Inheritance & Observability

Erika Abraham and Martin Steffen

RWTH Aachen University of Oslo

FM Seminar Oslo
May 3, 2010

Motivation

Observability

What is observable in an oo-language?

e easy question, difficult answer

e compositionality , replacement

e full abstraction

e proof theory, completeness, realizability

Language features

sequential programs
concurrency

objects

classes
locks/monitors
cloning

Language features

sequential programs = state-transformers, continu-
ous functions

concurrency

objects

classes

locks/monitors

cloning

L84y

Language features

sequential programs

concurrency
objects

classes
locks/monitors
cloning

=

L84y

state-transformers,
ous functions
“traces”

continu-

Language features

sequential programs

concurrency
objects
classes
locks/monitors
cloning

=

L84y

state-transformers,
ous functions

“ traces "

“ traces’

continu-

Language features

sequential programs

concurrency
objects
classes

locks/monitors
cloning

=

R

4l

state-transformers,
ous functions

“ traces "

“ traces’
“ connectivity ",

heap

continu-

abstract

Language features

sequential programs
concurrency

objects
classes

locks/monitors

cloning

=

4l

=

state-transformers, continu-
ous functions

" traces "

“ traces’
“ connectivity ", abstract

heap
tricky dependencies to cap-
ture mutex

Language features

sequential programs
concurrency

objects
classes

locks/monitors

cloning

=

4l

=

state-transformers, continu-
ous functions

" traces "

“ traces’
“ connectivity ", abstract

heap

tricky dependencies to cap-
ture mutex

[‘branching’]

Inheritance

e core 0o mechanism

e code reuse

e sometimes mixed-up with sub-typing
e various flavors

e not undisputed

Fragile base class problem

class A {
void add () {...}
void add2 () {...}

}
class B extends A {
void add () {
size = size + 1;

super.add();

}

void add2 () {
size = size + 2;
super.add2();

Challenges & variation points

Bottom line

“inheritance breaks encapsulation "’

e “exact” characterization of the interface behavior
e ingredients here:

e dynamic creations of “entities”, especially objects

e lazy instantiation

e connectivity

e irrelevance of object identities

e replay

e concurrency! and asynchronicity

e life made easier by: no re-entrance

1Sometimes, concurrency makes life easier. . . .

Variation points

“private” vs. public fields

e private vs. public methods

super-keyword

“shadowing” : binding of methods vs. binding of

Fields and shadowing

m () {. x..}
}
class G extends G {
X; // overriding/shadowing

n () { ... m0) ...}
}

Accessor methods

class G {
gete() { x)
T() {.. self.getx()...}

class G extends G {
getx() { x }
} n () { ... m

0 -}

Private vs. public methods

class C1 {
String s = "C1";
private void n () {System.out.print("C1");};
void m() {this.n();};

class C2 extends C1 {
void n () {System.out.print("C2");},;
}

Subtype polymorphism

Can one observe the run-time type

letx:C; =new (7 vs. letx:C; = new & (1)

Observability of self-calls

e general intuition: “ cross-border " interaction =>
interface-interaction

e self-calls: not observable
e influence of super
e cf. also [Viswanathan, 1998|

e closed and open semantics

e embedding vs. delegation for representing objects

e lazy instantiation

Language

Creol-"dialect”

active objects

async. methods, futures

no interfaces (at user level)

“private” fields, private and public methods

® no super

Syntax

<

0 Cll Clv(nT).C[n[(O)|n[M,F,L]|n(t)

n F,L
l=m,....l=m
I=Ff,...I=f

¢(mT)Mx:T,....x:T).t
¢(n:T)A).v|c(nT)A).Ly

v |stop|letx:T =eint

t|ifv=vtheneelsee | if undef (v./())theneelsee
0Q@/(V) | v.I() | v.l:=g(s:n).A().v

new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

x|n|()
LT

con
obj
mef
fiel
mef
fiel
thre
exp

vali
locl

Open semantics

e environment vs. component
e assumption /commitment formulation

e commitment = component sides
e assumptions = abstract representation of

“ "
rrc:o 2o
e assumption/commitments
Q typing
@ available objects, threads
© lock status
© connectivity

Connecticity

Worst-case appoximation of “who may know who" in the
environment (resp. component) part of the heap.

Cross-border inheritance

02

«O» «Fr «=)»

«E>»

Q>

Dynamic binding and embedding

@ private members all named differently
© embedding: methods copied in

[k find(c) = F,M
IEn{letx:T =newcint) ~ ' v(o:c).(o[F,M, L] || n{letx:T = oint))

NewO

MN-c=[L,F,M)
I+ find(c)=F,M

F-Top

rFC].:[(Cz,Fl,Ml)] rFﬁnd(Cz):Fg,,\/b M:Ml,M2\M1 F:Fl,Fz F

I+ find(c1)=F,M

Legal traces

e existential abstraction of the component, as well
e traces, which are possible “at all”
o [-t:trace:: ©

References |

[Abadi and Cardelli, 1996] Abadi, M. and Cardelli, L. (1996).
A Theory of Objects.
Monographs in Computer Science. Springer-Verlag.

[Abrahém et al., 2004] Abraham, E., Bonsangue, M. M., de Boer, F. S., and Steffen, M. (2004).
Object connectivity and full abstraction for a concurrent calculus of classes.
In Li, Z. and Araki, K., editors, ICTAC'04, volume 3407 of Lecture Notes in Computer Science,
pages 37-51. Springer-Verlag.

[Abrahém et al., 2005] Abraham, E., de Boer, F. S., Bonsangue, M. M., Griiner, A., and Steffen, M.
(2005).
Observability, connectivity, and replay in a sequential calculus of classes.
In Bonsangue, M., de Boer, F. S., de Roever, W.-P., and Graf, S., editors, Proceedings of the Third
International Symposium on Formal Methods for Components and Objects (FMCO 2004), volume
3657 of Lecture Notes in Computer Science, pages 296—316. Springer-Verlag.

[Abrahém et al., 2009] Abraham, E., Grabe, |., Griiner, A., and Steffen, M. (2009).
Behavioral interface description of an object-oriented language with futures and promises.
Journal of Logic and Algebraic Programming, 78(7).
Special issue of the Journal of Logic and Algebraic Programming with selected contributions of
NWPT'07. The paper is a reworked version of an earlier UiO Technical Report TR-364, Oct. 2007.

[Abraham et al., 2008a] Abraham, E., Griiner, A., and Steffen, M. (2008a).
Abstract interface behavior of object-oriented languages with monitors.
Theory of Computing Systems, 43(3-4):322-361.

[Abrahém et al., 2008b] Abraham, E., Griiner, A., and Steffen, M. (2008b).
Heap-abstraction for an object-oriented calculus with thread classes.
Journal of Software and Systems Modelling (SoSyM), 7(2):177-208.

References |

[Steffen, 2006] Steffen, M. (2006).
Object-Connectivity and Observability for Class-Based, Object-Oriented Languages.
Habilitation thesis, Technische Faktultdt der Christian-Albrechts-Universitat zu Kiel.

[Viswanathan, 1998] Viswanathan, R. (1998).
Full abstraction for first-order objects with recursive types and subtyping.
In Proceedings of LICS '98. IEEE, Computer Society Press.

	Introduction
	Inheritance
	What is observable?
	Semantics and formal representation

