
Inheritance and Observability

Erika Ábrahám, Thi Mai Thuong Tran, and Martin Steffen

RWTH Aachen, Germany and University of Oslo, Norway

An open system is a part of a larger system, which interacts with its environ-
ment, and best considered as a black box where the internals are hidden. Such a
separation of internal behavior from externally relevant interface behavior is cru-
cial for compositionality. The most popular programming paradigm nowadays
is object orientation, which in particular supports interfaces and encapsulation
of objects. Another crucial feature in mainstream object orientation is inheri-
tance, which allows code reuse and is intended to support incremental program
development by gradually extending and specializing an existing class hierarchy.

Openness of a system in the presence of inheritance and late binding is prob-
lematic. One symptom of that is known in software engineering as the fragile base
class problem. A base class in an inheritance hierarchy is a (common) super-class,
and fragile means that replacing one base class by another, seemingly satisfying
the same interface description, may break the code of the client of the base class,
i.e., change the behavior of the “environment” of the base class.

A rigorous method to keep track of interactional behaviours of an open pro-
gram is the key to formal verification of open programs as well as a formal
foundation for black-box testing. If done properly, it ultimately allows composi-
tional reasoning, i.e., to infer properties of a composed system from the interface
properties of its sub-constituents without referring to further internal represen-
tation details. A representation-independent, abstract account of the behavior is
also necessary for compositional optimization of components: only when showing
the same external behavior one program can replace another without changing
the interaction with any client code.

An object-oriented, concurrent calculus The calculus presented in this
work is a concurrent variant of an imperative, object-calculus. Its concurrency
model is based on the notion of “active objects” and asynchronous method calls.
Its syntax is sketched in Table 1 focusing on important features, such as: classes
with fields and methods, objects as instances of classes, and concurrency based
on the active objects model of concurrency. Expressions e basically consists of a
sequential composition (here represented by the let-construct) of basic expres-
sions, including conditionals, object creation, read and write of object fields, and
method calls.

Being standard, the syntax should be largely clear, a few points are worth
highlighting though: the concurrency model of the calculus based on active ob-
jects, communicating via asynchronous method calls (written o@l(v)) and the
result is given back by the caller querying a future reference. Objects act as
monitors with binary locks. The notion of single inheritance based on classes,
however, is orthogonal to the choice of the concurrency model.

2

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[O, lock] | n〈t〉 component

O ::= n,M,F object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= v | ⊥n′ field
t ::= v |stop|let x:T = e in t thread
e ::= t |if v = v then e else e |if undef (v.l()) then e else e expr.
| n@l(v) | v.l() | v.l() := v
| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
lock ::= ⊥ | > lock status

Table 1. Syntax of an oo core calculus

Typed operational semantics for interface behavior In this setting, the
component behavior consists of message traces, i.e., sequences of component-
environment interactions. Writing C t=⇒ Ć, the t denotes the trace of interface
actions by which C evolves into Ć, potentially executing internal steps, as well,
not recorded in t. An open program C, however, does not act in isolation, but
interacts with some environment. I.e., we are interested in traces t where there
exists an environment E such that C ‖ E t=⇒̄

t
Ć ‖ É by which we mean: com-

ponent C produces the trace t and E produces the dual trace t̄, both together
“canceling out” to internal steps. In other words, our goal is to formulate the
external or open semantics with the environment existentially abstracted away.
With infinitely many possible environments E, the challenge is to capture what
is common to all those environments. This will be done in form of assumptions
about the environment. This means, the operational semantics specifies the be-
havior of C under certain assumptions ΞE about the environment. Following
standard notation from logics, we do not write ΞE ‖ C, but rather ΞE ` C, such
that the reductions will look like

ΞE ` C t=⇒ Ξ́E ` Ć . (1)

Such a characterization of the abstract interface behavior is relevant for the
following reasons. Firstly: the set of traces according to equation (1) is more re-
stricted than the one obtained when ignoring the environments altogether. This
means, when reasoning about the behavior of C based on the traces, e.g., for
the purpose of verification, the more precise knowledge of the possible traces
allows to carry out stronger arguments about C. Secondly, an application for
a trace description is black-box testing, in that one describes the behavior of a
component in terms of the interface traces and then synthesize appropriate test
drivers from it. Obviously it makes no sense to specify interface behavior which

3

is not possible, at all, since in this case one could not generate a correspond-
ing tester. Finally, and not as the least gain, the formulation gives insight into
the inherent semantical nature of the language, as the assumptions Ξ and the
semantics captures the existentially abstracted environment behavior.

Main results

– A formal, open semantics for a statically typed, concurrent object-oriented
calculus with dynamic object creation, mutable heap, and single inheritance.

– The main insight of our work is that the cross-border inheritance compli-
cates the observable behavior considerably. Namely, in an open setting, en-
vironment and component classes can inherit from each other. Therefore an
object may contain fields defined by the components and by the environ-
ment. Due to privacy restrictions, these fields can only be manipulated by
the corresponding methods of environment resp. component parts. To de-
scribe the possible interface behavior, where all possible environments are
existentially abstracted away and represented by an assumption context, the
potential connectivity of the enviroment part of the heap is important. In
order to capture that, our open semantics must be able to tell when a com-
munication between two objects is possible, i.e, when they are potentially in
connnection.

– The interface behavior is characterized in the form of a typed operational
semantics of an open system, consisting of a set of classes.

– The semantics is formalized in the form of commitments of the component
and in particular assumptions about the environment. The fact that the
components are open wrt. inheritance, i.e., a component can inherit from
the environment and vice versa, has as a consequence that the assumptions
and commitments need contain an abstraction of the heap topology, keeping
track of which object may be in connection with other objects.

– Finally, we show the soundness of the abstractions based on trace semantics.

More details can be found in [1]

References

1. E. Ábrahám, T. Mai Thuong Tran, and M. Steffen. Observable interface behavior
and inheritance. Technical Report 409, University of Oslo, Dept. of Informatics,
Apr. 2011. www.ifi.uio.no/~msteffen/publications.html#techreports.

www.ifi.uio.no/~msteffen/publications.html#techreports

	Inheritance and Observability

