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Deadlocks are a common problem for concurrent programs, in particular where multiple threads are
accessing shared mutually exclusive resources synchronized by locks. As the scheduling at run-time
affects the occurrence of a deadlock, deadlocks may only occur occasionally, and therefore are difficult
to detect. Whether or not a deadlock exists in a specific run in a particular program mainly depends on
if the running program encounters a number of processes forming a circular chain, where each process
waits for shared resources held by the others [4].

One common way to prevent deadlocks is to statically ensure that such cycles on locks or resources
in general can never occur. This can be achieved by arranging shared resources in some partial order
and enforcing that the resources are accessed in accordance with that order. This idea has, e.g., been
formalized in a type-theoretic setting in the form of deadlock types [3]. The static system presented in
[3] supports also type inference (and besides deadlocks, prevents race conditions, as well). Deadlock
types are also used in [1], but not for static deadlock prevention, but for improving the efficiency for
deadlock avoidance at run-time.

In contrast, we use a behavioural type and effect system [2, 6] to capture lock interaction and use
that behavioural description to explore an abstraction of the state space to detect potential deadlocks.
The effects of our system express the relevant behaviour of a concurrent program with regard to re-
entrant locks. To detect potential deadlocks, we execute the abstraction of the actual behaviour to spot
cyclic waiting for shared locks among parallel threads in the program. In our previous work [7], we
define a type and effect system formalizing the sketched approach. The system presented there has
two important restrictions: first of all, it is explicitly typed, which forces the user to declare functions
by specifying its expected lock behaviour (in terms of the function’s effect). Putting that burden on
programmers is clearly unwelcome. Secondly, based on sub-effecting as the only form of polymorphism,
the formalization suffers from a lack of precision and therefore reports more spurious deadlocks than
necessary. To improve the precision, we propose in this paper a lock-polymorphic extension of that work,
which addresses the two mentioned weaknesses. The formulation also can serve as the specification for
type and effect inference system.

Parametric lock effects

We use a behavioural type and effect system to capture the interaction of shared locks. Characterizing the
behaviour of each thread in a program as sequences of lock interactions allows detecting the symptom of
deadlocks, i.e. waiting for shared locks in a cyclic chain.

The grammar of the effects which we use to abstractly represent the behaviour of a simple concurrent
calculus with reentrant locks is presented in Fig. 1. To track which locks are actually handled in the
interactions, we annotate each lock with the corresponding program point π of its creation to specify
which lock is referring to at static time. As we focus on detecting deadlocks due to shared locks, we
improve the precision by introducing location variables, ρ , representing lock locations. Effects can be
either global in a program, or local in one single thread. For the effect construct, ‖ represents multiple
threads running in parallel globally, while semicolon represents sequential composition and + a choice
among effects. The behaviour of function abstraction and recursive function is parametrized by the
location variable ρ . The behaviour of lock handling: creating, locking and releasing a lock, is represented
by νLr,Lr.lock, and Lr.unlock, respectively.

1

http://www.ifi.uio.no
http://www.uio.no


2

Φ ::= 0 | p〈ϕ〉 | Φ ‖Φ effects (global)
ϕ ::= ε | ϕ;ϕ | ϕ +ϕ | ee(~r) | α effects (local)
ee ::= X | λ~ρ.ϕ | recX(~ρ).ϕ parametric behavior
a ::= spawn ϕ | νLr | Lr .lock | Lr .unlock labels/basic effects
α ::= a | τ transition labels
r ::= π | ρ location annotations

Figure 1: Types and effects

A behavioural type and effect system

The type and effect system uses judgments of the form Γ ` e : T :: ϕ , which is read as: under the
environment Γ, expression e has type T and effect ϕ . Three typical rules of system are sketched in
Fig. 2. They deal with thread creation as well as interaction with an existing lock, where Lr represents a
lock which is created at r, for r is either a program point or a location variable.

Γ ` e : T :: ϕ

TE-SPAWN
Γ `spawn e :Thread::spawn ϕ

Γ ` v :Lr:: ϕ

TE-LOCK
Γ ` v. lock: Lr:: ϕ;Lr . lock

Γ ` v :Lr:: ϕ

TE-UNLOCK
Γ ` v. unlock: Lr:: ϕ;Lr.unlock

Figure 2: Type and Effect System

σ ` p1〈(spawn ϕ);ϕ ′〉 p〈spawn ϕ〉−−−−−−−→ σ ` p1〈ϕ ′〉 ‖ p2〈ϕ〉 RE-SPAWN

σ(π) = free∨σ(π) = p(n) σ ′ = σ +πp
RE-LOCK

σ ` p〈Lπ . lock〉 p〈Lπ.lock〉−−−−−−→ σ
′ ` p〈ε〉

σ(π) = p(n) n > 1 σ ′ = σ −πp
RE-UNLOCK

σ ` p〈Lπ . unlock〉 p〈Lπ.unlock〉−−−−−−−−→ σ
′ ` p〈ε〉

Figure 3: Operational semantics for effects

The effect system describes the behaviour of a program in terms of sequences of lock interactions
among parallel processes. We detect deadlocks by executing the abstraction of the actual behaviour and
spotting processes waiting for shared locks in a circular chain. The analysis of the abstract behaviour
easily leads to state space explosion as different interleavings of the threads must be considered. Three
rules of the operational semantics for effects corresponding to the typing rules in Fig. 2 are sketched in

Fig. 3. The notation
p〈ϕ〉−−→ means that a step with effect ϕ of a thread p is executed. To tackle infinite

executions through recursion which may lead to an infinite reachable state space, we place an upper
bound on lock counters which are used to keep track of how often a re-entrant lock has been taken by
the same thread. In addition, we bound non-tail recursive function calls by putting a similar limit on the
recursion depth; for details, see [7]. Beyond that chosen limit, the behaviour is over-approximated by
arbitrary, chaotic behaviour. The state space of this abstraction is finite and therefore allows exhaustive
search for deadlocks. We furthermore define the notion of deadlock and termination sensitive simulation
[5] to show that the behaviour of a program has been correctly captured in the abstraction.

Current Research Results

With the proposed specification of type and effect system, we can automatically check for deadlocks in
the five dining philosophers in around 2.5 minutes with 82269 states. Our approach correctly detects
the deadlock situation in the original program without reporting any false positives. Also, our approach
correctly certifies the amended version of the dining philosophers where one of the philosophers will
always pick the right fork first as safe. We prove the correctness of the abstraction with regard to this
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simulation of the original program, i.e., if an abstraction is deadlock free, then its original program must
be deadlock free, but not vice versa: a deadlock in the abstraction, as an over-approximation, does not
necessarily exist in the concrete program.
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