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Abstract. Deadlocks are a common error in programs with lock-based concur-

rency and are hard to avoid or even to detect. One way for deadlock prevention is

to statically analyze the program code to spot sources of potential deadlocks. Of-

ten static approaches try to confirm that the lock-taking adheres to a given order,

or, better, to infer that such an order exists. Such an order precludes situations of

cyclic waiting for each other’s resources, which constitute a deadlock.

In contrast, we do not enforce or infer an explicit order on locks. Instead we use

a behavioral type and effect system that, in a first stage, checks the behavior of

each thread or process against the declared behavior, which captures potential

interaction of the thread with the locks. In a second step on a global level, the

state space of the behavior is explored to detect potential deadlocks. We define a

notion of deadlock-sensitive simulation to prove the soundness of the abstraction

inherent in the behavioral description. Soundness of the effect system is proven by

subject reduction, formulated such that it captures deadlock-sensitive simulation.

To render the state-space finite, we show two further abstractions of the behavior

sound, namely restricting the upper bound on re-entrant lock counters, and simi-

larly by abstracting the (in general context-free) behavioral effect into a coarser,

tail-recursive description. We prove our analysis sound using a simple, concurrent

calculus with re-entrant locks.

1 Introduction

Deadlock is a well-known problem for concurrent programs, where multiple processes

share access to mutually exclusive resources. According to Coffman [11], there are four

necessary conditions for a deadlock to occur, namely, mutual exclusion, no-preemption,

wait-for condition, and circular wait. The first three are typically programming lan-

guage specific; whether or not a deadlock occurs in one particular run of one particular

program depends on whether the running program reaches a configuration, in which a

number of processes wait for resources held by the others in a circular chain. When-

ever concurrent activities attempt to acquire more than one lock, there is a potential for

deadlocks. Since the actual occurrence of a deadlock depends on the actual scheduling
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at run-time, deadlocks may occur only intermittently, making them difficult to debug.

Preventing deadlocks at compile time altogether, on the other hand, must necessar-

ily over-approximate the actual executions of the program, as the question of whether

a program may deadlock or not is undecidable. The over-approximation may report

spurious deadlocks, i.e., deadlocks reported on the abstract level do not reflect actual

deadlocks on the concrete execution.

Apart from using run-time monitoring for deadlock detection, a number of static

methods to assure deadlock freedom have been proposed [6,1,15,38]. In this paper, we

detect potential deadlocks statically by capturing the lock interaction of processes by

a behavioral type and effect system [33,2]. While type systems assure proper use of

values, effect systems capture phenomena, which occur during evaluation, such as ex-

ceptions, side-effects, resource usage, etc. Expressive effects can deal with behavior of

a program, which is important for concurrent or parallel programs. We, in particular,

use a behavioral effect system to detect potential deadlocks in a setting with re-entrant

locks. Locks are commonly used among processes to ensure mutual access to shared

resources in concurrent programming. The effect system characterizes the behavior of

a concurrent program in terms of sequences of lock interactions among parallel threads.

By executing the abstraction of the actual behavior, we detect cycles of processes wait-

ing for shared locks as a symptom of a deadlock.

In this article, we use the well-known characterization of cyclic wait to detect dead-

locks on an abstract model of the program behavior. The effect system focuses on prim-

itives for lock manipulations and primitives for creating threads and locks. The analy-

sis of the abstract behavior must consider different interleavings of the threads, which

quickly leads to an explosion of the state space. On top of that, typically the number

of threads and locks is potentially unbounded, leading to an infinite state space. To

keep the state space finite, we limit ourselves to a finite amount of resources (threads

and locks). While this rules out two major sources of infinity in the behavior, we still

need to tackle infinite executions through recursion. We bound non-tail recursive func-

tion calls, and put an upper limit on lock counters, which keep track of how often a

re-entrant thread has locked a resource. This gives an upper limit on the state space

size at the cost of further approximation. The results are formalized for a core calculus

supporting functions, multi-threading concurrency, and re-entrant locks.

In Section 2, we present the syntax and semantics of our calculus. A type- and

effect system that checks a concrete program, and produces the finite description of the

abstract behavior of the program is presented in Section 3. We show the correctness of

the abstraction into a finite state space in Section 4, and conclude in Section 5.

2 A calculus for lock-based concurrency

Before defining syntax and operational semantics of our calculus, we illustrate dead-

locks in a simple example using the Java language. Concentrating on the core aspects

of concurrency and lock handling, the calculus later will be not introduce objects and

classes; instead we base our study on a calculus based on threads, functions, and locks.

The syntax will be given in Section 2.1, the operational semantics in Section 2.2, and a

characterization of deadlocks as cyclic wait in Section 2.3.
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We motivate our analysis with a slightly abridged textbook example from the Java

tutorials [23] on concurrency.

Listing 1.1. Java concurrency example

c l a s s F r i e n d {
. . .

p u b l i c s ynchronized vo id bow ( F r i e n d bower ) {
System . o u t . f o r m a t ( ”%s : %s has bowed t o me!%n ” ,

t h i s . name , bower . getName ( ) ) ;

bower . bowBack ( t h i s ) ;

}
p u b l i c s ynchronized vo id bowBack ( F r i e n d bower ) {

System . o u t . f o r m a t ( ”%s : %s has bowed back t o me!%n ” ,

t h i s . name , bower . getName ( ) ) ;

}

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
f i n a l F r i e n d a l p h o n s e = new F r i e n d ( ” Alphonse ” ) ;

f i n a l F r i e n d g a s t o n = new F r i e n d ( ” Gas ton ” ) ;

new Thread ( new Runnable ( ) {
p u b l i c vo id run ( ) { a l p h o n s e . bow ( g a s t o n ) ; }

} ) . s t a r t ( ) ;

new Thread ( new Runnable ( ) {
p u b l i c vo id run ( ) { g a s t o n . bow ( a l p h o n s e ) ; }

} ) . s t a r t ( ) ;

}
}

At run-time, we may observe the following deadlock: each of the two threads pro-

ceeds into its respective synchronized bow-method, locking one object in one thread

each; alphonse will be locked by the first thread, and gaston respectively locked by

the second one. The next instruction, bowBack is then invoked on the partner with the

current object locked. Alphonse holds “his” lock, and attempts to acquire gaston’s

lock for the bowBack. As gaston holds his own lock, alphonse is suspended until

that lock is released. The converse is happening for gaston, who keeps his lock held,

and is waiting for alphonse lock: each one is waiting for a lock that its partner holds,

a “deadly embrace”.

2.1 Syntax

The abstract syntax for a small concurrent calculus with functions, thread creation, and

re-entrant locks is given in Table 1. A program P consists of a parallel composition

of processes p〈t〉, where p identifies the process and t is a thread, i.e., the code being

executed. The empty program is denoted as /0. As usual, we assume ‖ to be associative

and commutative, with /0 as neutral element. As for the code we distinguish threads t

and expressions e, where t basically is a sequential composition of expressions. The

terminated thread is denoted by stop. Values are denoted by v, and let x:T = e in t

represents the sequential composition of e followed by t, where the eventual result of e,

i.e., once evaluated to a value, is bound to the local variable x. Expressions, as said, are

given by e, and threads are among possible expressions. Further expressions are func-

tion application e1 e2, conditionals, and the spawning of a new thread, written spawn t.

The last three expressions deal with lock handling: new L creates a new lock (initially

free) and gives a reference to it (the L may be seen as a class for locks), and furthermore
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v. lock and v. unlock acquires and releases a lock, respectively. Values, i.e., evalu-

ated expressions, are variables, lock references, and function abstractions, where we

use fun f :T1.x:T2.t for recursive function definitions.

P ::= /0 | p〈t〉 | P ‖ P program

t ::= stop stopped thread

| v value

| let x:T = e in t local variables and sequ. composition

e ::= t thread

| v v application

| if e then e else e conditional

| spawn t spawning a thread

| new L lock creation

| v. lock acquiring a lock

| v. unlock releasing a lock

v ::= x variable

| l lock reference

| fn x:T.t function abstraction

| fun f :T.x:T.t recursive function abstraction

Table 1. Abstract syntax

In our calculus we focus on the concurrency aspects and locks. The introductory ex-

ample can be encoded by making the implicit locking through synchronized explicit,

and use a lock per object. In addition, we assume the natural extension of function

declarations to multiple arguments and we elide types for better readability:

l e t bowBack = fn ( t h i s , bower ) . t h i s . l ock ; /∗ s k i p ∗ / t h i s . unlock in

l e t bow = fn ( t h i s , bower ) . t h i s . l ock ; bowBack ( bower , t h i s ) in

l e t a l p h o n s e = new L in

l e t g a s t o n = new L in

spawn ( bow ( a lphons e , g a s t o n ) ) ; spawn ( bow ( gas ton , a l p h o n s e ) )

2.2 Semantics

The small-step operational semantics given below is straightforward, where we distin-

guish between local and global steps (cf. Tables 2 and 3). The local level deals with

execution steps of one single thread, where the steps specify reduction steps in the fol-

lowing form:

t −→ t ′ . (1)

Rule R-RED is the basic evaluation step, replacing in the continuation thread t

the local variable by the value v. Rule R-LET restructures a nested let-construct. As

the let-construct generalizes sequential composition, the rule expresses associativity

of that construct. Ignoring the local variable definition, it corresponds to transforming

(e1;t1);t2 into e1;(t1;t2). Together with the other rule, which performs a case distinction
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of the first basic expression in a let construct, that assures a deterministic left-to-right

evaluation within each thread. The two R-IF-rules cover the two branches of the con-

ditional and the R-APP-rules deals with function application (of non-recursive, resp.

recursive functions).

let x:T = v in t −→ t[v/x] R-RED

let x2:T2 = (let x1:T1 = e1 in t1) in t2 −→let x1:T1 = e1 in (let x2:T2 = t1 in t2) R-LET

let x:T =if true then e1 else e1 in t −→let x:T = e1 in t R-IF1

let x:T =if false then e1 else e2 in t −→let x:T = e2 in t R-IF2

let x:T = (fn x′:T ′.t ′) v in t −→let x:T = t ′[v/x′] in t R-APP1

let x:T = (fun f .x′.t ′) v in t −→let x:T = t ′[v/x′][fun f .x′.t ′/ f ] in t R-APP2

Table 2. Local steps

The global steps are given in Table 3, formalizing transitions of configurations of

the form σ ⊢ P, i.e., the steps are of the form

σ ⊢ P −→ σ ′ ⊢ P′ , (2)

where P is a program, i.e., the parallel composition of a finite number of threads run-

ning in parallel, and σ contains the locks, i.e., it is a finite mapping from lock identifiers

to the status of each lock (which can be either free or taken by a thread where a natu-

ral number indicates how often a thread as acquired the lock, modelling re-entrance).

A thread-local step is lifted to the global level by R-LIFT. Rule R-PAR specifies that

the steps of a program consist of the steps of the individual threads, sharing σ . Exe-

cuting the spawn-expression creates a new thread with a new identity which runs in

parallel with the parent thread (cf. rule R-SPAWN). A new lock is created by new L

(cf. rule R-NEWL) which allocates a fresh lock reference in the heap. Initially, the

lock is free. A lock l is acquired by executing l.lock. There are two situations where

that command does not block, namely the lock is free or it is already held by the re-

questing process p. The heap update σ + lp is defined as follows: If σ(l) = free, then

σ + lp = σ [l 7→ p(1)] and if σ(l) = p(n), then σ + lp = σ [l 7→ p(n + 1)]. Dually σ − lp

is defined as follows: if σ(l) = p(n+1), then σ − lp = σ [l 7→ p(n)], and if σ(l) = p(1),
then σ − lp = σ [l 7→ free]. Unlocking works correspondingly, i.e., it sets the lock as be-

ing free resp. decreases the lock count by one (cf. rule R-UNLOCK). In the premise of

the rules it is checked that the thread performing the unlocking actually holds the lock.
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t1 −→ t2
R-LIFT

σ ⊢ p〈t1〉 −→ σ ⊢ p〈t2〉

σ ⊢ P1 −→ σ ′ ⊢ P′
1

R-PAR

σ ⊢ P1 ‖ P2 −→ σ ′ ⊢ P′
1 ‖ P2

σ ⊢ p1〈let x:T = spawn t2 in t1〉 −→ σ ⊢ p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉 R-SPAWN

σ ′ = σ [l 7→ free] l is fresh

R-NEWL

σ ⊢ p〈let x:T =new L in t〉 −→ σ ′ ⊢ p〈let x:T = l in t〉

σ(l) = free∨σ(l) = p(n) σ ′ = σ + lp

R-LOCK

σ ⊢ p〈let x:T = l. lock in t〉 −→ σ ′ ⊢ p〈let x:T = l in t〉

σ(l) = p(n) σ ′ = σ − lp

R-UNLOCK

σ ⊢ p〈let x:T = l. unlock in t〉 −→ σ ′ ⊢ p〈let x:T = l in t〉

Table 3. Global steps

2.3 Deadlocks

We can now characterize formally our deadlock criterion. First, we define what it means

for a thread to be waiting for a lock, and then for a program to be deadlocked. See

also [30] or [21] for an early discussion of different definitions of deadlock. Being

deadlocked is a global property of a system in that it concerns more than one process.

In our setting with re-entrant locks, a process cannot deadlock “on itself”, and therefore

at least two processes must be involved in a deadlock.

Later, to relate the operational behavior with its abstract behavioral description and

to show correctness, it will be helpful to label the transitions of the operational seman-

tics appropriately. Most importantly, lock-manipulating steps are labelled indicating

which lock is being taken resp. released and by which process. We will discuss the ex-

act nature of the labels in Section 3. For now, it is sufficient to consider only the label

for process p taking lock l, written
p〈Ll.lock〉−−−−−−→.

Definition 1 (Waiting for a lock). Given a configuration σ ⊢ P, a process p waits for

a lock l in σ ⊢ P, written as waits(σ ⊢ P, p, l), if it is not the case that σ ⊢ P
p〈Ll.lock〉−−−−−−→,

and furthermore there exists a σ ′ s.t. σ ′ ⊢ P
p〈Ll.lock〉−−−−−−→ σ ′′ ⊢ P′.

This indicates that process p is waiting for lock l to become available. Note that this

does not yet indicate a deadlock, as the lock may be released by the process holding it.

A configuration σ ⊢ P is deadlocked if it contains a number of processes each is holding

a lock and trying to acquire the lock of the next process in a cyclic manner.

Definition 2 (Deadlock). A configuration σ ⊢ P is deadlocked if σ(li) = pi(ni) and

furthermore waits(σ ⊢ P, pi, li+k1) (where k ≥ 2 and for all 0 ≤ i ≤ k− 1). The +k is

meant as addition modulo k. A configuration σ ⊢P contains a deadlock, if, starting from

σ ⊢ P, a deadlocked configuration is reachable; otherwise the configuration is deadlock

free.
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3 Type and effect system

In this section, we present the type and effect system, which is used to capture the

behavior of a program. The behavior can then be executed using the abstract operational

semantics. We show that each deadlock in the concrete behavior is preserved in the

abstract behavior.

3.1 Annotations, effects, and types

The behavioral effects later capture lock interactions of a program. To specify which

locks are meant statically, we label the program points of lock creations appropriately.

We use π for program points, and annotations are given as sets of program points:

r ::= {π} | r∪ r | /0 annotations (3)

We use this annotation to augment the syntax of Table 1 to keep track of locks, so all

lock creation expressions new L are augmented to

newπ L . (4)

For a given program, the annotations π are assumed unique. That assumption does

not influence the soundness of the analysis, but the analysis gets more precise by not

confusing different program points. The annotation does not influence the semantics

(apart from the fact that we will label the transition relation of the operational semantics

later as well).

The grammar for the types is given in Table 4. The underlying types are standard.

We assume as basic types booleans and integers (Bool and Int). As far as the effects

are concerned, two points are important. First, in the type system the type L for a lock

must remember the potential places where the lock is created. Therefore, the effect type

for lock references is written Lr. The type of a thread is stated as Thread.

T ::= Bool | Int | T →ϕ T | Lr | Thread

Table 4. Types

The types of Table 4 carry two kinds of extra annotations on top of the underlying

types, namely the annotation r on the lock types and effects ϕ as annotation on the

functional types. Types of an expression describe the domain of values to which the

expression eventually evaluates if it terminates. Effects in contrast are used to describe

“phenomena” that happens during that evaluation. In our case, we capture interaction

with locks, and in particular which locks are accessed during the execution and in which

order: This means the effects capture behavioral information related to lock handling.

The type and effect judgments on the local level look as follows

Γ ⊢ e : T :: ϕ , (5)
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meaning that expression e has type T and effect ϕ3. The contexts Γ contain type infor-

mation for variables and lock references and are of the form v1:T1, . . . ,vn:Tn, where the

values vi are either variables or lock references. We silently assume that all variables

and references in Γ are different, and that the order does not matter. Thus, a context Γ

is equivalently also seen as finite mappings and we use dom(Γ ) to refer to the domain

of that mapping and Γ (x) and Γ (l) to look up the type remembered in Γ for x resp.

for l. Furthermore, Γ ,v:T is the extension of Γ where we assume that v does not occur

in Γ . Note that Γ does not bind an effect to variables resp. references. Effect informa-

tion, however, is indirectly contained in the context, as functional types carry behavior

information for the latent effect of functions in the type.

Φ ::= 0 | p〈ϕ〉 | Φ ‖ Φ effects (global)

ϕ ::= ε | X | ϕ;ϕ | ϕ +ϕ | recX .ϕ | α effects (local)

a ::= spawn ϕ | νLr | Lr .lock | Lr .unlock labels/basic effects

α ::= a | τ transition labels

Table 5. Effects

The grammar for the effects is given in Table 5. As for processes, we distinguish

between a (thread-)local level ϕ and a global level Φ . The empty effect is written ε ,

representing behavior without interaction of locks. Recursive behavior is captured by

recX .ϕ , where the recursion operator binds variable X in ϕ . Sequential composition of

ϕ1 followed by ϕ2 resp. non-deterministic choice between ϕ1 and ϕ2 are written ϕ1;ϕ2,

resp. ϕ1 +ϕ2. Basic effects are captured by labels a, which can be one of four different

forms: The effect spawn ϕ means that a new process with behavior ϕ is created, and

νLr indicates that a new lock is created at one of the program points in r. The effects

Lr .lock and Lr .unlock describe the effect of acquiring a lock and releasing a lock,

respectively, where again r denotes the potential places of creation. τ is used later to

label silent transitions.

Example 1. Consider the following piece of code:

Listing 1.2. Deadlock

l e t x : Lπ1 = newπ1
L in

l e t y : Lπ2 = newπ2
L in

spawn ( y . l ock ; x . l ock ; s top ) ; x . l ock ; y . l ock ; s top

We use the semicolon as a shorthand for sequential composition as before instead of a

let-construct. The example shows that after two locks have been created at two different

locations π1 and π2, a new process is spawned such that both processes are running in

parallel, sharing the two locks. These two processes try to take the two locks in reverse

order. The situation right after spawning the second thread is depicted in Figure 1: the

states correspond to the relevant control locations of each process, and the transitions

3 In the abstract syntax, expressions e comprise threads t.
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indicate the corresponding locking statements. When we consider possible interleavings

of execution steps, we note that a deadlock occurs when both processes reach their

respective intermediate state p11/p21: both will have acquired one lock, and are waiting

on the opposite lock (see Figure 2). Not all interleavings are feasible: p11/p22, p12/p22

are “shadowed” by the deadlock, and thus not reachable.

p10start

p11

p12

p20start

p21

p22

Lπ1 .lock

Lπ2 .lock

Lπ2 .lock

Lπ1 .lock

Fig. 1. Deadlock

P1

π1 π2

P2

holds

holdswaits-for

waits-for

Fig. 2. Wait-for graph

⊓⊔

3.2 Type system

The rules for the type and effect system for expressions, i.e., on the thread local level,

are given in Table 6. The type of a variable is looked up from the typing context Γ

and its effect is empty (cf. rule TE-VAR). Likewise, empty is the effect for lock refer-

ences and thread references (cf. rules TE-LREF and TE-PREF). As a general rule, all

values, especially abstractions, have no effect, as they cannot be evaluated any further.

The terminated thread stop has an empty effect (cf. rule TE-STOP). In rule TE-IF, the

two branches need to agree on a common type—see also the rule of subsumption—and

the effect of a conditional is the non-deterministic choice between the effects of the

two branches. Abstractions are values and consequently their effect is empty (cf. the

TE-ABS rules). The effect of the body of the function, checked in the premise of the

rule, is kept as annotation, i.e., as latent effect, on the arrow type of the abstraction in

the conclusion of the rule. In the rule TE-APP, the effect of an application consists of

the sequential composition of the effects of the function followed by the effect of the

argument, followed by the effect of the function body, noted as annotation on the ar-

row of the function type, if one assumes a call-by-value evaluation from left to right.

In our representation where we assume that the function as well are argument in an

application are already evaluated (cf. the syntax of Table 1), it is assured that the ef-

fect of both abstraction and argument are empty and the overall effect consists of the

latent effect of the function body only. The effect of the let-construct is expressed in

rule TE-LET by sequencing effects of e and that of the body of the expression. Rule

TE-SPAWN deals with the generation of a new thread executing the expression e. The

type of this construct is Thread, while the effect is written as spawnϕ which represents
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the behavior of the spawned thread. Rule TE-NEWL deals with the creation of a new

lock, i.e., an “instance” of “class” L. In the annotated syntax, the creation expression

is labelled by a (unique) program point π (cf. equation (4)). This point is remembered

both in the type of that expression as well as in its effect. The type of a lock creation is

Lπ (which is a short-hand for L{π}). As for the effects, the expression has exactly one

effect, namely the creation of a lock (at the indicated region r), is written as νLr in the

grammar of Table 5. As here we explicitly know the point π of creation, the effect is

is more precisely νLπ (or νL{π}). Rules TE-LOCK and TE-UNLOCK for locking and

unlocking an existing lock which has created at the indicated potential program points

r. Both constructs are of the same type, namely Lr; whereas the effects are Lr .lock and

Lr .unlock, respectively. The final one is the rule of subsumption. The corresponding

sub-typing and sub-effecting relations are defined in Section 3.3.

Γ (x) = T

TE-VAR

Γ ⊢ x : T :: ε

TE-LREF

Γ ⊢ lπ : Lπ :: ε

Γ (p) =Thread

TE-PREF

Γ ⊢ p : Thread:: ε

TE-STOP

Γ ⊢stop : T :: ε

Γ ⊢ v :Bool Γ ⊢ e1 : T :: ϕ1 Γ ⊢ e2 : T :: ϕ2

TE-IF

Γ ⊢ if v then e1 else e2 : T :: (ϕ1 +ϕ2)

Γ ,x : T1 ⊢ e : T2 :: ϕ

TE-ABS1

Γ ⊢ fn x : T1.e : T1 →ϕ T2 :: ε

Γ , f :T1 →ϕ T2, x:T1 ⊢ t : T2 :: ϕ

TE-ABS2

Γ ⊢fun f :T1 →ϕ T2.x:T1.t : T1 →ϕ T2 :: ε

Γ ⊢ e1 : T2 →ϕ T1 :: ϕ1 Γ ⊢ e2 : T2 :: ϕ2

TE-APP

Γ ⊢ e1 e2 : T1 :: ϕ1;ϕ2 ;ϕ

Γ ⊢ e1 : T1 :: ϕ1 Γ ,x:T1 ⊢ e2 : T2 :: ϕ2

TE-LET

Γ ⊢ let x : T1 = e1 in e2 : T2 :: ϕ1;ϕ2

Γ ⊢ e : T :: ϕ

TE-SPAWN

Γ ⊢spawn e :Thread::spawn ϕ

Γ ⊢newπ L : Lπ :: νLπ
TE-NEWL

Γ ⊢ v :Lr :: ϕ

TE-LOCK

Γ ⊢ v. lock: Lr :: ϕ ;Lr . lock

Γ ⊢ v :Lr :: ϕ

TE-UNLOCK

Γ ⊢ v. unlock: Lr :: ϕ ;Lr .unlock

Γ ⊢ e : T ′ :: ϕ ′ T ′ ≤ T ϕ ′ ≤ ϕ

TE-SUB

Γ ⊢ e : T :: ϕ

Table 6. Type and effect checking (local)

Typing for the global level is shown in Table 7. An empty program, which does not

have any effect, is well-typed ok defined by the rule TE-EMPTY. The rule TE-THREAD

says a process p is well-typed if the thread t run by the process is also well-typed.

Concurrent programs are well-typed if each one of them is so.

Example 2. We show the derivation of the behavior of Example 1 with the type and

effect system we presented above. In the derivation, we leave out typing part except

when needed (which is in using TE-LOCK) and concentrate on the effect part. In the
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derivation, let t abbreviate the code of Listing 1.2, and t0 be spawn t1;t ′1 where t1 ,
y. lock;x. lock;stop and t ′1 , x. lock;y. lock;stop.

Γ0 ⊢newπ1
:Lπ1 :: νLπ1 Γ0 ⊢newπ2

:Lπ2 :: νLπ2 Γ1 ⊢ t0 :: ϕ0

Γ0 ⊢ t :: νLπ1 ;νLπ2 ;ϕ0

Starting with the empty context Γ0, the context Γ1 is in the following form:

Γ1 = x: Lπ1 ,y: Lπ2

We abbreviate the effect of t1 as ϕ1 ,Lπ2 .lock;Lπ1 .lock. We capture the effect

of t ′1 analogously except that the locks are taken in a reverse order, written as ϕ ′
1 ,Lπ1

.lock;Lπ2 .lock:

Γ (y) =Lπ2

Γ1 ⊢ y :Lπ2 :: ε

Γ1 ⊢ y. lock::Lπ2 .lock

Γ (x) =Lπ1

Γ1 ⊢ x :Lπ1 :: ε

Γ1 ⊢ x. lock::Lπ1 .lock

Γ1 ⊢ t1 ::Lπ2 .lock;Lπ1 .lock Γ1 ⊢stop:: ε

Γ1 ⊢spawn t1 ::spawn ϕ1

.

..

Γ1 ⊢ t ′1 :: ϕ ′
1

Γ1 ⊢ t0 :: ϕ0

Followings are the summary of abbreviations used in the derivation:

t = let x: Lπ1=newπ1
L in (let y: Lπ2=newπ2

L in t0)
t0 = spawn (t1);t

′
1

t1 = y. lock;x. lock;stop

t ′1 = x. lock;y. lock;stop

Γ0 = ()
Γ1 = Γ0,x: Lπ1 ,y: Lπ2

ϕ0 = spawn ϕ1;ϕ ′
1

ϕ1 = Lπ2 .lock;Lπ1 .lock
ϕ ′

1 = Lπ1 .lock;Lπ2 .lock

The overall effect is of Listing 1.2 is

t :: νLπ1 ;νLπ2 ;spawn (Lπ2 .lock;Lπ1 .lock);Lπ1 .lock;Lπ2 .lock, (6)

capturing the structure of the control flow in the concrete program. ⊓⊔

TE-EMPTY

⊢ /0 : ok :: ε

() ⊢ t : T :: ϕ

TE-THREAD

⊢ p〈t〉 : ok :: p〈ϕ〉

⊢ P1 : ok :: Φ1 ⊢ P2 : ok :: Φ2

TE-PAR

⊢ P1 ‖ P2 : ok :: Φ1 ‖ Φ2

Table 7. Type and effect checking (global)
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3.3 Ordering behavior

The behavior describes possible traces of an expression, over-approximating the actual

behavior. There is a notion of order on such traces, with the usual intention that if

an expression is approximated by behavior ϕ1, and ϕ1 ≤ ϕ2, then also ϕ2 is a safe

approximation of the expression. The order is called sub-effecting and is formalized in

Table 9. Underlying the order on effects is an order on types, or, even more basic, the

order on the sets r of annotations. For locks, the sets r contain potential program points

where the lock may have been created. Thus, the smaller that set, the more precise the

analysis, and a larger set still remains safe. That induces order ≤ on types (“subtyping”)

as given in the rules of Table 8. The order is reflexive by rule S-REFL. Rule S-ARROW

acts, as usual, contra-variant on the left-hand side and co-variant on the right. As far as

the annotation on the arrow is concerned, it is handled co-variantly. Finally, the subset

order on annotation sets is lifted to lock types in rule S-LOCK: the larger the set of

potential locations, the less information the type carries. It is straightforward to prove

transitivity of subtyping.

T ≤ T S-REFL

T ′
1 ≤ T1 T2 ≤ T ′

2 ϕ ≤ ϕ ′

S-ARROW

T1 →ϕ T2 ≤ T ′
1 →ϕ′ T ′

2

r ⊆ r′

S-LOCK

Lr≤Lr′

Table 8. Subtyping

Table 9 specifies an ordering on behavior, i.e., sub-effecting. That relation is not

intended to capture the deadlock-sensitive simulation between configurations which we

will study later; it is used for the formulation of the type and effect system. The relation

≤ is reflexive and transitive by rules SE-REFL and SE-TRANS. Rules SE-LOCK and

SE-UNLOCK indicate that taking/releasing a lock from a lock-set may be approximated

by choosing from a wider set of locks, in a similar manner as for S-LOCK. SE-CHOICE1

expresses order of a behavior and a choice of that behavior and another behavior. The or-

der of a behavior and itself followed by a sequence of behaviors is stated in SE-PREFIX.

SE-CHOICE2 allows us to widen the argument of a choice. Rules SE-SEQ, SE-SPAWN,

and SE-REC describe the same equivalence for sequencing, spawning, recursion. Un-

folding a recursion is represented by EE-REC. EE-UNIT and EE-ASSOCS express unit

and associativity of a sequential operator. EE-CHOICE describes the equivalence of a

behavior and the choice between the same behavior itself. The distributivity of sequenc-

ing respect to choice is stated by EE-DISTR. EE-COMM and EE-ASSOCC shows the

commutativity and associativity of a choice.

3.4 Semantics of the behavior

Next we define the reduction steps of abstract behavior. In contrast to the operational

semantics on the concrete level, σ is now a finite mapping from each lock location π

to its corresponding status. The corresponding rules are given in Table 10. To formulate
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recX .ϕ ≡ ϕ[recX .ϕ/X ] EE-REC

ε;ϕ ≡ ϕ EE-UNIT ϕ1;(ϕ2;ϕ3) ≡ (ϕ1;ϕ2);ϕ3 EE-ASSOCS

ϕ +ϕ ≡ ϕ EE-CHOICE (ϕ1 +ϕ2);ϕ3 ≡ ϕ1;ϕ3 +ϕ2;ϕ3 EE-DISTR

ϕ1 +ϕ2 ≡ ϕ2 +ϕ1 EE-COMM ϕ1 +(ϕ2 +ϕ3) ≡ (ϕ1 +ϕ2)+ϕ3 EE-ASSOCC

ϕ1 ≡ ϕ2

SE-REFL

ϕ1 ≤ ϕ2

ϕ1 ≤ ϕ2 ϕ2 ≤ ϕ3

SE-TRANS

ϕ1 ≤ ϕ3

r1 ⊆ r2

SE-LOCK

Lr1 .lock ≤ Lr2 .lock

r1 ⊆ r2

SE-UNLOCK

Lr1 .unlock ≤ Lr2 .unlock

ϕ1 ≤ ϕ1 +ϕ2 SE-CHOICE1 ϕ1 ≤ ϕ1;ϕ2 SE-PREFIX

ϕ1 ≤ ϕ ′
1 ϕ2 ≤ ϕ ′

2

SE-CHOICE2

ϕ1 +ϕ2 ≤ ϕ ′
1 +ϕ ′

2

ϕ1 ≤ ϕ ′
1 ϕ2 ≤ ϕ ′

2

SE-SEQ

ϕ1;ϕ2 ≤ ϕ ′
1;ϕ ′

2

ϕ1 ≤ ϕ2

SE-SPAWN

spawn ϕ1 ≤spawn ϕ2

ϕ1 ≤ ϕ2

SE-REC

recX .ϕ1 ≤ recX .ϕ2

Table 9. Subeffecting

later the connection between the concrete steps of the program and the abstract steps of

the effects, we decorate both the old reduction relation in Tables 2 and 3 and the new

one with the relevant lock interaction. This proceeds in the same manner as we already

annotated the reduction for locking, which was needed to formalize a deadlock. This

labelling does not change the operational behavior and is needed only for formulating

the correctness result in a clean manner.

Each transition is labelled with one of the labels from Table 5, which capture the

four possible visible steps we describe in the behavior: creating a lock, locking and

unlocking, and finally creating a new process with a given behavior. Besides that, τ rep-

resents an internal, invisible step. We introduce additionally
√

as label on a transition

to indicate termination. It is intended as decorations for steps, only, not to be part of

a behavior ϕ . As for programs, we distinguish between local and global behavior. On

the global level, the identity p of the process is relevant, and the corresponding tran-

sitions are labelled by p〈a〉 resp. p〈α〉 instead of a, resp. α to indicate which process

does the step. In abuse of notation, we use a and α also to mark global steps, when

not interested in the identity of p. The formalization of the labelled operational steps

of behaviors is straightforward. The behavior is determined up to ≡-equivalence and

parallel components run in an interleaving manner (rules RE-MOD and RE-PAR). Se-

quential composition is given in rule RE-SEQ; not that for ε;ϕ , the empty effect can

be discarded by ε;ϕ ≡ ϕ from EE-UNIT. A thread which has terminated does as last

action a
√

-step indicating termination.
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ϕ1 ≡ ϕ ′
1 σ ⊢ p〈ϕ ′

1〉
α−→ σ ⊢ p〈ϕ2〉

RE-MOD

σ ⊢ p〈ϕ1〉 α−→ σ ⊢ p〈ϕ2〉

σ ⊢ Φ1
α−→ σ ′ ⊢ Φ ′

1

RE-PAR

σ ⊢ Φ1 ‖ Φ2
α−→ σ ′ ⊢ Φ ′

1 ‖ Φ2

σ ⊢ p〈ϕ1〉 α−→ σ ′ ⊢ p〈ϕ ′
1〉 α 6= √

RE-SEQ

σ ⊢ 〈ϕ1;ϕ2〉 α−→ σ ′ ⊢ p〈ϕ ′
1;ϕ2〉

σ ⊢ p〈ε〉 p〈√〉
−−−→ σ ⊢ 0 RE-TICK

σ ⊢ p〈ϕ1 +ϕ2〉
p〈τ〉
−−→ σ ⊢ p〈ϕ1〉 RE-CHOICE

σ ⊢ p1〈(spawn ϕ);ϕ ′〉 p〈spawn ϕ〉
−−−−−−−−→ σ ⊢ p1〈ϕ ′〉 ‖ p2〈ϕ〉 RE-SPAWN

σ(π) = ⊥ σ ′ = σ [π 7→ free]
RE-NEWL

σ ⊢ p〈νLπ 〉 p〈νLπ 〉−−−−→ σ ′ ⊢ p〈ε〉

π ∈ r

RE-LOCK1

σ ⊢ p〈Lr . lock〉 p〈τ〉−−→ σ ⊢ p〈Lπ . lock〉

σ(π) = free∨σ(π) = p(n) σ ′ = σ +πp

RE-LOCK2

σ ⊢ p〈Lπ . lock〉 p〈Lπ.lock〉−−−−−−→ σ ′ ⊢ p〈ε〉

π ∈ r

RE-UNLOCK1

σ ⊢ p〈Lr . unlock〉 p〈τ〉−−→ σ ⊢ p〈Lπ . unlock〉

σ(π) = p(n) n > 1 σ ′ = σ −πp

RE-UNLOCK2

σ ⊢ p〈Lπ . unlock〉 p〈Lπ.unlock〉−−−−−−−→ σ ′ ⊢ p〈ε〉

Table 10. Operational semantics for effects

A point concerning non-deterministic choice defined by rule RE-CHOICE deserves

mentioning : to take the choice “costs” a τ-step. Since the effects are meant to over-

approximate concrete program behavior especially wrt. deadlocking, it is important that

the +-operator corresponds to an internal choice. The rule RE-SPAWN creates a new

activity and works basically analogously to the thread creation at concrete level. The

next five rules deal with effects concerning lock handling. Rule R-NEWL covers lock

creation, captured by the effect νLπ . The effect is caused by newπ L on the concrete level

(cf. rule TE-NEWL from the type system), which means also on the abstract level, it

is always one specific program point, and not a set r, where a lock is created. Unlike

in the semantics on concrete level, not a new or fresh lock reference is created, but one

statically fixed location π is used. The premise of RE-NEWL requires the location π has

not been used previously for allocating a lock. By our restriction of not allowing lock

creation in recursion, there is difference between the reduction rule R-NEWL and rule

RE-NEWL: on the concrete level, the lock allocation step is always possible as there

is an unbounded amount of fresh lock references available; whereas the effect νLπ in

RE-NEWL here is not always executable.

The effect of taking a lock, Lr .lock, is handled by the two RE-LOCK-rules. The

abstraction may include uncertainty about at which location the lock in question comes

from originally, i.e., r in general will be a set of candidate locations. Hence the lock-

manipulating steps involve a non-deterministic choice which lock is affected. For the

same reason that + was interpreted as internal choice, the lock manipulation is done in

two steps: first the choice of locks is specialized by picking one π from r by a τ-step (cf.

RE-LOCK1) and only afterwards the lock is taken in a second step with RE-LOCK2.

That means the choice which lock is actually attempted to be taken is made independent
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from the availability of the lock. The alternative formalization in one rule combining

RE-LOCK1 and RE-LOCK2 into one atomic step would be unsound: a deadlock in the

program may be missed in the abstract behavior description. Unlocking works dually.

The notations σ + πp and σ −πp are used analogously (with π instead of l) as for the

concrete heap. Note also the there is no specific rule for recursion; a recursive behavior

can be unrolled by EE-REC from Table 9. The definition of simulation will later relate

more concrete and more abstract effects, but also a program with its effect.

As for the semantics on the level of programs: as mentioned shortly earlier when

characterizing processes waiting on a lock (Definition 1), the transitions of configura-

tions σ ⊢ P are labelled, as well. So the steps of Tables 2 and 3 are considered labelled

accordingly in the following. We assume further that the locks l are labelled by the

point of creation, i.e., are of the form lπ . Due to our restriction on lock creation, that

labelling is well-defined. So for instance, a lock-taking step of a lock lπ is of the form

σ ⊢ P
p〈Lπ.lock〉−−−−−−→ σ ′ ⊢ P′, etc.

Example 3. To detect potential deadlock in our example, we execute the effect obtained

in equation (6) of Example 2 in a process starting from the empty heap, using the ab-

stract operational semantics from Table 10. We show the configuration consisting of the

heap and parallel processes for the particular interleaving which ends up in the dead-

locked configuration.

[] ⊢ p1〈νLπ1 ;νLπ2 ;spawn (Lπ2 .lock;Lπ1 .lock);Lπ1 .lock;Lπ2 .lock〉 p1〈νLπ1 〉−−−−−→
[π1 7→ free] ⊢ p1〈ε ;νLπ2 ;spawn (Lπ2 .lock;Lπ1 .lock);Lπ1 .lock;Lπ2 .lock〉 p1〈νLπ2 〉−−−−−→

[π1 7→ free][π2 7→ free] ⊢ p1〈ε ;spawn (Lπ2 .lock;Lπ1 .lock);Lπ1 .lock;Lπ2 .lock〉 p1〈spawn (Lπ2 .lock;Lπ1.lock)〉−−−−−−−−−−−−−−−−−−→
[π1 7→ free][π2 7→ free] ⊢ p2〈Lπ2 .lock;Lπ1 .lock〉 ‖ p1〈Lπ1 .lock;Lπ2 .lock〉 p2〈Lπ2 .lock〉−−−−−−−→

[π1 7→ free][π2 7→ p2(1)] ⊢ p2〈Lπ1 .lock〉 ‖ p1〈Lπ1 .lock;Lπ2 .lock〉 p1〈Lπ1 .lock〉−−−−−−−→
[π1 7→ p1(1)][π2 7→ p2(1)] ⊢ p2〈Lπ1 .lock〉 ‖ p1〈Lπ2 .lock〉

The processes p1 and p2 reach the configuration with σ = [π1 7→ p1(1)][π2 7→ p2(1)],
σ ⊢ p2〈Lπ1 . lock〉 ‖ p1〈Lπ2 . lock〉, for which we have waits(σ ⊢ p1〈Lπ2 . lock〉 ‖
. . . , p1,π2) and waits(σ ⊢ p2〈Lπ1 . lock〉 ‖ . . . , p2,π1), satisfying our condition for a

circular wait (cf. Definition 2). ⊓⊔

In the following, we are going to use a few more examples to present the calculation

of behavior with type and effect system.

Example 4 (Conditionals). Consider the following piece of code:

Listing 1.3. Conditional

l e t x = ( i f b

t h e n newπ1
e l s e newπ2

)

in

x . l ock

The condition b is assumed to be a value of boolean type. This gives rise to the following

derivation, where t represents the shown code fragment and Γ2 = Γ1,x: Lπ1,π2 . To cover
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the two branches of the conditions, we must weaken the respective types Lπ1 and Lπ2 to

a common Lπ1,π2 using subsumption.

Γ1 ⊢ b :Bool

Γ1 ⊢newπ1
:Lπ1 :: νLπ1

Γ1 ⊢newπ1
:Lπ1 ,π2 :: νLπ1

Γ1 ⊢newπ2
:Lπ2 :: νLπ2

Γ1 ⊢newπ2
:Lπ1 ,π2 :: νLπ2

Γ1 ⊢if c then newπ1
else newπ2

:Lπ1,π2 :: νLπ1 +νLπ2

Γ2(x) :Lπ1 ,π2

Γ2 ⊢ x :Lπ1,π2 :: ε

Γ2 ⊢ x. lock:Lπ1 ,π2 ::Lπ1 ,π2 .lock

Γ1 ⊢ t :Lπ1 ,π2 :: (νLπ1 +νLπ2 );Lπ1,π2 .lock

Consider alternatively the following code:

Listing 1.4. Conditional

( i f b t h e n l e t x = newπ1
in x . l ock

e l s e l e t x = newπ2
in x . l ock )

This leads to the following derivation, where t ′ represents the above code and t1 ,let

x =newπ1
in x. lock and t2 ,let x =newπ2

in x. lock. Again, we have to use subsump-

tion to reconcile the lock type for the two branches of the conditional.

Γ1 ⊢ b :Bool

Γ1 ⊢newπ1
:Lπ1 :: νLπ1 Γ2 ⊢ x1. lock:Lπ1 ::Lπ1 .lock

Γ1 ⊢ t1 :Lπ1 :: νLπ1 ;Lπ1 .lock

Γ1 ⊢ t1 :Lπ1 ,π2 :: νLπ1 ;Lπ1 .lock

. . .

Γ1 ⊢ t2 :Lπ2 :: νLπ2 ;Lπ2 .lock

Γ1 ⊢ t2 :Lπ1,π2 :: νLπ2 ;Lπ2 .lock

Γ1 ⊢ t ′ :Lπ1,π2 :: νLπ1 ;Lπ1 .lock +νLπ2 ;Lπ2 .lock

The two effects

(νLπ1 + νLπ2);Lπ1,π2 .lock vs νLπ1 ;Lπ1 .lock+νLπ2 ;Lπ2 .lock (7)

reflect the different “branching structure” of the two programs. Clearly, in the second

alternative of Listing 1.4, more information about which lock is actually used in the

lock-operation is available. ⊓⊔

Example 5 (Behavior checking). This example revisits the previous Example 1, this

time using functional abstraction. So instead of the code of Listing 1.2, consider the

following:

Listing 1.5. Deadlock

l e t f : Lπ2 × Lπ1→ϕ′ = fn ( z1: Lπ2 , z2: Lπ1 ) . z1 . l ock ; z2 . l ock ; s top

in

l e t x : Lπ1 = newπ1
L in

l e t y : Lπ2 = newπ2
L in

spawn ( f ( y , x ) ) ; x . l ock ; y . l ock ; s top

Note that the behavior-annotated functional type Lπ2 × Lπ1→ϕ ′
is used to give a

type to the variable f , representing the functional abstraction. We use as “wild card”

represent any type. As for the behavior, ϕ , Lπ1 .lock;Lπ2 .lock and ϕ ′ , Lπ2 .lock
;Lπ1 .lock.
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Γ3 ⊢ z1. lock::Lπ2 .lock Γ3 ⊢ z1. lock::Lπ1 .lock

Γ3 ⊢ t f : :: ϕ ′

Γ0 ⊢fn (z1: Lπ2 ,z2 : Lπ1 ).t f : (Lπ2 × Lπ1 ) →ϕ′ :: ε

Γ1 ⊢newπi
:: νLπi

(9)

Γ2 ⊢ t1 ::spawn ϕ ′;ϕ

Γ1 ⊢ t ′1 : :: νLπ1 ;νLπ2 ;spawn ϕ ′;ϕ

Γ0 ⊢ t0 : :: ϕ0

(8)

The right-hand sub-tree for t ′′1 continues with extending the context Γ1 two times by the

bindings for x and y, i.e., Γ2 = Γ1,x :Lπ1 ,y :Lπ2 , and the derivation continues as follows:

(10)

Γ2 ⊢spawn ( f (y,x)) ::spawn ϕ ′

Γ2 ⊢ x. lock::Lπ1 .lock Γ2 ⊢ y. lock::Lπ2 .lock

Γ2 ⊢ t :: ϕ

Γ2 ⊢ t1 ::spawn ϕ ′;ϕ

(9)

Further, the left-hand subtree continues as follows:

Γ2( f ) =Lπ2 × Lπ1→ϕ′

TE-VAR

Γ2 ⊢ f :Lπ2 × Lπ1→ϕ′ :: ε Γ2 ⊢ y :Lπ2 :: ε Γ2 ⊢ x :Lπ1 :: ε

TE-APP

Γ2 ⊢ f (y,x) :: ϕ ′

TE-SPAWN

Γ2 ⊢spawn ( f (y,x)) ::spawn ϕ ′

(10)

The derivation trees uses the following abbreviations:

t = x. lock;y. lock;stop

t1 = spawn ( f (y,x));t
t ′1 = let x: Lπ1=newπ1

L in (let y: Lπ2=newπ2
L in t1)

t f = z1. lock;z2. lock;stop

t0 = let f :Lπ2 × Lπ1→ϕ ′
=fn (z1: Lπ2 ,z2 L

π1).t f in t ′1
Γ3 = Γ0,z1:Lπ1,z2:Lπ2

Γ2 = Γ1,x :Lπ1 ,y :Lπ2

Γ1 = Γ0, f : Lπ1 × Lπ1→ϕ ′

Γ0 = ()
ϕ0 = νLπ1 ;νLπ2 ;(spawn ϕ ′);ϕ

ϕ ′ = Lπ2 .lock;Lπ1 .lock
ϕ = Lπ1 .lock;Lπ2 .lock

(11)

⊓⊔

Example 6 (Behavior checking ). The example revisits the previous Example 5, this

time however, using the function f not once, but twice:

Listing 1.6. Behavior checking

l e t f = fn ( z1 , z2 ) . z1 . l ock ; z2 . l ock ; s top

in

l e t x = newπ1
L in

l e t y = newπ2
L in

spawn ( f ( y , x ) ) ; f ( x , y ) ; s top
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The code does not contain the type and effect annotations. In the code of Listing

1.5, the function is used exactly once, namely as f (y,x), where the lock in y is created

at π2 and the one of x created at π2, hence the type of f had been Lπ2 × Lπ1→ϕ ′
. Now

the function f is used two times, namely in f (y,x) as before and further in f (x,y). This

means, the input types of the function must allow locks from both locations π1 and π2.

Furthermore, the behavior ϕ ′ is now of the form Lπ1,π2 .lock;Lπ1,π2 .lock. This gives

the following code:

Listing 1.7. Behavior checking

l e t f : Lπ1 ,π2 × Lπ1 ,π2→ϕ′ = fn ( z1: Lπ1 ,π2 , z2: Lπ1 ,π2 ) . z1 . l o c k ; z2 . l o c k ; s t o p

i n

l e t x : Lπ1 = newπ1
L i n

l e t y : Lπ2 = newπ2
L i n

spawn ( f ( x , y ) ) ; f ( y , x ) ; s t o p

That loss of precision is the price to pay of having a monomorphic type system.4 ⊓⊔

3.5 Deadlock-sensitive simulation

Next we prove that the type and effect systems formalizes our intention in that the effect

of a well-typed program over-approximates the actual behavior. Both the meaning of

the effects and the meaning of the program are specified operationally. The proof of

correctness relates therefore the operational interpretation on the concrete level of the

program with that of the abstract level of behavior.

To do so we start by defining an appropriate notion of simulation [31], a definition

which allows to transfer deadlock freedom from the simulating processes to the ones

being simulated. The definition relates the behavior of two configurations, and as part

of the definition, the corresponding heaps need to be appropriately related. As we will

abstract lock counters, the heaps containing the lock counter cannot be requested to be

identical: they operate on distinct domains (lock references on the concrete side, and

locations on the abstract side). The following definition relates two heaps as equivalent

(modulo renaming the locks involved), if they behave the same wrt. when a threads

waits on a lock or not. The definition will be used in the deadlock-sensitive simulation

relation afterwards.

Definition 3. Given two heaps σ1 and σ2. A heap-mapping θ is a bijection between

dom(σ1) and dom(σ2) such that σ1(l) = σ2(θ (l)). Two heaps σ1 and σ2 are wait-

equivalent, written σ2 ≡ σ1, if dom(σ1) = dom(σ2), and furthermore σ1(l) = free iff

σ2(l) = free, and σ1(l) = p(n1) iff σ2(l) = p(n2). We use σ1 ≡θ σ2 for σ1 ≡ σ ′
2 where

the locks of σ ′
2 renamed according to θ . We will later use the definition analogously for

locations π instead of lock references l.

The definition of simulation is standard, except that we need to add that the sim-

ulating behavior cannot do everything the partner can do, as well, i.e., to preserve the

4 To be precise, the type and effect system is not monomorphic, as it supports subtyping and

sub-effecting. However, it does not support universal polymorphism.
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ability to do labelled steps. In addition, the simulating partner must also be able to go

into a waiting state, if its partner does and furthermore, the same preservation for ter-

mination. The latter condition about termination is not needed to prove preservation of

deadlocks via simulation; the additional condition will be relevant later when using a

compositional argument for deadlock preservation, namely when showing preservation

of simulation in the context of sequential composition. As customary, internal steps,

when relating two transition systems via simulation, do not count. To capture that, we

start define a “weak” notion of transition, ignoring leading τ-steps (where p〈τ〉-labels

count as silent). So the weak transition relation
p〈a〉
==⇒ is defined as

p〈τ〉−−→∗ p〈a〉−−→ (the p

is meant to be the same). Formalization and axiomatization of termination has been

studied widely in the context of process algebra (see for instance [3]), especially for

ACP. Termination is also relevant when formalizing action refinement since replacing a

single action by more than one requires to consider sequential composition of actions,

not just action prefixing. Respective notions of equivalence have been studied, cf. e.g.

[37], collecting a number of results in the context of event structures, a well-known true

concurrency model of concurrency. The paper includes equivalence notions preserved

by action refinement/sequential composition such as history-preserving bisimulation.

Definition 4 (Deadlock and termination sensitive simulation .DT /.D). Assume a

heap-mapping θ and a corresponding equivalence ≡θ (for which we simply write ≡ in

the following). A binary relation R between configurations is a deadlock and termination

sensitive simulation relation (or just simulation for short) if the following holds. Assume

σ1 ⊢ Φ1 R σ2 ⊢ Φ2 with σ1 ≡ σ2. Then:

1. If σ1 ⊢ Φ1
p〈τ〉−−→ σ1 ⊢ Φ ′

1, then σ2 ⊢ Φ2
p〈τ〉−−→ σ2 ⊢ Φ ′

2 or σ2 ⊢ Φ ′
2 = σ2 ⊢ Φ2 s.t.

σ ′
1 ⊢ Φ ′

1R σ2 ⊢ Φ ′
2.

2. If σ1 ⊢Φ1
p〈a〉−−→σ ′

1 ⊢ Φ ′
1, then σ2 ⊢Φ2

p〈a〉
==⇒ σ ′

2 ⊢Φ ′
2 for some σ ′

2 ⊢Φ ′
2 with σ ′

1 ≡ σ ′
2

and σ ′
1 ⊢ Φ ′

1R σ ′
2 ⊢ Φ ′

2.

3. If waits((σ1 ⊢ Φ1), p, l), then (σ2 ⊢ Φ2)
p〈τ∗〉−−−→ σ ′

2 ⊢ Φ ′
2 for some σ ′

2 ⊢ Φ ′
2 where

waits((σ ′
2 ⊢ Φ ′

2), p,θ (l)).

4. If σ1 ⊢ Φ1
p〈√〉−−−→ σ1 ⊢ Φ ′

1, then σ2 ⊢ Φ2
p〈√〉−−−→ σ2 ⊢ Φ ′

2 and σ1 ⊢ Φ ′
1 R σ2 ⊢ Φ ′

2.

The configuration σ1 ⊢ Φ1 is simulated by configuration σ2 ⊢ Φ2 (written σ1 ⊢ Φ1 .DT

σ2 ⊢ Φ2), if there exists a deadlock and termination sensitive simulation s.t. σ1 ⊢
Φ1 R σ2 ⊢ Φ2. Without part 4 of the definition, we call it deadlock-sensitive simula-

tion, and write .D for the corresponding relation.

Figure 3 illustrates the definition, where part 3 of the definition of deadlock sensitive

simulation, where the negated transition is a graphical representation of the definition

of waiting on a lock (cf. Definition 1).

It is straightforward to see that the binary relation .DT is itself a deadlock and

termination sensitive simulation, and furthermore that it is reflexive and transitive.

The simulation relation from Definition 4 allows straightforwardly to carry over the

property of deadlock freedom from the more abstract behavior to the more concrete.

For the preservation result, termination sensitivity is not needed.
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σ1 ⊢ Φ1 σ2 ⊢ Φ2

σ1 ⊢ Φ ′
1 σ2 ⊢ Φ ′

2

p〈τ〉

R

R

= /p〈τ〉

(a)

σ1 ⊢ Φ1 σ2 ⊢ Φ2

σ ′
1 ⊢ Φ ′

1 σ ′
2 ⊢ Φ ′

2

p〈a〉

R

R

p〈a〉

(b)

σ1 ⊢ Φ1 σ2 ⊢ Φ2

σ ′
1 ⊢ Φ ′

1 σ ′
2 ⊢ Φ ′

2

¬p〈Lπ .lock〉

R

¬p〈Lπ .lock〉

(c)

σ1 ⊢ Φ1 σ2 ⊢ Φ2

σ1 ⊢ Φ ′
1 σ2 ⊢ Φ ′

2

p〈√〉

R

R

p〈√〉

(d)

Fig. 3. DT-Simulation

Lemma 1 (Preservation of deadlock freedom). Assume σ1 ⊢ Φ1 .D σ2 ⊢ Φ2. If σ2 ⊢
Φ2 is deadlock free, then so is σ1 ⊢ Φ1.

Proof. For a trace of labels s, let
s

=⇒ denote the corresponding sequence of labelled weak

transition steps. We prove contra-positively that if σ1 ⊢ Φ1 contains a deadlock, then

also σ2 ⊢ Φ2. So assume that σ1 ⊢ Φ1
s

=⇒ σ ′
1 ⊢ Φ ′

1 such that σ ′
1 ⊢ Φ ′

1 is deadlocked. By

assumption, there exists a simulation relation s.t. σ1 ⊢ Φ1 R σ2 ⊢ Φ2. This implies that

σ2 ⊢ Φ2
s

=⇒ σ ′
2 ⊢ Φ ′

2 s.t.

σ ′
1 ⊢ Φ ′

1 R σ ′
2 ⊢ Φ ′

2 . (12)

Being deadlocked means for the configuration σ ′
1 ⊢Φ ′

1 that σ ′
1(πi)= pi(ni) and waits(σ ′

1 ⊢
Φ ′

1, pi,πi+k1) for some k ≥ 1. Being in simulation relation implies with part 3 of Def-

inition 4, that also waits(σ ′
2 ⊢ Φ ′

2, pi,πi+k1). Hence, σ ′
2 ⊢ Φ ′

2 is deadlocked and thus

σ2 ⊢ Φ2 contains a deadlock. ⊓⊔

The next two lemmas are concerned with “compositionality” as far as the simu-

lation relation is concerned. It is crucial to use the stronger notion .DT of simula-

tion that respects termination, and not .D. In particular, in the presence of sequen-

tial composition, .D is not preserved: given σ ⊢ p〈ϕ1〉 .D σ ⊢ p〈ϕ2〉 does not im-

ply σ ⊢ p〈ϕ1;ϕ〉 .D σ ⊢ p〈ϕ2;ϕ〉 (see rule S-SEQ2 in Table 11), namely in situa-

tions where ϕ1 terminates but ϕ2 does not. A simple example illustrating that point is

ϕ1 = recX .τ;X + ε and ϕ2 = recX .τ;X .

Lemma 2 (Composition). The implications formalized as rules in Table 11 are valid.

Proof. Case: S-CHOICE:

In this case of sequential composition, we are given σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉 and

we need to prove that also σ ⊢ p〈ϕ1 + ϕ〉 .DT σ ⊢ p〈ϕ2 + ϕ〉. From the assumption

σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉 we get that σ ⊢ p〈ϕ1〉 R′ σ ⊢ p〈ϕ2〉 for some deadlock and

termination sensitive simulation relation R′.
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Define the binary relation R between two configurations as follows: It contains the

pair of initial configurations, i.e., σ ⊢ p〈ϕ1 + ϕ〉 R σ ⊢ p〈ϕ2 + ϕ〉, furthermore it is

defined as R′ on the left subtrees of the initial configurations σ ⊢ p〈ϕ1 + ϕ〉 and σ ⊢
p〈ϕ2 + ϕ〉, and the identity in the right sub-trees of the initial configurations.

Due to non-determinstic choice, there are two possible post-configurations of σ ⊢
p〈ϕ1 + ϕ〉, both reachable by a τ-step. One step is σ ⊢ p〈ϕ1 + ϕ〉 p〈τ〉−−→ σ ⊢ p〈ϕ1〉. For

this case, σ ⊢ p〈ϕ2 +ϕ〉 p〈τ〉−−→ σ ⊢ p〈ϕ2〉, where σ ⊢ p〈ϕ1〉 R′ σ ⊢ p〈ϕ2〉 by assumption,

which implies σ ⊢ p〈ϕ1〉 R σ ⊢ p〈ϕ2〉, by definition of R.

The other case is that σ1 ⊢ p〈ϕ1 +ϕ〉 p〈τ〉−−→ σ ⊢ p〈ϕ〉. Also, the second configuration

can do the corresponding τ-step, i.e., σ ⊢ p〈ϕ2 + ϕ〉 p〈τ〉−−→ σ ⊢ p〈ϕ〉. The two post-

configurations are identical, i.e., they are related by the identity: σ ⊢ p〈ϕ〉 Id σ ⊢ p〈ϕ〉,
which implies σ ⊢ p〈ϕ〉 R σ ⊢ p〈ϕ〉, by definition of R. Note that we do not consider the

remaining conditions of Definition 4 as σ ⊢ p〈ϕ1 + ϕ〉 takes only a τ-step for the non-

deterministic choice. To sum up: R is a deadlock and termination sensitive simulation

relating the initial configurations σ ⊢ p〈ϕ1 +ϕ〉 and σ ⊢ p〈ϕ2 +ϕ〉. Hence, σ ⊢ p〈ϕ1 +
ϕ〉 .DT σ ⊢ p〈ϕ2 + ϕ〉 (by definition of .DT ), as required.

Case: S-SEQ1:

In this case we are given σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉 and we need to prove that σ ⊢
p〈ϕ ;ϕ1〉 .DT σ ⊢ p〈ϕ ;ϕ2〉. From the assumption σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉 we get

that σ ⊢ p〈ϕ1〉 R′ σ ⊢ p〈ϕ2〉 for some deadlock and termination sensitive simulation

relation R′.
Define the binary relation R between two configurations as follows: It contains the

pair of initial configurations, i.e., σ ⊢ p〈ϕ ;ϕ1〉 R σ ⊢ p〈ϕ ;ϕ2〉, and it is defined as the

identity of the prefix in the two initial configurations, that is, σ ⊢ p〈ϕ〉 R σ ⊢ p〈ϕ〉; fur-

thermore, it is defined as R′ on the postfix of the two configurations. It is straightforward

to see that R is indeed a deadlock termination sensitive simulation relation.

Case: S-SEQ2:

In this case we are also given σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉 and we need to prove that

σ ⊢ p〈ϕ1;ϕ〉 .DT σ ⊢ p〈ϕ2;ϕ〉. From the assumption σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉 we

get that σ ⊢ p〈ϕ1〉 R′ σ ⊢ p〈ϕ2〉 for some deadlock and termination sensitive simulation

relation R′.
We define the binary relation R between two configurations as follows: It contains

the pair of initial configurations, i.e., σ ⊢ p〈ϕ1;ϕ〉 R σ ⊢ p〈ϕ2;ϕ〉 and defined as R′ on

the prefix in the two initial configurations; further it is defined as identity for the postfix

ϕ of the configurations; furthermore, the heap-parts are related by ≡.

The first three conditions of deadlock and termination sensitive simulation hold

straightforwardly for R. For condition (4), dealing with termination, the assumption

σ ⊢ p〈ϕ1〉 R′ σ ⊢ p〈ϕ2〉 guarantees that if ϕ1 terminates in one state, ϕ2 may also ter-

minate in an equivalent state. Therefore, the simulation can continue with the identical

remaining effect ϕ such that σ ⊢ p〈ϕ〉 R σ ′ ⊢ p〈ϕ〉 where σ ≡ σ ′. Thus, R is a dead-

lock and termination sensitive simulation relation, and therefore σ ⊢ p〈ϕ1;ϕ〉 .DT σ ⊢
p〈ϕ2;ϕ〉, as required.
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Case: S-SPAWN

For the rule of spawning an effect, we are given σ ⊢ p′〈ϕ1〉 .DT σ1 ⊢ p′〈ϕ2〉 and we

have to prove that σ ⊢ p〈spawn ϕ1〉 .DT σ ⊢ p〈spawn ϕ2〉. From the assumption σ ⊢
p′〈ϕ1〉 .DT σ ⊢ p′〈ϕ2〉 we get that σ ⊢ p′〈ϕ1〉 R′ σ ⊢ p′〈ϕ2〉 for some deadlock and

termination sensitive simulation relation R′.
We define the binary relation R between two configurations as follows: It contains

the pair of initial configurations, i.e., σ ⊢ p〈spawn ϕ1〉 R σ ⊢ p〈spawn ϕ2〉, and it

is defined as R′ between the two configurations given in the assumption, that is, σ ⊢
p′〈ϕ1〉 R′ σ ⊢ p′〈ϕ2〉; and is further defined as the identity for the empty effects such

that σ ⊢ p〈ε〉 R σ ⊢ p〈ε〉.
Since σ ⊢ p〈spawnϕ1〉 can only proceed with a transition step with label spawnϕ1,

we just only have to consider part 2 of Definition 4. For part 2, the label a is spawn

ϕ1 and therefore σ ⊢ p〈spawn ϕ1〉
p〈spawnϕ1〉−−−−−−−→ σ ⊢ p〈ε〉 ‖ p′〈ϕ1〉 by RE-SPAWN in

Table 10. Similarly, the other configuration will also do a spawning step, that is, σ ⊢
p〈spawnϕ2〉

p〈spawnϕ2〉−−−−−−−→σ ⊢ p〈ε〉 ‖ p′〈ϕ2〉. By the assumption and the definition of R, it

is straightforward that σ ⊢ p〈ε〉 ‖ p′〈ϕ1〉 R σ ⊢ p〈ε〉 ‖ p′〈ϕ2〉 holds, which implies that

R is a deadlock termination sensitive simulation relation. Hence, σ ⊢ p〈spawnϕ1〉.DT

σ ⊢ p〈spawn ϕ2〉.
Case: S-PAR:

Straightforward. ⊓⊔

The next lemma is a straightforward consequence, showing that .DT behaves co-

variantly or monotonely when replacing behavior within a context. We ignore the situ-

ation when replacing inside a recursion; the reason simply is that later we do not need

to consider that case.

Lemma 3 (Context). If σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉, then σ ′ ⊢ p〈ϕ [ϕ1]〉 .DT σ ′ ⊢
p〈ϕ [ϕ2]〉, where the holes [] in ϕ [] do not occur inside a recursion.

Proof. By straightforward induction on the structure of ϕ [], and with the help of Lemma

2. The base case ϕ [] = [] where the context is empty is immediate. For the case of

choice, we are given ϕ [] = ϕl []+ϕr[]. By induction, we get σ ⊢ ϕl [ϕ1] .DT σ ⊢ ϕl[ϕ2]
and σ ⊢ ϕr[ϕ1] .DT σ ⊢ ϕr[ϕ2]. Thus, the case follows by S-CHOICE of Lemma 2

and transitivity. The remaining cases work analogously. Note that we do not need to

consider the case where ϕ [] = recX .ϕ ′[]. ⊓⊔

3.6 Subject reduction as simulation

In the type/effect based formalization, the proof of deadlock-sensitive simulation can

be formulated in the form of a subject reduction result. As the static analysis is con-

ceptually split into a (standard) typing part and the behavioral effect part, we split the

preservation result also into these two aspects. We start with the typing part. The first

lemma, preservation of typing under substitution, is standard.

Lemma 4 (Substitution). If Γ ,x:T1 ⊢ t : T2 and Γ ⊢ v : T1, then Γ ⊢ t[v/x] : T2.
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σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉
S-CHOICE

σ ⊢ p〈ϕ1 +ϕ〉 .DT σ ⊢ p〈ϕ2 +ϕ〉

σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉
S-SEQ1

σ ⊢ p〈ϕ ;ϕ1〉 .DT σ ⊢ p〈ϕ ;ϕ2〉

σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉
S-SEQ2

σ ⊢ p〈ϕ1;ϕ〉 .DT σ ⊢ p〈ϕ2;ϕ〉

σ ⊢ p′〈ϕ1〉 .DT σ ⊢ p′〈ϕ2〉
S-SPAWN

σ ⊢ p〈spawn ϕ1〉 .DT σ ⊢ p〈spawn ϕ2〉

σ ⊢ p〈ϕ1〉 .DT σ ⊢ p〈ϕ2〉
S-PAR

σ ⊢ Φ ‖ p〈ϕ1〉 .DT σ ⊢ Φ ‖ p〈ϕ2〉

Table 11. Pre-congruence properties of .DT

Proof. By straightforward induction on the typing derivation, generalizing the property

of the lemma slightly: If Γ1,x:T1,Γ2 ⊢ t : T2 and Γ1 ⊢ v : T1, then Γ1,Γ2 ⊢ t[v/x] : T2. ⊓⊔

Lemma 5 (Subject reduction, local steps (types)). If Γ ⊢ e : T and e
τ−→ e′, then Γ ⊢

e′ : T .

Proof. Assume that e is well-typed, more precisely, Γ ⊢ e : T , and assume further that

e does a local transition step, i.e., e
τ−→ e′. Proceed by a case distinction on the rules for

the transition step.

Case: R-RED: let x:T1 = v in t
τ−→ t[v/x]

By the well-typedness assumption for t, we have Γ ⊢let x:T1 = v in t : T . Inverting

rule TE-LET gives :

Γ ⊢let v : T1 Γ ,x:T ⊢ t : T
TE-LET

Γ ⊢let x:T1 = v in t : T

By preservation of typing under substitution (Lemma 4), Γ ⊢ t[v/x] : T , which con-

cludes the case.

Case: R-LET: let x2:T2 = (let x1:T1 = e1 in t1) in t2
τ−→let x1:T1 = e1 in (let

x2:T2 = t1 in t2)

By assumption we are given let x2:T2 = (let x1:T1 = e1 in t1) in t2 : T . Inverting

the type rule TE-LET two times gives:

Γ ⊢ e1 : T1 Γ ,x1:T1 ⊢ t1 : T2
TE-LET

Γ ⊢let x1:T1 = e1 in t1 : T2 Γ ,x2:T2 ⊢ t2 : T
TE-LET

Γ ⊢let x2:T2 = (let x1:T1 = e1 in t1) in t2 : T
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Using weakening on the right-most subgoal Γ ,x2:T2 ⊢ t2 : T gives Γ ,x1:T1,x2:T2 ⊢ t2 : T .

Therefore we can conclude with using two times TE-LET again:

Γ ⊢ e1 : T1

Γ ,x1:T1 ⊢ t1:T2 Γ ,x1:T1,x2:T2 ⊢ t2 : T
TE-LET

Γ ,x1:T1 ⊢let x2:T2 = t1 in t2 : T
TE-LET

Γ ⊢let x1:T1 = e1 in (let x2:T2 = t1 in t2) : T

Case: R-IF1: let x:T =if true then e1 else e2 in t
τ−→let x:T = e1 in e

We are given that let x:T =if true then e1 else e2 in e:T , so inverting rule TE-LET

followed by rule TE-IF gives:

Γ ⊢true:Bool Γ ⊢ e1 : T Γ ⊢ e2 : T
TE-IF1

Γ ⊢if true then e1 else e2 : T Γ ,x:T ⊢ t : T
TE-LET

let x:T = if true then e1 else e2 in t:T

We conclude our proof by using TE-LET which gives:

Γ ⊢ e1 : T Γ ,x:T ⊢ t : T
TE-LET

Γ ⊢let x:T = e1 in t : T

The case for R-IF2 works analogously.

Case: R-APP1: let x:T1 = (fn x′:T ′.t ′) v in t
τ−→let x:T1 = t ′[v/x′] in t

By assumption, Γ ⊢let x:T1 = (fn x′:T ′.t ′) v in t : T . By inverting rules TE-LET,

TE-APP, and T-ABS1, we get:

Γ ,x′:T ′ ⊢ t ′ : T1
TE-ABS1

Γ ⊢fn x′:T ′.t ′ : T ′ → T1 Γ ⊢ v : T ′
TE-APP

Γ ⊢ (fn x′:T ′.t ′) v : T1 Γ ,x:T1 ⊢ t : T
TE-LET

Γ ⊢let x:T1 = (fn x′:T ′.t ′) v in t : T

By preservation of typing by substitution from Lemma 4 on the left-most subgoal, we

get Γ ⊢ t ′[v/x′] : T1, thus by TE-LET:

Γ ⊢ t ′[v/x′] : T1 Γ ,x:T1 ⊢ t : T
TE-LET

Γ ⊢let x:T1 = t ′[v/x′] in t : T

which concludes the case. The case for R-APP2, dealing with the application of a re-

cursive function works similarly. ⊓⊔

Lemma 6 (Subject reduction, global steps (types)). If Γ ⊢ P : ok and σ ⊢ P −→ σ ′ ⊢
P′, then Γ ⊢ P′ : ok (where −→ is meant as an arbitrary step, independent of the label).

Proof. Assume that P is well-typed, more precisely, Γ ⊢ P : ok, and assume further

that P does a global transition step, i.e., σ ⊢ P −→ σ ′ ⊢ P′. Proceed by induction on the

derivation for the reduction step.
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Case: R-LIFT: σ ⊢ p〈t1〉 −→ p〈t2〉
where t1 −→ t2. By assumption, ⊢ p〈t1〉 : ok. By inverting TE-THREAD, ⊢ t1 : T for some

type T . By the previous subject reduction result for local reduction steps (Lemma 5),

Γ ⊢ t2 : T . Thus the result follows by rule TE-THREAD:

Γ ⊢ t2 : T

Γ ⊢ p〈t2〉 : ok

Case: R-PAR: σ ⊢ P1 ‖ P2 −→ σ ′ ⊢ P′
1 ‖ P2

where σ ⊢ P1 −→ σ ′ ⊢ P1. From the well-typedness assumption, we get by inverting

TE-PAR:
Γ ⊢ P1 : ok Γ ⊢ P2 : ok

TE-PAR
Γ ⊢ P1 ‖ P2 : ok

By induction on σ ⊢ P1 −→ σ ′ ⊢ P′
1, it gives Γ ⊢ P′

1 : ok for the thread after the step, and

hence by rule T-PAR

Γ ⊢ P′
1 : ok Γ ⊢ P2 : ok

TE-PAR
Γ ⊢ P′

1 ‖ P2 : ok

as required.

Case: R-SPAWN: σ ⊢ p1〈let x:T =spawn t2 in t1〉 −→ σ ⊢ p1〈let x:T = p2 in t1〉 ‖
p2〈t2〉
By well-typedness and inverting rules TE-THREAD, TE-LET, and TE-SPAWN, we ob-

tain:

T = Thread Γ ⊢ t2 : T2
TE-SPAWN

Γ ⊢spawn t2 : T Γ ,x:T ⊢ t1 : T1
TE-LET

Γ ⊢let x:T =spawn t2 in t1 : T1
TE-THREAD

Γ ⊢ p1〈let x:T =spawn t2 in t1〉 : ok

Thus we can conclude with rules TE-REFP, TE-LET, TE-THREAD and TE-PAR:

T = Thread
TE-REFP

Γ ⊢ p2 : T Γ ,x:T ⊢ t1 : T1
TE-LET

Γ ⊢let x:T = p2 in t1 : T1

Γ ⊢ p1〈let x:T = p2 in t1〉 : ok

Γ ⊢ t2 : T2

Γ ⊢ p2〈t2〉 : ok
TE-PAR

Γ ⊢ p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉 : ok

Case: R-NEWL: σ ⊢ p〈let x:T1 =newπ L in t〉 −→ σ ′ ⊢ p〈let x:T1 = lπ in t〉
where σ ′ = σ [l 7→ free] for a fresh l. By assumption, the thread before the step is well-

typed, i.e., ⊢ p〈let x:T1 =newπ L in e〉 : ok. Inverting TE-THREAD, TE-LET and

TE-NEWL gives

T1 =Lπ

TE-NEWL
Γ ⊢newπ L : T1 Γ ,x:T1 ⊢ t : T

TE-LET
Γ ⊢let x:T1 =newπ L in t : T

TE-THREAD
Γ ⊢ p〈let x:T1 = newπ L in t〉 : ok
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The type T1 is Lπ by TE-NEWL. Thus we can conclude:

Γ ⊢ lπ : T1 T1 =Lπ Γ ,x:T1 ⊢ e : T
TE-LET

Γ ⊢let x:T1 = lπ in t : T
TE-THREAD

Γ ⊢ p〈let x:T1 = lπ in t〉 : ok

Case: R-LOCK: σ ⊢ p〈let x:T1 = lπ . lock in t〉 −→ p〈let x:T1 = lπ in t〉
where σ(lπ) = free, or σ ′ = σ [lπ 7→ p(n)], i.e., lπ is taken by process p n times. By

assuming well-typedness and inverting rules TE-THREAD, TE-LET, TE-LOCK and

TE-LREF gives

TE-LREF
Γ ⊢ lπ :Lπ T1 =Lπ

TE-LOCK
Γ ⊢ lπ . lock : T1 Γ ,x:T1 ⊢ t : T

TE-LET
Γ ⊢let x:T1 = lπ . lock in t : T

TE-THREAD
Γ ⊢ p〈let x:T1 = lπ . lock in t〉 : ok

Thus we can conclude:

Γ ⊢ lπ : T1 Γ ,x:T1 ⊢ t : T
TE-LET

Γ ⊢let x:T = l in t : T
TE-THREAD

Γ ⊢ p〈let x:T1 = lπ in t〉 : ok

The cases for R-UNLOCK case work similarly. ⊓⊔

Next we treat subject reduction for the effects. As the behavioral effects describe

(an over-approximation of) the future behavior of a program, we cannot expect that

doing a reduction step preserves the effect in general. For instance, if the behavior is

described by a behavior ϕ of the form Lr .lock;ϕ ′, then if the program actually does

the corresponding lock-taking step, its behavior should be described by ϕ ′ afterwards.

Clearly, not all steps the program does “count” in that way because some of the steps

are irrelevant for the behavior dealing with locks. Technically, the behavior of the pro-

gram and the behavior of the effects are related by a deadlock-sensitive simulation (see

Corollary 1 later).

We start again with a simple substitution lemma, this time for effects.

Lemma 7 (Substitution (effects)). If Γ , x:T ⊢ t :: ϕ , then Γ ⊢ t[v/x] :: ϕ .

Proof. Straightforward, using the fact that v is a value and therefore has the empty

effect (as has the variable x it replaces). ⊓⊔

Lemma 8 (Subject reduction (effects)). Let the heap mapping θ map concrete locks

lπ to their locations π . Note that due to the restrictions in our setting this mapping is a

bijection, as required. Let Γ ⊢ p〈t〉 :: p〈ϕ〉, and furthermore σ1 ≡ σ2.

1. σ1 ⊢ p〈t〉 p〈τ〉−−→ σ1 ⊢ p〈t ′〉, then Γ ⊢ p〈t ′〉 :: p〈ϕ〉.
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2. (a) σ1 ⊢ p〈t〉 p〈a〉−−→ σ ′
1 ⊢ p〈t ′〉 and a 6= spawn ϕ ′′, then σ2 ⊢ p〈ϕ〉 p〈a〉

==⇒ σ ′
2 ⊢ p〈ϕ ′〉

and Γ ⊢ p〈t ′〉 :: p〈ϕ ′〉.
(b) σ1 ⊢ p〈t〉 p〈a〉−−→ σ1 ⊢ p〈t ′′〉 ‖ p′〈t ′〉 where a =spawn ϕ ′, then σ2 ⊢ p〈ϕ〉 p〈a〉

==⇒
σ ′

2 ⊢ p〈ϕ ′′〉 ‖ p′〈ϕ ′〉 such that Γ ⊢ p〈t ′′〉 :: p〈ϕ ′′〉 and Γ ⊢ p′〈t ′〉 :: p′〈ϕ ′〉 .

3. If waits(σ1 ⊢ p〈t〉, p, lπ), then σ2 ⊢ p〈ϕ〉 p〈τ∗〉−−−→σ2 ⊢ p〈ϕ ′〉 s.t. waits(σ2 ⊢ p〈ϕ ′〉, p,π).

Proof. We are given Γ ⊢ p〈t〉 :: p〈ϕ〉. In part 1, furthermore σ1 ⊢ p〈t〉 p〈τ〉−−→ σ1 ⊢ p〈t ′〉.
In case of steps justified by the rules for local steps of Table 2, σ1 remains unchanged.

Furthermore, by inverting R-LIFT, we have t
τ−→ t ′, and it suffices to show that Γ ⊢ t :: ϕ

implies Γ ⊢ t ′ :: ϕ . We proceed by case distinction on the rules for the local transition

steps from Table 2.

Case: R-RED: p〈let x:T = v in t〉 p〈τ〉−−→ p〈t[v/x]〉
By well-typedness, we are given Γ ⊢ p〈let x:T = v in t〉 :: p〈ϕ〉, so inverting rule

TE-THREAD and TE-LET gives:

Γ ⊢ v :: ϕ1 Γ ,x:T ⊢ t :: ϕ2
TE-LET

Γ ⊢let x:T = v in t :: ϕ1;ϕ2
TE-THREAD

Γ ⊢ p〈let x:T = v in t〉 :: p〈ϕ1;ϕ2〉

where ϕ = ϕ1;ϕ2. The effect of a value v is empty, i.e., ϕ1 = ε (cf. the corresponding

rules for values TE-VAR, TE-LREF, TE-ABS1, and TE-ABS2 from Table 6). There-

fore, the overall effect of the thread is ε;ϕ2. By preservation of typing under substitution

(Lemma 7) we get from the second premise of the above rule that Γ ⊢ t[v/x] :: ϕ2. By

SE-UNIT, ε;ϕ2 ≡ ϕ2 that implies ε;ϕ2 ≥ ϕ2 with SE-REFL, from which the case fol-

lows by subsumption and TE-THREAD:

Γ ⊢ t[v/x] :: ϕ2 ϕ2 ≤ ε;ϕ2
TE-SUB

Γ ⊢ t[v/x] :: ε;ϕ2
TE-THREAD

Γ ⊢ p〈t[v/x]〉 :: p〈ε;ϕ2〉

Case: R-LET: p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉
p〈τ〉−−→ p〈let x1:T1 = e1 in

(let x2:T2 = t1 in t2)〉
By assumption, we are given Γ ⊢ p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉 :: p〈ϕ〉.
Inverting the type rules TE-THREAD, followed by TE-LET twice gives:

Γ ⊢ e1 :: ϕ1 Γ ,x1:T1 ⊢ t1 :: ϕ2

Γ ⊢let x1:T1 = e1 in t1 :: ϕ1;ϕ2 Γ ,x2:T2 ⊢ t2 :: ϕ3

Γ ⊢let x2:T2 = (let x1:T1 = e1 in t1) in t2 :: (ϕ1;ϕ2);ϕ3
TE-THREAD

Γ ⊢ p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉 :: p〈(ϕ1;ϕ2);ϕ3〉

for ϕ = (ϕ1;ϕ2);ϕ3. Using weakening on the right-most subgoal Γ ,x2:T2 ⊢ t2 :: ϕ3, it

gives Γ ,x1:T1,x2:T2 ⊢ t2 :: ϕ3. Therefore we can conclude by using two times TE-LET
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plus one application of subsumption and TE-THREAD:

Γ ⊢ e1 :: ϕ1

Γ ,x1:T1 ⊢ t1 :: ϕ2 Γ ,x1:T1,x2:T2 ⊢ t2 :: ϕ3

Γ ,x1:T1 ⊢let x2:T2 = t1 in t2 :: ϕ2;ϕ3

Γ ⊢let x1:T1 = e1 in (let x2:T2 = t1 in t2) :: ϕ1;(ϕ2;ϕ3)
TE-SUB

Γ ⊢let x1:T1 = e1 in (let x2:T2 = t1 in t2) :: (ϕ1;ϕ2);ϕ3
TE-THREAD

Γ ⊢ p〈let x1:T1 = e1 in (let x2:T2 = t1 in t2)〉 :: p〈(ϕ1;ϕ2);ϕ3〉
where ϕ1;(ϕ2;ϕ3) is equivalent to (ϕ1;ϕ2);ϕ3, which further implies ϕ1;(ϕ2;ϕ3) ≤
(ϕ1;ϕ2);ϕ3, which is used in the subsumption step.

Case: R-IF1: p〈let x:T = if true then e1 else e2 in e〉 p〈τ〉−−→ p〈let x:T = e1 in e〉
Assuming that Γ ⊢ p〈let x:T = if true then e1 else e2 in e〉 :: p〈ϕ〉, inverting rules

TE-THREAD, TE-LET and TE-IF gives:

Γ ⊢true:: ε Γ ⊢ e1 :: ϕ1 Γ ⊢ e2 :: ϕ2
TE-IF

Γ ⊢if true then e1 else e2 :: ϕ1 +ϕ2 Γ ,x:T ⊢ e :: ϕe
TE-LET

Γ ⊢let x:T =if true then e1 else e2 in e :: (ϕ1 +ϕ2);ϕe
TE-THREAD

Γ ⊢ p〈let x:T =if true then e1 else e2 in e〉 :: p〈(ϕ1 +ϕ2);ϕe〉
where ϕ = (ϕ1 + ϕ2);ϕe is equivalent to ϕ1;ϕe + ϕ2;ϕe by SE-DISTR in Table 9. By

applying rule TE-LET, we get:

Γ ⊢ e1 :: ϕ1 Γ ,x:T ⊢ e :: ϕe
TE-LET

Γ ⊢let x:T = e1 in e :: ϕ1;ϕe

and ϕ1;ϕe ≤ϕ . By rule TE-SUB and TE-THREAD, we get p〈let x:T = e1 in e〉 :: p〈ϕ〉
which proves the case. The case for R-IF2 works analogously.

Case: R-APP1: p〈let x:T = (fn x′:T ′.t ′) v in t〉 p〈τ〉−−→ p〈let x:T = t ′[v/x′] in t〉
We are given Γ ⊢ p〈let x:T = (fn x′:T ′.t ′) v in t〉 :: p〈ϕ〉. Hence inverting rules

TE-THREAD, TE-LET, TE-APP, and TE-ABS1 gives:

Γ ,x′:T ′ ⊢ t ′ : T :: ϕ1
TE-ABS1

Γ ⊢fn x′:T ′.t ′ : T ′ →ϕ1 T :: ε Γ ⊢ v :: ε
TE-APP

Γ ⊢ (fn x′:T ′.t ′) v :: ϕ1 Γ ,x:T ⊢ t :: ϕt
TE-LET

Γ ⊢let x:T = (fn x′:T ′.t ′) v in t :: ϕ1;ϕt

Γ ⊢ p〈let x:T = (fn x′:T ′.t ′) v in t〉 :: p〈ϕ1;ϕt〉

By the substitution from Lemma 7 on the left-most subgoal, we get Γ ⊢ t ′[v/x′] :: ϕ1

and hence by TE-LET which gives:

Γ ⊢ t ′[v/x′] :: ϕ1 Γ ,x:T ⊢ t :: ϕt
TE-LET

Γ ⊢let x:T = t ′[v/x′] in t :: ϕ1;ϕt

We conclude the case by TE-THREAD.
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Case: R-APP2: p〈let x:T = (fun f :T ′.x′:T1.t
′) v in t〉 p〈τ〉−−→ p〈let x:T =

t ′[v/x′][fun f .x′.t ′/ f ] in t〉
We are given Γ ⊢ p〈let x:T = (fun f :T ′.x′:T ′

1 .t
′) v in t〉 :: p〈ϕ〉, so inverting rules

TE-THREAD, TE-LET, TE-APP, and TE-ABS2 gives (where ϕ = ϕ1;ϕ2):

Γ ,x′:T1, f :T1 →ϕ1 T ⊢ t ′ : T :: ϕ1 T ′ = T1 →ϕ1 T2 T = T2

Γ ⊢fun f :T ′.x′:T1.t
′ : T1 →ϕ1 T2 :: ε Γ ⊢ v :: ε

Γ ⊢ (fun f :T ′.x′:T1.t
′) v :: ε;ε;ϕ1

Γ ⊢ (fun f :T ′.x′:T1.t
′) v :: ϕ1 Γ ,x:T ⊢ t :: ϕ2

Γ ⊢let x:T = (fun f :T ′.x′:T1.t
′) v in t :: ϕ1;ϕ2

Γ ⊢ p〈let x:T = (fun f :T ′.x′:T1.t
′) v in t〉 :: p〈ϕ1;ϕ2〉

Using two times the substitution Lemma 7 on the left-most subgoal, we get Γ ⊢ t ′[v/x′] ::

ϕ1 and hence by TE-LET and TE-THREAD

Γ ⊢ t ′[v/x′][fun f :T ′.x′:T1.t
′/ f ] :: ϕ1 Γ ,x:T2 ⊢ t :: ϕ2

TE-LET
Γ ⊢let x:T2 = t ′[v/x′][fun f :T ′.x′:T1.t

′/ f ] in t :: ϕ1;ϕ2

Γ ⊢ p〈let x:T2 = t ′[v/x′][fun f :T ′.x′:T1.t
′/ f ] in t〉 :: p〈ϕ1;ϕ2〉

which concludes the case.

For part 2a, we are given σ ⊢ p〈t〉 p〈a〉−−→ σ ′ ⊢ p〈t ′〉.

Case: R-NEWL: σ1 ⊢ p〈let x:T =newπ L in t〉 p〈νLπ 〉−−−−→ σ ′
1 ⊢ p〈let x:T = lπ in t〉

where σ ′
1 = σ1[l

π 7→ free] for a fresh l. By assumption, Γ ⊢ p〈let x:T =newπ L in t〉 ::

p〈ϕ〉. By inverting rules TE-THREAD and TE-LET, we get:

Γ ⊢newπ L :: νLπ Γ ,x:T ⊢ t :: ϕt
TE-LET

Γ ⊢let x:T =newπ L in t :: νLπ ;ϕt
TE-THREAD

Γ ⊢ p〈let x:T =newπ L in t〉 :: p〈ϕ〉

and ϕ = νLπ ;ϕt . Using rules TE-LET and TE-THREAD again gives:

Γ ⊢ lπ :: ε Γ ,x:T ⊢ t :: ϕt
TE-LET

Γ ⊢let x:T = lπ in t :: ϕt
TE-THREAD

Γ ⊢ p〈let x:T = lπ in t〉 :: p〈ϕt〉

By the assumption that σ2(π) is undefined, the case is concluded by rule RE-NEWL

such that σ2 ⊢ p〈νLπ ;ϕt 〉 νLπ

−−→ σ ′
2 ⊢ p〈ϕt〉 where σ ′

2 = σ2[π 7→ free].

Case: R-LOCK: σ1 ⊢ p〈let x:T = lπ . lock in t〉 p〈Lπ.lock〉−−−−−−→ σ ′
1 ⊢ p〈let x:T = lπ in t〉

where σ1(l
π ) = free or σ1(l

π) = p(n), and σ ′
1 = σ1 + lp. Given that Γ ⊢ p〈let x:T =

lπ . lock in t〉 :: p〈ϕ〉, inverting rule TE-THREAD and followed by rules TE-LET and
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TE-LOCK, we get:

Γ ⊢ lπ :: ε
TE-LOCK

Γ ⊢ lπ . lock::Lπ .lock Γ ,x:T ⊢ t :: ϕt
TE-LET

Γ ⊢let x:T = lπ . lock in t :: Lπ .lock;ϕt
TE-THREAD

Γ ⊢ p〈let x:T = lπ . lock in t〉 :: p〈Lπ .lock;ϕt〉

and ϕ is Lπ .lock;ϕt where L{π} .lock is written as Lπ .lock for short. By applying

TE-LET and TE-THREAD, we get:

Γ ,x:T ⊢ t :: ϕt
TE-LET

Γ ⊢let x:T = lπ in t :: ϕt
TE-THREAD

Γ ⊢ p〈let x:T = lπ in t〉 :: p〈ϕt〉

Then, we conclude the case by RE-LOCK1 and RE-SEQ

σ2 ⊢ p〈L{π} .lock;ϕt〉
p〈τ〉−−→ σ2 ⊢ p〈Lπ .lock;ϕt〉

p〈Lπ.lock〉−−−−−−→ σ ′
2 ⊢ p〈ϕt〉

for σ ′
2 = σ2 + πp. The case for R-UNLOCK works analogously.

For spawn-steps in part 2b, we are given σ ⊢ p〈t〉 p〈a〉−−→ σ ⊢ p〈t ′′〉 ‖ p′〈t ′〉 where

a = p〈spawn ϕ ′〉.

Case: R-SPAWN: σ1 ⊢ p〈let x:T =spawn t ′ in t ′′〉 p〈spawn ϕ ′〉−−−−−−−→ σ ⊢ p〈let x:T = p′ in
t ′′〉 ‖ p′〈t ′〉
Given the well-typedness assumption Γ ⊢ p〈let x:T =spawn t ′ in t ′′〉 :: p〈ϕ〉, inverting

rules TE-THREAD, TE-LET, and TE-SPAWN gives:

Γ ⊢ t ′ :: ϕ ′
TE-SPAWN

Γ ⊢spawn t ′ ::spawn ϕ ′; Γ ,x:T ⊢ t ′′ :: ϕ ′′
TE-LET

Γ ⊢let x:T =spawn t ′ in t ′′ ::spawn ϕ ′;ϕ ′′
TE-THREAD

Γ ⊢ p〈let x:T =spawn t ′ in t ′′〉 :: p〈spawn ϕ ′;ϕ ′′〉

where ϕ = spawn ϕ ′;ϕ ′′. Using rule TE-LET, TE-THREAD, and TE-PAR gives:

Γ ⊢ p′ :: ε Γ ,x:T ⊢ t ′′ :: ϕ ′′
TE-LET

Γ ⊢let x:T = p′ in t ′′ :: ε;ϕ ′′

Γ ⊢let x:T = p′ in t ′′ :: ϕ ′′
TE-THREAD

Γ ⊢ p〈let x:T = p′ in t ′′〉 :: p〈ϕ ′′〉

Γ ⊢ t ′ :: ϕ ′
TE-THREAD

Γ ⊢ p′〈t ′〉 :: p′〈ϕ ′〉

Γ ⊢ p〈let x:T = p′ in t ′′〉 ‖ p′〈t ′〉 :: p〈ϕ ′′〉 ‖ p′〈ϕ ′〉

From that the case follows by rule RE-SPAWN: σ2 ⊢ p〈spawn ϕ ′;ϕ ′′〉 p〈spawn ϕ ′〉−−−−−−−→ σ2 ⊢
p〈ϕ ′′〉 ‖ p′〈ϕ ′〉.
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For part 3, we are given waits(σ1 ⊢ p〈t〉, p, lπ), i.e., by Definition 1 it is not the case

that σ1 ⊢ p〈t〉 p〈Ll.lock〉−−−−−−→ but σ ′
1 ⊢ p〈t〉 p〈Ll.lock〉−−−−−−→ for some heap σ ′

1. This implies that the

thread t is of the form let x:T = lπ . lock in t ′ and we are given more specifically that

σ1 ⊢ p〈let x:T = lπ . lock in t ′〉 6 p〈L
l.lock〉−−−−−−→. The well-typedness assumption Γ ⊢ p〈let

x:T = lπ . lock in t ′〉 :: p〈ϕ〉 gives that ϕ is of the form Lr .lock;ϕt and ϕt is the effect

of thread t ′ and where π ∈ r. Then σ2 ⊢ p〈Lr .lock;ϕt〉 is first reduced to σ2 ⊢ p〈Lπ

.lock;ϕt〉 by rule RE-LOCK1 with a τ-step. The execution continues with RE-LOCK2.

Since σ1 ≡ σ2, we get σ2 ⊢ p〈Lr .lock;ϕt〉
p〈τ〉−−→ σ2 ⊢ p〈Lπ .lock;ϕt〉 6

p〈Lπ.lock〉−−−−−−→. Since

for any heap σ ′
2 where the lock π is free, σ ′

2 ⊢ p〈Lπ . lock;ϕt〉
p〈Lπ .lock〉−−−−−−→, we have

waits(σ2 ⊢ p〈Lπ .lock;ϕt 〉, p,π), which concludes the case. ⊓⊔

An easy consequence is that well-typedness relation between a program and its

effect is a deadlock-preserving simulation:

Corollary 1. Given σ1 ≡ σ2 and Γ ⊢ p〈t〉 :: p〈ϕ〉, then σ1 ⊢ p〈t〉 .D σ2 ⊢ p〈ϕ〉.

4 Two finite abstractions

In this section, we describe finite abstractions on the effects so that we can effectively

check for potential deadlocks on the abstract level. The two sources of infinity we tackle

are the unboundedness of the lock counters and the unboundedness of the “control

stack” of recursive behavior descriptions. The reason for the latter is that the syntax

of the behaviors includes sequential composition of behaviors, which allows to capture

non-tail-recursive recX .ϕ . In the next section, we collapse the lock counters into a

finite over-approximation, and in Section 4.2, we show how to transform the behavior

representation into a tail-recursive one, necessarily loosing again precision. For both

abstractions, we prove that the abstracted system simulates the concrete one, via the

deadlock-sensitive relation .D, i.e., the abstractions are sound.

4.1 Lock counters abstraction

The unbounded lock counters are the first source of infinity. We over-approximate

the behavior by collapsing (for a given lock) all lock counts over a threshold M into

one. That abstraction naturally introduces non-determinism. The lock-counters in rules

RE-LOCK2 and RE-UNLOCK2 increases resp. decreases by one. We used the two func-

tions σ +πp and σ −πp for that. With M as upper bound functions are then changed as

follows. Let σ ′ = σ + πp. Now, if σ(π) < M, then σ ′ = σ [π 7→σ(π)+ 1]. If σ(π) =
M, then σ ′ = σ . The corresponding decreasing operation σ − πp now generalized to

a relation, i.e., σ − πp is given as a set as follows: If σ(π) = M, then σ − πp =
{σ ,σ [π 7→σ(π)− 1]}. If σ(π) < M, then σ −π = {σ [π 7→σ(π)− 1]}. To reflect the

non-determinism, the premise σ ′ = σ −π of rule RE-UNLOCK2 needs to be general-

ized to σ ′ ∈ σ −π . The value of M is from the range {1, . . . ,∞}, where ∞ means that

the counter is unbounded. To be able to distinguish a free lock from a lock which is

taken, the lowest value for the upper bound M we consider is 1.
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The next lemma expresses an easy fact about the≡-relation, in particular that chang-

ing to an equivalent heap does not change the fact whether a process is waiting on a lock

or not.

Lemma 9. Assume σ1 ≡ σ2 with θ = id .

1. If waits(σ1 ⊢ Φ, p,π), then waits(σ2 ⊢ Φ, p,π).

2. If σ1 ⊢ Φ
p〈τ〉−−→ σ1 ⊢ Φ ′, then σ2 ⊢ Φ

p〈τ〉−−→ σ2 ⊢ Φ ′.

Proof. Immediate. ⊓⊔

Lemma 10 (Lock counter abstraction). Given a configuration σ ⊢ Φ , and let fur-

ther denote σ1 ⊢n1 Φ and σ2 ⊢n2 Φ the corresponding configurations under the lock-

counter abstraction. If n1 ≥ n2, then σ1 ⊢n1 Φ .D σ2 ⊢n2 Φ (where n1 and n2 are

∈ {1, . . . ,n, . . . ,∞}).

Proof. We prove more specifically that σ1 ⊢n+1 Φ .D σ1 ⊢n Φ . We omit the case where

n1 = ∞, which works analogously. The result follows by transitivity and reflexivity.

Define the binary relation R between configurations as follows: σ1 ⊢ Φ1 R σ2 ⊢ Φ2

if Φ1 = Φ2 and σ1 = σn+1 and σ2 = σn; in abuse of notation, we write σ1 R σ2 also

for the heap-part of the definition. Note further that for the heap-part, σ1 R σ2 implies

σ1 ≡ σ2.

Obviously, the start configuration is in that relation.

Case: σ1 ⊢n+1 Φ
p〈τ〉−−→ σ1 ⊢n+1 Φ ′

By Lemma 9(2), σ2 ⊢n Φ
p〈τ〉−−→ σ2 ⊢n Φ ′. Case 3 of Definition 4 is covered by Lemma

9(1).

Case: If σ1 ⊢n+1 Φ
p〈a〉−−→ σ ′

1 ⊢n+1 Φ ′

The only interesting cases are the ones for locking and unlocking. In the following we

elide mentioning p from the operation σ + πp.

Subcase: Lπ .lock
In this case σ ′

1 = σ1 + π , i.e., σ ′
1(π) = σ ′

1(π)+n+1 1 (where +n+1 is addition modulo

the upper bound n+1). For σ2 ⊢n Φ , we have that σ2 ⊢n Φ
p〈Lπ.lock〉−−−−−−→ σ ′

2 ⊢n Φ ′, where

σ ′
2(π) = σ2(π) +n 1. Thus σ ′

1 R σ ′
2. Part 3 of Definition 4 follows straightforwardly

from the definition of R, in particular since R implies ≡.

Subcase: Lπ .unlock
It is straightforward to check analogously that R satisfies the conditions for a simulation

relation also for unlocking. For an unlocking step, we can distinguish two cases for the

post-configurations of σ1 ⊢n+1 Φ . If σ1(π) < n + 1, then the step is deterministic, i.e.,

σ ′
1 ∈ {σ1[π 7→σ1(π)− 1]}. In this case, there exists a transition σ2 ⊢n Φ

p〈Lπ.unlock〉−−−−−−−→
σ ′

2 ⊢n Φ ′ where σ ′
2(π) = σ2(π)− 1, and hence σ ′

1 R σ ′
2. Otherwise, if σ1(π) = n + 1,

then σ ′
1 ∈ {σ1,σ1[π 7→σ1(π)− 1]}. For this case, we choose σ ′

2 = σ2, thus σ ′
1 R σ ′

2.

Note that condition 3 of Definition 4 is trivially satisfied as unlocking does not wait for

a lock. ⊓⊔
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4.2 Tail-recursive behavior representation

A second source of infinity in the state space is recursion: the behavior contains non-

tail-recursive descriptions. We deal with it in the same way as we did for the lock-

counters: we allow a certain recursion depth —the choice of cut-off does not matter—

after which the behavior is over-approximated. Just as with the variable upper limit on

the lock count, we use a similar adjustable limit for the stack depth. Once the recursion

limit is reached, the behavior becomes chaotic, i.e., it over-approximates all behavior. In

the following, we make use of the fact that our deadlock analysis is limited to programs

that do not recursively create new resources. For instance, in the definition of the chaotic

behavior, we exclude lock creation and thread creation labels. So Ω randomly takes and

releases locks, does internals steps, or terminates at arbitrary points. Note that Ω is tail-

recursive.

Definition 5 (Chaotic behavior Ω ). Given a set of locations r, we define

Ω(r) = recX .ε + X+ Lr .lock;X+ Lr .unlock;X .

We write Ω , if r is clear from the context.

Lemma 11 (Ω is maximal wrt. .DT ). Assume ϕ over a set of locations r, then σ ⊢
p〈ϕ〉 .DT σ ⊢ p〈Ω〉.

Proof. We define a simulation relation R between σ ⊢ p〈ϕ〉 and σ ⊢ p〈Ω〉 as follows.

The states of Ω are shown schematically in Figure 4. The initial one corresponds to the

term Ω . The four τ∗-transitions (including the “self-loop”) originating from the initial

state are caused by resolving the choice (cf. rule RE-CHOICE). And the states s1 and

s2 correspond to the expressions Lr .lock;Ω and Lr .unlock;Ω . The labels li and u j in

the picture correspond to lock-manipulating labels p〈Lπi .lock〉 and p〈Lπ j .unlock〉.
Note that may take more than one τ step to go from, for example Ω to s1. This is due to

the fact that resolving a choice costs a τ step and that we consider behavior up-to ≡.5

The simulation relation R then couples Ω and processes p〈ϕ〉 in an obvious manner.

A ϕ of the form ε is related to ε of Ω , if ϕ =Lr .lock;ϕ ′, then ϕ R s1, analogously for

unlocking. If ϕ =Lπi .lock;ϕ ′, then ϕ is related to the corresponding state of Ω in front

of the lock-taking step. In all other cases, ϕ is related via R to the initial state Ω . It is

straightforward to see that R is indeed a deadlock and termination sensitive simulation

between p〈ϕ〉 and Ω . ⊓⊔

We define the depth-k-unrolling of an effect, where we substitute the recursive in-

vocation by Ω at recursion depth k.

Definition 6 (Unrolling). Given an effect ϕ = recX .ϕ ′ with locations r, we define the

depth-k-unrolling ϕk inductively as follows:

ϕ0 = Ω(r)
ϕn+1 = ϕ ′[ϕn/X ] .

5 The τ+ is slightly imprecise, the maximal number of τ is determined by the number of sum-

mands in Ω , i.e. ultimately, the number of locks in r . Important, however, is that that all

transitions originating from Ω start with one silent step, i.e., the choice is internal.
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Fig. 4. Chaotic process Ω

The definition allows unrolling of a recursive behavior; we use it also to unroll a recur-

sion inside a behavior expression. We write ϕ1[ϕ
n
2 ] for unrolling ϕ2 inside the “context”

ϕ1. For simplicity we will assume that the position(s) [] where we do that replacement

in ϕ2[] do not occur inside a further recursion in the context. When later abstracting

recursive behavior by unrolling, we can treat the recursions proceeding from the outer

recursion to the inner ones.

Note further that unrolling to Ω is quite coarse and can easily be refined. A straight-

forward improvement in terms of precision while preserving soundness would be to

split the set of locks into two sets, one for those that are used in locking effects, and

one for those that are used in unlocking. These two sets can easily be derived from the

effect being unrolled.

Lemma 12 (Behavior abstraction). Given a configuration σ ⊢ Φ . Let Φm denote the

m-unrolling of a specific occurrence of a recursion recX .ϕ in Φ not occurring inside

another recursion. If m1 ≥ m2, then σ ⊢ Φm1 .DT σ ⊢ Φm2 . The lemma holds identical

for configurations based on the lock counter abstraction of Section 4.1.

Proof. We prove specifically that σ ⊢ Φm+1 .DT σ ⊢ Φm (where m is a natural number

≥ 0), and the result follows by transitivity and reflexivity. The case where m1 = ∞

works similarly. So, Φ is of the form Φ[ϕ ] = Φ[recX . ϕ ′], where ϕ = recX . ϕ ′ is

the occurrence of the recursion being unrolled. By definition of unrolling it means that

Φm = Φ[ϕm] and analogously Φm+1 = Φ[ϕm+1]. That further means for the form of

Φm resp. of Φm+1

Φm = Ψ [Ω ] and Φm+1 = Ψ [ϕ ′[Ω/X ]] (13)

for some Ψ []. So the result follows by maximality of Ω from Lemma 11, and using the

context Lemma 3 and Lemma 2 (for parallel composition). It is immediate to see that

the required lemmas 11, 3, and Lemma 2 work identically under the assumption that

some lock counters are abstracted. ⊓⊔

We have shown already in the first part of the paper that the effect derived from

type-checking preserves deadlocks. Next, we state the final theorem with regard to our
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contribution. It shows that we can conclude from the absence of a deadlock in effect

checking with regard to lock-counter abstraction and behavior abstraction that the pro-

gram is deadlock-free:

Theorem 1 (Soundness of the abstraction). Given Γ ⊢ P : ok :: Φ and two heaps

σ1 ≡ σ2. Further, σ ′
2 ⊢ Φ ′ is obtained by lock-counter resp. behavior abstraction of

σ2 ⊢ Φ . Then if σ ′
2 ⊢ Φ ′ is deadlock free then so is σ1 ⊢ P.

Proof. By Corollary 1, Lemmas 10 and 12, and with the help of transitivity of .D. ⊓⊔

Theorem 2 (Finite abstractions). The lock counter abstraction and behavior abstrac-

tion (when abstracting all locks and recursions) results in a finite state space.

Proof. Under our restrictions —no lock and thread creations within recursions— the

contribution of the heap to the state space is finite (due to lock counter abstraction).

Further, the behavior abstraction renders the behavior Φ of the program into a bounded

number of tail-recursive processes. Both together result in a finite reachable state space.

⊓⊔

5 Conclusion

We have presented a type and effect system that derives abstract behaviors from a core

functional language with lock-based concurrency. Such an abstract behavior can be

executed, and the resulting state space checked for deadlocks. The potentially infinite

state space is abstracted in two ways: we place a user-definable upper bound on the lock-

counters, and a similar limit on the recursion depth for non-tail-recursive function calls;

beyond that chosen limit, the behavior is over-approximated by arbitrary behavior. This

abstraction yields a finite state space that can be exhaustively checked for deadlocks.

We show soundness of the abstractions with regard to a deadlock- and termination-

sensitive simulation of the original program, i.e., a program is deadlock free, if the

abstraction is deadlock free. Using an over-approximation, the converse does not hold:

a deadlock in the abstraction not necessarily represents a deadlock in the concrete pro-

gram.

Being based on abstraction and state exploration, a reported deadlock on the ab-

stract level can be mapped back to the original program by looking at the path labelled

with the concurrent actions from the initial state to the deadlocked state. This may

provide the user with intuition about whether he should refine the parameters for the

abstraction. For example, the model could be easily augmented to indicate whether the

lock-statement involved in a deadlock is the result of introducing an Ω . A natural ex-

tension of our work would thus be to counter-example guided abstraction refinement

(CEGAR) [29,9].

Another straightforward increase in precision can be obtained through type infer-

ence: currently, explicit typing means that function declarations in our system need to

be declared with the most general type. In the case of a parameter of a lock-type, this

means that the corresponding region on the argument has to be declared as the union

of the regions at the call-sites, leading to a loss of precision. As usual, with type infer-

ence and polymorphism, each invocation could be checked separately in the context of
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its caller. Obviously, effect inference would be welcome from a practical point of view

that the effects could be automatically inferred.

For a practical application, not every program will fit our restriction of no recursive

resource creation (threads/locks). Especially for programming languages that facilitate

light-weight/“disposable” thread creation, such as Erlang or Concurrent Haskell, our

analysis would be of limited use. In such cases, we may still be able to use our analysis

to partition the problem into a part that can be statically tackled with our approach,

and subject the remainder to a dynamic monitoring regime that will report locking-

violations or warnings (see e.g. [35] below).

We plan to investigate how further static analysis techniques can help to eliminate

doubts in such a more dynamic setting: if from our effect system we can tell that dy-

namically generated threads never share more than one lock, then we should be easily

able to extend the range of acceptable input to our analysis.

Related work Deadlocks are a common problem in concurrent programming. Cyclic

waiting has been identified early as one of four necessary conditions for a deadlock [11].

To tackle the problem of deadlocks, one traditionally istinguishes different approaches

[14]: deadlock prevention, avoidance, detection, and recovery. A static type system like

the one presented here would classify as deadlock prevention; avoidance, in contrast,

refers to techniques that “dodge” looming deadlocks at run-time.

As said, a necessary condition for a deadlock to occur is the cyclic wait on (non-

preemptive) resources, such as locks as in our case, but also waiting for channel com-

munication (“communication deadlock”) and other resources may lead to deadlock.

Therefore the most common way to prevent deadlocks is to statically make sure that

such cycles on locks or resources in general can never occur. This can be done by ar-

ranging (classes of) locks in some partial order and enforcing that the locks are taken

in accordance with that order. That old and straightforward idea has, for instance, be

formalized in a type-theoretic setting in the form of deadlock types [6]. The static sys-

tem presented in [6] supports also type inference (and besides deadlocks, prevents race

conditions, as well). Deadlock types are also used in [1], but not for static deadlock

prevention, but for improving the efficiency for deadlock avoidance at run-time.

Static analyses and type systems to prevent especially communication deadlocks

have been studied for various process algebras, in particular for the π-calculus, where

the dynamically changing communication structure makes preventing deadlock situa-

tions challenging [25,28,26,27]. Also for dynamically changing communication struc-

tures, [16] presents a type-based analysis for the prevention of deadlocks in a setting

based on channel communication and message passing. The cause of deadlocks in the

setting there is different, deadlocks are not caused by the attempt to acquire locks, but

by communication over channels which may introduce wait cycles. One challenge there

is that the communication topology may change dynamically. [22] propose a general

framework for type system in the context of the π-calculus, which can be used to check

deadlocks, live-locks, or race-freedom. Session types, a type-based abstract behavioral

description of concrete behavior, typically for channel-based communication, have also

been used for deadlock detection [7]. Model checking [10], i.e., the automatic state ex-

ploration (of a model) of a program has been used, as well, for deadlock detection. [12]
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presents an empirical study comparing different model checkers and model checking

techniques for detecting deadlocks (for Ada programs). To defuse the danger of cyclic

wait, the above approaches rely on enforcing an order on locks/resources, respectively

inferring that such an order exists. Ordering (classes of) locks is not the only way to

break (potential) cycles. For the process algebra CSP, [34] propose to come up with a

well-founded order attached to the states of the interacting processes in such a way, that

if a process is waiting for another process, the value of the state of the waiting process

is larger than the state of the process it waits for. The approach is a generalization (to

networks of processes) of the “variant” proof method for establishing termination for

loops.

Another notorious kind of error in shared variable concurrent programming are race

conditions, i.e., the unprotected, simultaneous access to a shared resource. Whereas

a deadlock may occur when communicating partners disagree on the order of lock-

taking when simultaneously accessing more than one shared lock, a race results when

the partners fail to take a lock before competing for a shared resource, or rather that

the critical resource fails to be protected properly by a lock or other synchronization

mechanism. The concurrency errors of deadlocks and of race conditions can be seen as

related also in the following way: One may consider parts of the programs where lock

interaction with conflicting orders may occur as “critical regions” where a potential

“race” may occur. In the same way that, in a lock-based setting, races can be prevented

by protecting the shared data, one can add additional locks (“gate locks”) to protect

pairs or sets of locks from potential deadlocks. Checking for potential race conditions

has been widely studied, for instance using ownership types [5], fractional permissions

and linear programming [36]. For static techniques assuring race freedom, it mostly

amounts to check or infer that “enough” locks are held by a thread or process before

accessing shared data. Such lock sets are used, e.g., in [18,19,20,32]. The type systems

of [18,17], using singleton “lock types” as a restricted form of dependent types offer,

in an extension, also protection against deadlocks. Often, the analyses are made more

precise by combining them with alias analysis, or taking “ownership” concepts into

account.

In our approach, we avoid the infinite state space caused by recursion, by ap-

proximating it by a tail-recursive approximation. Other approaches use language- or

automata-theoretic decidability results to keep the stack-structure but achieve a finite-

state representation nonetheless. For instance, [13] uses a specific class for push-down

automata closed under products and for which reachability is decidable for deadlock

checking for call-graph abstractions for multi-threaded Java programs. [24] gives a pre-

cise analysis for nested locking of binary locks for push-down systems, without dy-

namic lock- or thread creation.

[15] uses an unsound and incomplete static analysis of C programs to extract lock

dependency constraints. They analyze the dependencies for circular waiting, and focus

on reducing false positives. The tool has discovered numerous bugs in operating systems

source code.

Our work puts an upper bound on the number of threads and the number of locks, as

we disallow to spawn new activities resp. create new locks inside recursions. In contrast

to our approach, [4] use symbolic evaluation to allow an unbounded number of task for
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deadlock detection for Ada programs by assigning symbolic task identifiers to each task

at creation, though it is unclear that how dynamic shared resources are handled.

[35] in the context of run-time verification (or checking) observes lock chains in

a (concrete) execution trace by means of a parametrized LTL formula and issues a

warning if different lock-orders are observed which may potentially lead to a deadlock.

Placeholders for e.g. thread and lock identifiers are bound by propositions for locking

and unlocking. [8] speculatively execute Concurrent Haskell programs in the search

for deadlocks, where all interleavings of concurrent threads are evaluated until the ex-

ecution would have to commit to an I/O action with the environment (user). As their

analysis takes concrete values into accounts, their analysis provides precise results for

a particular run (input values), and only creates a bounded number of resources if the

original program creates a bounded number of resources. They also discuss partial-order

techniques for state space-reduction. A non-interactive Concurrent Haskell program

with initial inputs will effectively be subjected to an explicit state space exploration

modulo the above reduction.
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