ς(s:T ).λ().v
| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | ⊤ lock status

• component: classes, objects, and (named) threads.

• active, executing entities: named threads n〈t〉

• hiding and dynamic scoping: ν -operator



Interface interactions
• Steps occurring at the interface.

• Component/environment: exchange information via call- and
return-labels:

γ ::= n〈call n.l(~v)〉 | n〈return(n)〉 | ν(n:T ).γ basic labels
a ::= γ? | γ! input and output labels

• External steps
Ξ ⊢ C a

−→ Ξ ⊢ Ć

• Ξ = “context” of C (assumptions + commitments)
• contains identities + typing of objects and threads known so far
• checked in incoming communication steps
• updated in outgoing communication steps
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Behavioral interface specification language
Black-box behavior of a component described by a set of traces.

Design goals:

• concise

• fomally justified

• executable in rewriting logic.

γ ::= x〈call x .l(~x)〉 | x〈return(x)〉 | ν(x :T ).γ | (x :T ).γ basic labels
a ::= γ? | γ! input and output labels
ϕ ::= X | ǫ | a . ϕ | ϕ + ϕ | rec X .ϕ specifications

• specification language: uses variables

• two kinds of variable binders

• Creol communication labels: concrete names/references.



Well-formedness
• Restrict specifications to traces actually possible at the interface.

• four three main restrictions :

• typing

• scoping

• communication patterns

• polarity: specifications either well-formed input or well-formed
output.

• given as derivation/type system over trace specs.



Asynchronicity—“Observational blur”
• Asynchronicity: message order not preserved in communication.

Component Observer

a!

b!

a!

b!

• The specification is relaxed up-to observational equivalence

• Testing of output only up-to observability.

EQ-SWITCH
ν(Ξ) . γ1! . γ2! . ϕ ≡obs ν(Ξ) . γ2! . γ1! . ϕ

Eq-Switch
ν(Ξ).γ !.γ !.ϕ ≡ ν(Ξ).γ !.γ !.ϕ



Operational semantics of specifications
Given ≡obs, the meaning of a specification is given operationally and
straightforwardly, e.g.:

Ξ́ = Ξ + a
R-PREF

Ξ ⊢ a.ϕ
a
−→ Ξ́ ⊢ ϕ

Ξ ⊢ ϕ1
a
−→ Ξ́ ⊢ ϕ′

1 R-PLUS1
Ξ ⊢ ϕ1 + ϕ2

a
−→ Ξ́ ⊢ ϕ′

1

ϕ ≡obs ϕ′ Ξ ⊢ ϕ′
a
−→ Ξ ⊢ ϕ′′

R-EQUIV
Ξ ⊢ ϕ

a
−→ Ξ ⊢ ϕ′′



Asynchronous testing of Creol objects
• Combine:

• external behavior of object
• intended behavior given by specification

• interaction defined by synchronous parallel composition
• specification ϕ and component must engage in corresponding

steps:

• For incoming communication, this schedules the order of
interactions with the component

• For outgoing communication, the interaction will take place only if it
matches an outgoing label in the specification

• Error if the specification requires input and the component could do
output.



Parallel composition

Ξ ⊢ C τ

−→ Ξ ⊢ Ć
PAR-INT

Ξ ⊢ C ‖ ϕ −→ Ξ ⊢ Ć ‖ ϕ

⊢ a .σ b

Ξ1 ⊢ C a
−→ Ξ́1 ⊢ Ć Ξ1 ⊢ ϕ

b
−→ Ξ́2 ⊢ ϕ́

PAR
Ξ1 ⊢ C ‖ ϕ −→ Ξ́1 ⊢ Ć ‖ ϕ́σ

Ξ ⊢ ϕ : wf ?

ERR-CALL
Ξ ⊢ ν(Ξ′).(C ‖ n〈let x :T = o.l(~v) in t〉 ‖ ϕ) −→  

Ξ ⊢ ϕ : wf ?

ERR-RET
Ξ ⊢ ν(Ξ′).(C ‖ n〈v〉 ‖ ϕ) −→  

• Matching of ϕ’s step and components step (⊢ a .σ b)

• As said: specification contains:
• freshness assertions (ν(x :T ))
• standard variable declarations (x :T )
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Implementation in rewriting logic
• Semantics of Creol is executable in Maude

• Implementation of the spec. language in Maude, too

• Execution of Creol components synchronized with specifications
• generate input from specification
• test component behaviour for conformance

• Random generation of input parameters from predefined sets or
interval.

• No input queue, specified method calls are answered immediately

• Reentering suspended methods may interfere.



Implementation in rewriting logic
• Creol configuration:

rl Cfg => Cfg’ .
• Creol configuration: objects, classes, and messages:

rl O C Cfg => O’ C M Cfg .

• Test framework: introduce Spec for specifications.

crl Spec || O Cfg => Spec’ || O’ M Cfg if Cond .

• Implementation is close to the operational semantics which is
easily coded into Maude.

• “Observational blur”, output prefixes of specifications defined to be
AC



Experimental results
• testing by executing parallel composition of component and

specification.

rew spec || c cClass .

• outcomes:
• error reported
• stop

• Conformance relation is input-output conformance Execution of c
should only lead to output foreseen by spec.

• verification by searching for error configurations

search in PROGRAM :
spec || c cClass =>+
spec’ || conf errorMsg(S:String)

such that ....



Experiments
• Experiments to demonstrate usefulness of approach

• Compare rewriting specifications with same semantics but:

1 using Maude’s built in AC rewriting.
2 equivalent, expanded version of specifications.

• AC rewriting pays off wrt. time and number of rewrites.



Example 1
• Component under test consists of one object with n methods.

• Specification: all methods must have been called before any
method may return.

• Tests parametrized over n: spec for n = 3:

spec3 = n1〈call c.m1(x1)〉? .

n2〈call c.m2(x2)〉? .

n3〈call c.m3(x3)〉? .

(n1〈return(y1)〉! . n2〈return(y2)〉! . n3〈return(y3)〉!) . ǫ



Example 1
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9 153.316 NA



Example 2 - broker
• a broker is an intermediary between client and several providers

Client

getP(x,k)

Broker
Provider

Provider

Provider

return(v)

getQ(x)

return(v)

• specification: broker must query a certain number of providers
before returning

specbk = nc1〈call b.getP(x , k)〉? .



Example 2
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Summary

• formalization of interface behavior of a concurrent OO language
(Creol) + a behavioral interface specification language.

• how to use this specification language for black-box testing of
models for asynchronously communicating objects.

• a RW logic formalization of the testing framework for Creol

• using rewriting for conformance testing and search for verification

• one way to deal with potential reordering of communication

• using modulo AC rewriting reduces resource consumption
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Future work
• from objects to multi-object components

• extensive case study, testing model for Wireless Sensor Networks.

• extend approach to C# or Java

• narrowing

• use traces from real programs



Related work
• [Tre96] ioco testing

• [VCG+08] observable and controllable actions, conformance
based on alternating simulation

• [JOT08] assumption/commitment style verification of components

• [GKST10] formal basis of the approached studied here

• [SAdB+08] testing internal state of Creol objects intra-object
scheduling

• [AGSS08] case study for model based testing, using Creol
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