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Motivation

Observability

What is observable in an oo-language?

e easy question, difficult answer

e compositionality , replacement

e full abstraction

e proof theory, completeness, realizability
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Inheritance

e core 0o mechanism

e code reuse

e sometimes mixed-up with sub-typing
e various flavors

e not undisputed



Fragile base class problem

class A {
void add () {...}
void add2 () {...}

}
class B extends A {
void add () {
size = size + 1;

super.add();

}

void add2 () {
size = size + 2;
super.add2();



Challenges & variation points

Bottom line

“inheritance breaks encapsulation "’

e “exact” characterization of the interface behavior
e ingredients here:

e dynamic creations of “entities”, especially objects

e lazy instantiation

e connectivity

e irrelevance of object identities

e replay

e concurrency! and asynchronicity

e life made easier by: no re-entrance

1Sometimes, concurrency makes life easier. . . .



Variation points

“private” vs. public fields

e private vs. public methods

super-keyword

“shadowing” : binding of methods vs. binding of



Fields and shadowing

m () {. x..}
}
class G extends G {
X; // overriding/shadowing

n () { ... m0) ...}
}



Accessor methods

class G {
gete() { x )
T() {.. self.getx()...}

class G extends G {
getx() { x }
} n () { ... m

0 -}



Private vs. public methods

class C1 {
String s = "C1";
private void n () {System.out.print("C1");};
void m() {this.n();};

class C2 extends C1 {
void n () {System.out.print("C2");},;
}



Subtype polymorphism

Can one observe the run-time type

letx:C; =new (7 vs. letx:C; = new & (1)



Observability of self-calls

e general intuition: “ cross-border " interaction =>
interface-interaction

e self-calls: not observable
e influence of super
e cf. also [Viswanathan, 1998|



e closed and open semantics

e embedding vs. delegation for representing objects

e lazy instantiation



Language

Creol-"dialect”

active objects

async. methods, futures

no interfaces (at user level)

“private” fields, private and public methods

® no super
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Open semantics

e environment vs. component
e assumption /commitment formulation

e commitment = component sides
e assumptions = abstract representation of

“ "
rrc:o 2o
e assumption/commitments
Q typing
@ available objects, threads
© lock status
© connectivity

Connecticity

Worst-case appoximation of “who may know who" in the
environment (resp. component) part of the heap.




Cross-border inheritance
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Dynamic binding and embedding

@ private members all named differently
© embedding: methods copied in

[k find(c) = F,M
IEn{letx:T =newcint) ~ ' v(o:c).(o[F,M, L] || n{letx:T = oint))

NewO

MN-c=[L,F,M)
I+ find(c)=F,M

F-Top

rFC].:[(Cz,Fl,Ml)] rFﬁnd(Cz):Fg,,\/b M:Ml,M2\M1 F:Fl,Fz F

I+ find(c1)=F,M



Legal traces

e existential abstraction of the component, as well
e traces, which are possible “at all”
o [-t:trace:: ©
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