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1 Introduction

An open system is a part of a larger system, which interacts with its environ-
ment, and best considered as a black box where the internals are hidden. Such a
separation of internal behavior from externally relevant interface behavior is cru-
cial for compositionality. The most popular programming paradigm nowadays
is object orientation, which in particular supports interfaces and encapsulation
of objects. Another crucial feature in mainstream object orientation is inheri-
tance, which allows code reuse and is intended to support incremental program
development by gradually extending and specializing an existing class hierarchy.

Openness of a system in the presence of inheritance and late binding is prob-
lematic. One symptom of that is known in software engineering as the fragile
base class problem [TZZ0/T9]. A base class in an inheritance hierarchy is a (com-
mon) super-class, and fragile means that replacing one base class by another,
seemingly satisfying the same interface description, may break the code of the
client of the base class, i.e., change the behavior of the “environment” of the
base class. Consider the following code fragment.

Listing 1.1. Fragile base class

class A { class B extends A {
void add () {...} void add () {
void add2 () {...} size = size + 1;
super.add (); }
} void add2 () {

size = size + 2;
super.add2();}

The two methods add and adds are intended to add one respectively two
elements to some container data structure. This completely (albeit informally)
describes the intended behavior of A’s methods. Class B in addition keeps infor-
mation about the size of the container. Due to late-binding, this implementation
of B is wrong if the adds-method of the super-class A is implemented via self-
calls using two times the add-method. The problem is that nothing in the inter-
face, e.g., in the form of a behavioral specification using pre- and post-conditions
of the methods, helps to avoid the problem. The interface specification is too
weak to allow to consider the base class as a black box which can be safely
substituted based on its interface specification only.

* The work has been partly supported by the EU-project and FP7-231620 HAT'S
(Highly Adaptable and Trustworthy Software using Formal Methods).
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This paper formally characterizes the interface behavior for open systems
with inheritance. From an observational point of view, the only thing that counts
is the interaction with the environment (or observer) and whether this interaction
leads to observable reactions in the environment. Thus, a rigorous account of
such an interface behavior is the key to formal verification of open programs as
well as a formal foundation for black-box testing. If done properly, it ultimately
allows compositional reasoning, i.e., to infer properties of a composed system
from the interface properties of its sub-constituents without referring to further
internal representation details. A representation-independent, abstract account
of the behavior is also necessary for compositional optimization of components:
only when showing the same external behavior one program can replace another
without changing the interaction with any client code.

In a message-passing setting, the component behavior consists of message

traces, i.e., sequences of component-environment interactions. Writing C =4 ¢ ,
the t denotes the trace of interface actions by which C evolves into C , potentially
executing internal steps, as well, not recorded in t. An open program C, however,
does not act in isolation, but interacts with some environment. L.e., we are

interested in traces t where there exists an environment E such that C' || E SN
f

C I E by which we mean: component C produces the trace ¢t and E produces
the dual trace t, both together “canceling out” to internal steps. In other words,
our goal is to formulate the external or open semantics with the environment
existentially abstracted away. With infinitely many possible environments F, the
challenge is to capture what is common to all those environments. This will be
done in form of assumptions about the environment. This means, the operational
semantics specifies the behavior of C' under certain assumptions =g about the
environment. Following standard notation from logics, we do not write Zg || C,
but rather =g F C, such that the reductions will look likeE

EpkC = Zp+C . (1)

Such a characterization of the abstract interface behavior is relevant and use-
ful for the following reasons. Firstly: the set of traces according to equation ({II)
is in general more restricted than the one obtained when ignoring the environ-
ments altogether. This means, when reasoning about the behavior of C' based
on the traces, e.g., for the purpose of verification, the more precise knowledge
of the possible traces allows to carry out stronger arguments about C'. Secondly,
an application for a trace description is black-box testing, in that one describes
the behavior of a component in terms of the interface traces and then synthesize
appropriate test drivers from it. Obviously it makes no sense to specify interface
behavior which is not possible, at all, since in this case one could not generate
a corresponding tester. Finally, and not as the least gain, the formulation gives

3 To avoid later confusion: The Zg as used in the semantics later does not only formal-
ize assumptions about the environment, but also commitments of the component, to
make the setting symmetric. Also, the notation =g will not be used later, it is used
only here for explanatory reasons.



insight into the inherent semantical nature of the language, as the assumptions
= and the semantics captures the existentially abstracted environment behavior.

This paper formalizes an open semantics for a statically typed object-oriented
calculus featuring concurrency, dynamic object creation, mutable heap, and sin-
gle inheritance. Based on the ideas sketched above, the interface behavior is
phrased in an assumption-commitment framework. In particular, the assump-
tion and commitment contexts need to capture an abstract over-approximation
of the heap structure (“connectivity”, cf. Section [ for an informal explanation).
Furthermore, we formalize what constitutes allowed interface behavior in gen-
eral, i.e., abstracting not only away from the environment, but describing the
possible interface behavior for arbitrary programs and environments. We prove
the soundness of the abstractions. The results here extend previous work by con-
sidering the crucial feature of inheritance. Earlier we considered the problem of
open systems for different choices of language features (but without inheritance),
for instance for futures and promises [, and for Java-like monitors [5]. Object-
connectivity already played a role as a consequence of cross-border instantiation
Bl12] but not inheritance (see also [21]).

The paper is organized as follows. We start in Section B by explaining the
approach of this paper in more detail, by way of examples. Section Bl presents
syntax, type system, and (open) semantics of the calculus. Section Bl formalizes
allowed interface behavior in general and provides the soundness of the abstrac-
tions. We conclude in Section B by discussing related and future work.

2 Interface behavior, inheritance, and object connectivity

With sets of classes as units of composition, we start by discussing informally
what can be observed from outside a “component” when considering inheritance.
Even when we restrict ourselves to run-of-the-mill notion of single-inheritance
between classes with subtype polymorphism, late-binding, and method overrid-
ing, a number of design issues influence what can be observed from the outside
given a set of classes. We discuss some of the issues using some object-oriented
pseudo-code. The interface behavior of an open system will be given in terms of
traces of interactions exchanged between the component and the “environment”.
We allow that classes of the component extend those from the environment via
inheritance, and vice versa. An interface interaction happens if a step of the com-
ponent affects the environment, resp. vice versa. Objects encapsulate their states,
and thus the interaction takes the form of messages exchanged between compo-
nent and environment (method calls and returns), where the control changes
from executing component code to environment code (outgoing message) or vice
versa (incoming message)

Assume two classes, Cc as a component class implementing a method mc,
and Cy in the environment providing a method my, and assume that m calls
mpg on an instance of Cy. Figure illustrates the situation where an instance

4 If the language allowed shared variables, an interface interaction not necessarily
mean that the control changes the side.
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Fig. 1. Calls across the interface

oc of the component class executes m and calls the method my on an instance
og of the environment class, represented by the call oz!m which crosses the
interface between the component and the environment.

The picture does not change much when C. extends Cj, even if both caller
and callee are instances of the component class C¢, i.e., if the callee inherits my
from Cp (cf. Figure [L(b)). See also Listing Especially, if the caller and the
callee are the same object, i.e., if mq calls the (inherited) my via a self-call, it
constitutes an interface interaction, because the code of m is specified by the

environment (Figure [1(c)).

Listing 1.2. Late binding

class Cp { class Cy; extends C; {

public void my () {...} .. public void my () {...x.m...}

Likewise in the inverse situation in Listing [[3] which illustrates late-binding
and overriding: the self-call in method m; is a component-internal call when
executed in an instance of C, but an interface call when my is an (inherited)
method of an instance of Cz. The situation is analogous to the code that illus-
trated the fragile base class problem.

Listing 1.3. Overriding

class C¢ { class Cg extends C¢ {

public void my () {... self.my ...} public void my () {...}
public void my () {...}

Dynamic type and overriding As in Java, we assume that classes, besides being
generators of objects, play the role of types as well, and that inheritance implies
subtyping. The type system is thus nominal and supports nominal subtyping.
A question is, whether in the presence of subtyping, the dynamic type of an
object is observable. More concretely, assuming two classes ¢z and c., with co




a subclass of ¢z, does it make a difference to have an instance of ¢z or of ¢o?
Consider the following two expressions:

letz:c, = newcgint and letz:icy = newcgint (2)

In the first case, the dynamic type of the instance is cg, in the second case it’s
the subclass/subtype c.. Can one distinguish the two situations? If the super-
class cp is a component class and c. is an observer class, the two situations
of equation (@) are distinguishable: by overriding a method of ¢z in c¢., the
behavior of instances of ¢y differs from instances of c.. For instance, as shown
more concretely in Java-code in Listing [C4 (which shows the situation that an
instance of the sub-class is created)E

Listing 1.4. Dynamic type

public class Dynamictypeobsl {
public static void main(String[] args){
Cl ¢ = new C2();
c.m();

}

class C1 {
void m () {System.out.print(”C17);}

class C2 extends C1 {
void m () {System.out.print(7C2”);};

Also in the inverse situation that ¢ is an observer class and ¢, a class of the
environment, the two situations of equation (@) are distinguishable.

Remark 1 (Dynamic type and overriding). An important question when for-
mulating the open semantics is what is observable from the outside, as that
determines what should be recorded at the interface. One piece of information
included in the interface is the inheritance hierarchy, i.e., which (public) class
extends which one. That information is a priori necessary, as the language is
typed and supports subtype polymorphism (which is connected to inheritance
in that inheritance implies subtyping). Since open programs are required to be
well-typed statically, the information about inheritance/subtyping needs to be
available at compile time, i.e., it is included in the static interface description
between environment and component. a

Objects encapsulate their instance states, such that fields of an object cannot
be accessed from outside the instance AIn particular, each method can access only

® Since the observer class Dynamictypeobsi literally mentions new C1() resp. new
C2(), one could argue that just by that fact it can see a difference. The point,
however, is the change in behavior, and this would also be observable if the observer
would not itself create the instance with static type C1, but it would be handed over
to the environment, for instance as return value of a method call.

6 This is slightly stronger than the restriction for private fields in Java, which allow
access among instances of the same class.




the fields of the class that the method is defined in. In the presence of inheritance,
each object may contain fields defined by the component and fields defined by
the environment. Due to the mentioned privacy restriction, component fields are
manipulated only by component methods, and dually for environment fields. If
the component instantiates a new object, fields from the component class C¢
belong to the component part of the heap and fields from C} to the environment
part (cf. Figure where the environment part, coming from the abstract
environment, is grayed out).

In Figure the component creates two instances of Cg, say o; and o0s.
Directly after creation, the fields of 01 and oy are undefined (in absence of con-
structors) and in particular, o, and oy are surely unconnected (i.e., their fields
do not refer to each other).

The creator of the two objects on the component-side could call a set-method
on o1 with parameter oy to set one of the fields of 01 to point to 0. If the set
method is defined in the component class Cc, then it may access only fields
defined in C. Thus the call is internal and not visible at the interface, as in-
dicated in Figure However, if the set-method is inherited from Cp, then
the call executes a method specified by the environment and modifies fields in
the environment part of o;. Therefore, in this case the call is a wisible interface
interaction (Figure R{d)).

In general, the environment part of the objects created by the component
is unconnected unless brought in connection by (outgoing) communication, i.e.,
method calls and returns, sending some object identities as parameter or return
values across the border. These values can be stored in environment fields and can
be used to execute calls, thereby exchanging information. In the above example,
if the set-method is defined in the environment, then after the creator calls the
set-method of 0; with parameter o5, the environment part of 01 has a reference
to 09 (Figure. Now 01 may call a method of 0o and pass on its own identity
as a parameter, such that o; and oy both “know” about each other, i.e., they
are fully connected.

The situation concerning component and environment is completely sym-
metric. The environment part of objects created by the environment can be
connected among each other without being observable at the interface. The
environment may connect the component part of those objects via (from the
component view) incoming communication.

After these observations, let us come back short to the fragile class problem
described in the introduction. The following sufficient requirement assures that
the discussed unexpected behaviour of classes extending A does not happen:
Considering A as a component class, there is no environment in which an exe-
cution of the method add2 specified in A leads to a wvisible interface interaction
(i.e., only its call and return are visible).

To describe the possible interface behavior, where all possible environments
are represented abstractly by assumption contexts, the potential connectivity of
the environment is important. E.g., an incoming call of the form o;.m(02)? is
impossible if, judging from the earlier interaction history, o1 and o2 cannot be
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Fig. 2. Heap structure and connectivity

in connection in the environment (i.e., the environment parts of 01 and oy do
not have any references to each other). Besides checking that incoming commu-
nication is consistent with the connectivity assumptions, the values communi-
cated over the interface update those connectivity assumptions, e.g., an outgoing
communication o1.m(02)! adds the knowledge to the assumption that after the
step, (the environment part of) 0; may now be in connection with o,. As via
environment-internal communication, o1 may communicate with oo and with
all other objects it may know, the assumed connectivity is taken as a reflex-
ive, transitive, and symmetric relation, i.e., an equivalence relation. We call the
equivalence classes of objects that may be connected with each other cliques of
objects. The operational semantics in Section formalizes these intuitions.

3 Calculus

This section presents the calculus, its syntax and operational semantics, captur-
ing the core of the Creol-language [8][H].

It is a concurrent variant of an imperative, object-calculus in the style of
the calculi from [I]. Unlike in [8][], we omit the treatment of first-class futures,
which can be seen as a generalization of asynchronous method calls, to simplify
the presentation. We start with the abstract syntax in Section Bl Afterwards
we present the type system and the operational semantics in Sections and
.

3.1 Syntax

The abstract syntax is given in Table[ll It distinguishes between user syntax and
run-time syntax (the latter underlined). The user syntax contains the phrases in
which programs are written; the run-time syntax contains syntactic constituents
additionally needed to express the behavior of the executing program in the
operational semantics.

The basic syntactic category of names n, which count among the values v,
represents references to classes, to objects, and to threads. To facilitate reading,



Cuz=0|C[C|v(mT).C|n[O]|n[O,L]|n(t) component

O:=nMF object

M:=Il=m,....l=m method suite
Fuo=l=f...,l=f fields

m = s(nT)\NxT,...,z:T).¢ method
fuo=v| Ly field
t=wv|stop|letz:T =eint thread
ex=t]ifv=vtheneelsee | if undef (v.l()) theneelsee expr.

| n@l(T) |v.l() | vl():=v

| newn | claim@(n,n) | get@n | suspend(n) | grab(n) | release(n)
=z |nl|() values
=17 lock status

™~ e

Table 1. Abstract syntax

we allow ourselves to write o and its syntactic variants for names referring to
objects, ¢ for classes, and p for threads (“processes”). Technically, the disam-
biguation between the different roles of the names is done by the type system
and the abstract syntax of Table [l uses the non-specific n for names. The unit
value is represented by () and z stands for variables, i.e., local variables and
formal parameters, but not instance variables.

A component C'is a collection of classes, objects, and (named) threads, with
0 representing the empty component. The sub-entities of a component are com-
posed using the parallel-construct ||. The entities executing in parallel are the
named threads p(t), where t is the code being executed and p the name of the
thread. A class c[¢/, M, F') carries a name c, it references its immediate super-
class ¢’ and defines its methods and fields in M and F. An object o[c, M, F, L]
with identity o keeps a reference to the class c it instantiates, contains the embed-
ded methods from its class, stores the current value F of its fields, and maintains
a binary lock L indicating whether any code is currently active inside the object
(in which case the lock is taken indicated by T) or not (in which case the lock
is free indicated by ). From the three kinds of entities at component level —
threads p(t), classes c[(¢’, M, F'), and objects o[c, M, F, L|— only the threads are
active, executing entities, being the target of the reduction rules. The objects,
in contrast, store the embedded methods implemented by their classes and the
state in their fields or instance variables, whereas the classes are constant entities
specifying the methods.

The named threads p(t) are incarnations of method bodies “in execution”.
Incarnations insofar, as the formal parameters have been replaced by actual ones,
especially the method’s self-parameter has been replaced by the identity of the
target object of the method call. The term ¢ is basically a sequence of expressions,
where the let-construct is used for sequencing and for local declarationsfl During

7 t1;t2 (sequential composition) abbreviates let z:T = ¢1int2, where 2 does not occur
free in to.

10



execution, p(t) contains in ¢ the currently running code of a method body. When
evaluated, the thread is of the form p(v) and the value can be accessed via p,
the future reference, or future for short.

Each thread belongs to one specific object “inside” which it executes, i.e.,
whose instance variables it has access to. Object locks are used to rule out
unprotected concurrent access to the object states: Though each object may have
more than one method body incarnation partially evaluated, at each time point
at most one of those bodies (the lock owner) can be active inside the object. In
the terminology of Java, all methods are implicitly considered “synchronized”.
The final construct at the component level is the v-operator for hiding and
dynamic scoping, as known from the m-calculus. In a component C = v(n:T').C",
the scope of the name n (of type T') is restricted to C’ and unknown outside
C. v-binders are introduced when dynamically creating new named entities, i.e.,
when instantiating new objects or new threads. The scope is dynamic, i.e., when
the name is communicated by message passing, it is enlarged.

Besides components, the grammar specifies the lower level syntactic con-
structs, in particular, methods, expressions, and (unnamed) threads, which are
basically sequences of expressions. A method ¢(s:7).\(Z:T).t provides the method
body t abstracted over the ¢-bound “self” parameter s and the formal param-
eters . For fields, they are either a value or yet undefined. In freshly created
objects, the lock is free, and all fields carry undefined references 1., where class
name c is the type of the field.

We use f for instance variables or fields and | = v, resp. [ = 1. for field
variable definition. Field access is written as v./() and field update as v'.l() := v.
Note that the construct v.l() is used for field access only, but not for method
invocation. We will use v to denote either a value v or a symbol L. for being
undefined. Note that the syntax does not allow to set a field back to undefined.
Direct access (read or write) to fields across object boundaries is forbidden by
convention. In connection with inheritance, there are two further restrictions
we assume for the field access: A method defined in a subclass is not allowed
to directly access fields that are defined in the super-class, neither by using
the keyword super (which we omitted anyhow), nor by accessing the variable
via self, when the field is inherited. In Java, that would correspond to private
fields, as they cannot be accessed by subclasses. These design choices will have
quite some impact on what is observable at the interface. Intuitively, the more
liberal the language is wrt. field access, the more details about instances become
observable. Instantiation of a new object from class ¢ is denoted by new c.

Method calls are written 0@I(?), where the call to | with callee o is sent
asynchronously and not, as in for instance in Java, synchronously. The further
expressions claim, get, suspend, grab, and release deal with communication and
synchronization. As mentioned, objects come equipped with binary locks, re-
sponsible for mutual exclusion. The two basic, complementary operations on a
lock are grab and release. The first allows an activity to acquire access in case the
lock is free (L), thereby setting it to T, and release(o) conversely relinquishes the
lock of the object o, giving other threads the chance to be executed in its stead.

11



The user is not allowed to directly manipulate the object locks. Thus, both
expressions belong to the run-time syntax. Instead of using directly grab and
release, the lock-handling is done automatically when executing a method body:
before starting to execute the method, the lock has to be acquired and upon ter-
mination, the lock is released again. Besides that, lock-handling is involved also
when futures are claimed, i.e., when a client code executing in an object, say o,
intends to read the result of a future. The expression claim@(p, o) is the attempt
to obtain the result of a method call from the future p while in possession of the
lock of object o. There are two possibilities in that situation: either the value of
the future has already been determined, i.e., the method calculating the result
has terminated, in which case the client just obtains the value without loosing
its own lock. In the alternative case, where the value is not yet determined, the
client trying to read the value gives up its lock via release and continues exe-
cuting only after the requested value has been determined (using get to read
it) and after it has re-acquired the lock. Unlike claim, the get-operation is not
part of the user-syntax. Both expressions are used to read back the value from
a future, the difference in behavior is that get unconditionally attempts to get
the value, i.e., blocks until the value has arrived, whereas claim gives up the lock
temporarily, if the value has not yet arrived, as explained. Finally, executing
suspend(o) causes the activity to relinquish and re-grab the lock of the object o.
We assume by convention that when appearing in methods of classes, the claim-
and the suspend-commands only refer to the self-parameter self, i.e., they are
written claim@(p, self) and suspend(self).

3.2 Type system

The language is typed and the available types are given in the following grammar:

T =B |Unit|[(T)|[S]|[S)]|n types
Su=0LU,...,():U,...,I.T signatures
U:=Tx..xT->T member types

Besides base types B (left unspecified; typical examples are booleans, inte-
gers, etc.), Unit is the type of the unit value (). Type (T') represents a reference
to a future which will return a value of type T, in case it eventually terminates.
The name of a class serves as the type for its instances. We need as auxiliary
type constructions (i.e., not as part of the user syntax, but to formulate the type
system) the type or interface of unnamed objects, written [S] and the interface
type for classes, written [S) where S is the signature. The signature contain
the labels [ of the available members together with the expected types. Further-
more, we distinguish whether a member labelled [ is actually implemented by
the class (in which case we write [:U), or whether it is provided, but inherited
from a super-class (in which case we write (1):U). Fields, also labelled by labels
[, are of types T'. We allow ourselves to write T for Ty x ... x Ty etc. where we
assume that the number of arguments match in the rules, and write Unit — T’
for Ty X ... x Ty — T when k = 0.

12



We are interested in the behavior of well-typed programs, only, and the section
presents the type system to characterize those. As the operational rules later, the
derivation rules for typing are grouped into two sets: one for typing at the level
of components, i.e., global configurations, and secondly one for their syntactic
sub-constituents.

Table Pl defines the typing on the level of global configurations, i.e., for “sets”
of objects, classes, and named threads. On that level, the typing judgments are
of the form

AFC: 0, (3)

where A and © are name contexts, i.e., finite mappings from names (of classes,
objects, and threads) to types. In the judgment, A plays the role of the typing
assumptions about the environment, and © of the commitments of the compo-
nent, i.e., the names offered to the environment. Sometimes, the words required
and provided interface are used to describe their dual roles. A must contain
at least all external names referenced by C and dually © mentions the names
offered by C.

The empty configuration 0 is well-typed in any context and exports no names
(cf. rule T-EMPTY). Two configurations in parallel can refer mutually to each
other’s commitments and together offer the (disjoint) union of their names (cf.
rule T-PAR). It will be an invariant of the operational semantics that the iden-
tities of parallel entities are disjoint wrt. the mentioned namesfl Therefore, O
and @5 in the rule for parallel composition are merged disjointly, indicated by
writing ©1, @3 (analogously for the assumption contexts). In general, C; and Co
can rely on the same assumptions that also C || Cs in the conclusion uses, as it
represents the environment common to Cy || Cs.

—  T-Empry A1,02FC1:01 A2,61FC2: 60 AFC:0,nT
AFO0:() T-PAR —M

: A, A B CL || Co: ©1,0, Arv(nT).C: 0
o A c[S)F[O):ec o Alc:[S) e A o0ctH[O,L]:c

(51 (O T-NCLASs (5) [ ] T-NOBJ
AFc[O) : (a[S)) AF 0[O, L] : (0:c)
o Ap(T)Ft:T A<A <O ARC:06

T-NTHREAD T-SuB

Ak p(t) : (p(T)) Arc:e

Table 2. Typing (component level)

The v-binder hides object names and future/thread names inside the com-
ponent (cf. rule T-NU). In the T-Nu-rule, we assume that the bound name n is

8 In the open semantics later, the A and the © contexts will not be disjoint wrt. object
names.

13
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new to A and ©. Object names created by new and thread/future names created
by asynchronous method calls are heap allocated and thus checked in a “par-
allel” context (cf. again the assumption-commitment rule T-PAR). The rule for
named classes introduce the name of the class and its type into the commitment
(cf. T-NCrass). The code [O) of the class ¢[O] is checked in an assumption
context where the name of the class is available. Note also that the premise of
T-NCuLass (like those of T-NOBJ and T-N'THREAD) is not covered by the rules
for type checking at the component level, but by the rules for the lower level en-
tities (in this particular case, by rule T-OBJ from Table[]). The judgments there
use as assumption not just a name context, but additionally a stack-organized
context I" in order to handle the let-bound variables. So in general, the assump-
tion context at that level is of the form I'; A. The premise of T-NCLASS starts,
however, with I" being empty, i.e., with no assumptions about the type of local
variables. This is written in the premise as o; A, ¢:T + [O)] : T'; similar for the
premises of T-NOBJ and T-NTHREAD. An instantiated object will be available
in the exported context © by rule T-NOBJ. Threads p(t) are treated by rule
T-NTHREAD, where the type (T) of the future reference p is matched against
the result type T of thread ¢. The last rule is a rule of subsumption, expressing
a simple form of subtyping: we allow that an object respectively a class contains
at least the members which are required by the interface. This corresponds to
width subtyping.

Next we formalize the typing for objects and threads and their syntactic
sub-constituents. The judgments are of the form

I'’Are:T (4)

(and analogously m, [[O]], etc. instead of ). The typing is given in Tables Bl and
Al Besides assumptions about the provided names of the environment kept in A,
the typing is done relative to assumptions about occurring free variables. They
are kept separately in a variable context I', a finite mapping from variables to
types.

Rule T-CrLASS type-checks classes [(¢z, l_;c = f, = m), “called” in the premise
of rule T-NCrAsS from Table Pl for named classes on the global level, where ¢; in
the conclusion of T-CLASS is the class/type of [(cz, l} = f,I'=m) and ¢, its di-
rect super-class. The name of the class c; is used in the first premise to determine
its interface type, which lists the types of the class members. For the methods,
U specifies the type of the method directly implemented by ¢; and (l ): U’ those
inherited from cy (i.e., implemented by ¢ or further inherited by a class higher
up in the hierarchy). The premises I'; A & fy, : T, and I'; A - m; : U; check the
well-typedness of all implemented members of the class (where we silently as-
sume that fj ranges over all fields and m; over all methods implemented by the
class and mentioned in [ § Tesp. in [ of the signature. That also implies that the
class does not provide code for methods labeled by labels from (). The inher-
ited methods are dealt with in the last premise I'; A &= ¢2.0} : Uj. The c2.l) : U}
is a short-hand for looking up the type of l; from the interface information of co,
ie., for I'; A F cq : [(S2)] where Sy = ...l;:Uj ...or Sy = ...(l;):Uj .... Le., the
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type of Z; is checked to coincide with the interface information of ¢; indepen-
dent of whether the super-class implements Z; directly or whether it’s inherited.
Typing for objects in rule T-OBJ works similar, where ¢ is the class the object
instantiates. As the implementation of objects embeds the implementation of
methods into the object, we need to check both fields and methods here, against
the interface type of class c. The rest of the rules are straightforward, including
the ones for expressions from Table El

Ty AR e : (13T, 00, (7):0) T;AF fir: T
' AbFm; U m; =c(siier) A& ’fl) t; I'; Ak CQ‘l; : UJ'.
T-CLASS
F;A)—[((;Q,lf= J=m) e
I'kcl; :T; Fl—c.l;-:UJ'- AR f 2 T F;Al—mj:UJ'-
T-OBJ
DAl = fi,oole = foyly =ma, .. 1, =my, L]t c
2T Ay sie-t: T I';Abc:[(9)
T-MEMB ——  T-UNDEF
AR s(sie)N@&T)t: T — T I'iArl.:c
I'Avtv:c I'NAbce:T TI';AR T I'sAvc:[(S)
T-FUPDATE — T-NewC
IAFvl:=v ¢ I's AFnewc:c
I'iAbke:Th DTy AbRt: Ty
T-LET
' At letx:Th =eint: Ts
N'iAbwvi Ty TI'sAbwve:Ty IN'iAber:Te I'sAbes:Ts
T-CoND

I'y A ifv; = vathenegelsees : To

I'NAtv:iec TI'’Abce: (..., 1T,...))] I'tAbrer:To I';Abes:Ts

T-CoND |
I'; A b ifundef(v.l()) then eq else ez : To

——— T-Stop — T-UnNIT
I'sAbstop: T I's A () : Unit

Table 3. Typing (1)

The next example illustrates the type system, in particular the type checking
of classes and the role of the interfaces.

Ezample 1 (Type checking of classes). Assume two classes ¢; and co, where ¢;
extends co. Assume further that ¢; implements the two methods labelled [y and
I3, and that the super-class ¢, implements [ and l5. The expected interfaces for
the two classes are therefore

(S1)] = [(1:U1, (2):U2,Is:Us)]  and  [(S2)] = [[1:U1, l5:U3) (5)

for ¢; and ¢y respectively. As seen in the (right-hand) interface of equation
@), the available methods of instances of ¢; are I; (implemented by ¢;, and
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I's AFp:(T) I'tAbF o ;A p:(T)

T-CrLAaiMm —  T-GET

I'; AF claim@Q(p,o0) : T I's Ak get@p: T

I'z)=T A(n) =T Ato:c
— T-Var ——  T-NAME T-SUSPEND
I'isAvz: T I'Arn:T I'; A + suspend(o) : Unit

AkFo:c Atlo:c
———  T-GRraB T-RELEASE
I'; A+ grab(o) : Unit I'; A F release(o) : Unit
I'ArFwv:c F;AFC.[ZT’HT Ak wv; : T; A-t:T T<<T
T-CALL T-Sus
;A FvQUT): T ARt T

Table 4. Typing (2)

overriding the corresponding method of ¢2), I (which is not implemented by
c¢1 but inherited), and I3, which again is implemented by ¢;. The derivation for
both classes ends with an instance of rule T-PAR:

ArFeiflea, i =ma,lz = ma) s (ci:[(S1)]) Az b coflh = mi,la = ma) @ (c2:[(S2))
Ao = Cl[(CQ,ll = ml,l3 = mg)] H CQ[(ll = mll,lg = mg)] : (61:[(51)]762:[(52)])

T-PAR
(6)

Note that the interface [S2) for co is used as assumption to type-check ¢; and
vice versa. In the derivation, we use the following abbreviations:

A3 é Al,clz[(Sl)] (7)
Ag £ AQ,Cll[(Sl)]
Al £ AQ,CQZ[(SQ)]

The first premise of equation (@) gives rise to the following sub-derivation:

A3}—61:[(Sl)] Agl—mllUl Agl—mglU3 Agl‘Cg.lg:UQ

T-CLAss
Ag [ [(Cz,ll = ml,lg = mg)] i C
T-NCrASS
Al [ Cl[(Cg,ll = ml,l3 = mg)] : (61:[(51)])
(8)
To type-check the second premise of equation (@) works similarly. O

3.3 Operational semantics

The operational semantics is given in two stages, component internal steps and
external ones, where the latter describe the interaction at the interface. Sec-
tion B3l starts with component-internal steps, i.e., those definable without
reference to the environment. In particular, those steps have no externally ob-
servable effect. The external steps, presented afterwards in Section B232 define
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the interaction between component and environment. They are defined in refer-
ence to assumption and commitment contexts. The static part of the contexts
corresponds to the static type system from Section on component level and
takes care that, e.g., only well-typed values are received from the environment.

Remark 2 (Binding of fields). Objects encapsulate its state in the form of in-
stance variables or fields. With sub-classing, the members (fields and methods)
of a class may have access to the members of its super-class (even without the
super-keyword) due to inheritance and late binding. At run-time, the access to
a method is resolved by late binding (or dynamic binding or dynamic dispatch).
In Java, access to fields and access to methods are treated differently. Listing
[CH illustrates this.

Listing 1.5. Shadowing

class C; {
X3

m () {.. x...}
}

class Cy extends C:; {
X3 // owerriding /shadowing
O

The body of method n on an instance of Cy calls m, which is inherited from
class C7 to Cy. Method m in turn refers to a field x which is defined both in
C1 and C5. In this situation, the version of the super-class C is meant, i.e., the
access to x is not resolved by late binding. This is different from the situation,
if x would be a method; in that case the variant from the sub-class Cy would
be meant. Hence, replacing direct access to a field by using accessor methods
like get and set methods changes the behavior in the presence of overriding and
late-binding.

Listing 1.6. Accessor methods

class C; {

getx () { x }
r]l:l() {.. self.getx()...}

class Cy extends C:; {

getx () { x }
" O om0 ...}

In the code of Listing [CA the inherited method m refers to getr of the sub-
class C and hence refers to field z of that sub-class (in contrast to the analogous
situation of Listing [CH before). O

Remark 3 (Delegation vs. embedding). An object “contains” fields and methods.
There are different ways of how to represent objects in an implementation (or
here the operational semantics). One way is to consider the object as a record
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containing both fields and methods. This approach is known as “embedding”. Of
course, in absence of method updates, that leads to unnecessary code duplication.
So alternatively, one may choose not to embed the methods, but keep them
separate, and just refer to the classes defining them. The collection of methods
is also called the method suite, and a call to the object delegates the call to
that method suite. In our semantics, we follow the “naive” approach and embed
the methods into the objects. In languages with class-based inheritance, the
embedding and the delegation approach are observationally indistinguishable
(cf. for instance [I), if one ignores efficiency.

Methods are late bound i.e., it’s the run-time type of an object which de-
termines the method code, and not the static type. A way of interpreting the
difference between embedding and delegation is that they are different as to
when the dynamic binding is resolved: At the time the object is instantiated, or
at the time when the method is actually called. ad

3.3.1 Internal steps The internal steps rewrite components as given in the
abstract grammar (cf. Table []). In the configurations, one can distinguish two
parts, a “mutable” and a fixed one. The parts that change are the threads, which
are being executed, and the objects, which form the mutable heap. Immutable
are the classes which are referenced when doing method look-up and which are
arranged in the inheritance hierarchy. To simplify the writing of the operational
rules, we factor out the immutable class hierarchy. A configuration of the closed
semantics is then of the form

rerc, (9)

where C' contains the parallel composition of all instantiated objects and all
running threads and the class table I' contains all class definitions. To stress the
distinction between the mutable and the immutable part, we use F as separator
(and not the parallel composition, as in the abstract syntax). With the classes
being immutable, the operational steps do not change I'® and are thus of the
form

I‘FC—TI°HC" . (10)

In the semantics later, we will distinguish confluent steps ~» and non-confluent
ones —; when being unspecific we simply write — for internal transition relation.
Actually, the information in I is needed only at one point, namely when binding
a method call resp. a field access to the corresponding code resp. to the data
location. In the embedding representation, this binding is established when a
new object is instantiated (cf. rule NEwWO and Definition [ below); no other
(internal) step actually refers to I'%; in the rules of Table [, we omit mentioning
I, except in the rule NEWO for instantiation where it is needed.

The internal semantics describes the operational behavior of a closed system,
not interacting with an environment. The corresponding reduction steps are
shown in Table @ distinguishing between confluent steps ~ and other internal
transitions —, both invisible at the interface. The ~»-steps, on the one hand, do
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not access the instance state of the objects. They are free of side effects and race
conditions, and hence confluent. The —>-steps, in contrast, access the instance
state, either by reading or by writing it, and may thus lead to race conditions.
In other words, this part of the reduction relation is in general not confluent.

The first seven rules deal with the basic sequential constructs, all as ~>-steps.
The basic evaluation mechanism is substitution (cf. rule RED). Note that the rule
requires that the leading let-bound variable is replaced only by walues v. The
operational behavior of the two forms of conditionals are axiomatized by the
four ConD-rules. Depending on the result of the comparison in the first pair
of rules, resp., the result of checking for definedness in the second pair, either
the then- or the else-branch is taken. Evaluating stop terminates the thread for
good, i.e., the rest of the thread will never be executed as there is no reduction
rule for p(stop) (cf. rule STOP).

For accessing the fields of an object (to update the field or to read it), the
object containing the field is consulted ] Remember further that we assume that
fields are never accessed directly but only via corresponding accessor methods
(“get” and “set”) and that we interpret the notations z.l() and v.l() := v to
represent those accessor methods. Rule FGET deals with field look-up. In the
rule, F.l stands for L., resp., for v, where o[M,F,L] = o|...,l = L.,..., L],
if the field is yet undefined, resp., o[M, F, L] = o[M,...,l = v,...,L]. In rule
FSET, the meta-mathematical notation F.l := v stands for (...,l =wv,...), when
F=(..,l=7v,...). Rule NEWT captures the execution of an asynchronous
method call 0@I(7); the step creates a new thread p which at the same time
serves are future reference to the later result. As the identity is fresh and not
(yet) known to threads other than the creating one, the configuration is enclosed
inside a v-scope. The expression p{call 0.l(7))! describes the message for the
method call.

Rule CALL deals with receiving an internal method call of method [ with
object o as the callee. Being an internal method call means that the code of
the method is implemented by the component and not the environment. In our
semantic representation based on embedding, the question whether the method
labelled [ in object o is implemented by the component or by the environment
is already resolved (see the rule for object instantiation below). Remember also
that in the open semantics later, the object will be “split” into two halves, one
of the component and one of the environment, and the component configuration
and the corresponding reduction rules deal only with the component half of an
object. So, if the part of the object o represented in the rule contains the method
I means [ is a component method (by the fact that it code has been embedding
into the component half of o).

In the embedding representation of objects, the point in time where the
binding is resolved is when instantiating a new object (cf. rule NEWO). To de-

9 In the current semantics, the object contains all fields; in the open semantics later,
the object members, i.e., the fields and the methods are distributed over the com-
ponent and the environment, and only the fields of the object implemented by the
component show up in the (internal) rules.
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termine which fields and methods are meant in a call is formalized in the func-
tion members. The function uses the class hierarchy and implements the search
through the class hierarchy collecting the members supported by an instance of
the given class. We have to distinguish between fields and methods. Methods are
late-bound and thus, the method nearest in the class hierarchy reachable is the
one supported by an instance. To model private methods (not directly supported
by the abstract syntax), one could assume that all private methods are named
differently, i.e., a private method in a class is named differently from all other
(private or public methods) Fields are considered private and thus subject to
the same naming convention as the one for private methods. In Listing [[H the
two fields x would be named differently, for instance x; in class C; and z5 in
Cs, such that the late-bound method m refers to zi, as intended. When using
accessor method, as in Listing [CO the fields, being considered private, are to
be named differently. For the corresponding accessor methods, the user has the
choice: if considered public, they follow the discipline of late binding and over-
riding, as explained in connection with Listing [l Of course, renaming a field or
method does not per se render it private, since being private means some access
restrictions, as well. Especially, a private method or field cannot be accessed
from a subclass. But those restrictions are captured by the type system. We
insist that for each pair of get/set accessor methods, either both are considered
private or both public.

For the function to implement the embedding in Definition [[I Rule M-Top
deals with a class without super-class (which corresponds to Object in Java), in
which case the fields and functions available are simply the ones as defined in
the class. Sub-classing is covered by rule M-INH. Methods from an instance of
the subclass ¢; are taken from c; and co, with those of ¢; taking priority, i.e.,
one takes only those methods available at co, which are not provided directly
from ¢, written My \ M;. For fields, we do not need to ignore fields from ca,
since all fields are considered being named differently, so no confusion can arise.
That we copy in fields also from the super-classes does not imply that they are
actually accessible in the corresponding instance. Privacy restrictions, however,
are dealt with statically by the type system, not by the members-function.

Definition 1 (Embedding). Given a class hierarchy I' and a class name c,
then the function members is given inductively in Table [A:

Fcl—clz[(CQ,Ml,Fl)] M:Ml,Mg\Ml

I''kte=|[L1,M,F) F=F,F, I'°F members(ce) = Mz, F»
M-Top M-INH
I'° + members(c) = M, F I'° - members(c1) = M, F

Table 5. Members

10 We furthermore do not consider overloading here.
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With the embedding of Definition[Il the instantiation of rule NEwWO is rather
straightforward. The new-statement creates a new instance with a fresh name,
o in the rule. Since the reference is fresh, it appears under the v-binder in the
post-configuration.

n{letx:T = vint) ~ p(t[v/z]) RED

p(letzo:Ts = (letz1:Th = erine)int) ~» p(letz1:T1 = ey in (letz2:T> = eint)) LET
p(letz:T = (if v = vthene; elsees) int) ~» p(letz:T = ey int) COND;

p(letz:T = (if vi = vathenejelseez)int) ~ p{letx:T = ezint) where vy # vo COND2
p(letz:T = (if undef(L.) theney elsees) int) ~» p(letz:T = ey int) CONDT

p(letz:T = (if undef(v) then ey else e2) int) ~> p(letz:T = ezint) CONDy

p(letz:T = stopint) ~> p(stop) STop

ole, M, F, L] || p{letz:T = 0.l()int) = o[c, M, F, L] || p(letz:T = F.lint) FGET

ole, M, F, L] || p{letz:T = 0.l() ;== vint) = o[c, M, F.l :== v, L] || p{letz:T = oint) FSET
p'{letx:(T) = 0QL(D) int) ~ v(p:(T)).(p'(letz:(T) = pint) || p{call 0.l(¥))!) NEWT

ole, M, F, 1] || p{call 0.1(%))! = CALL
ole, M, F, T] || p{letx:T = M.l(0)(?) in release(0); x)

I'° + members(c) = M, F
I'‘+ p(letz:T = newcint) ~ I'“ Fv(o:¢).(ole, M, F, L] || p{letx:T = oint))
pi{letz : T = claimQ(pz, 0) int) || p2(v) ~» pi{letz : T =wvint) CLAIM;
to # v
pi(letz : T = claim@(p2, 0) int1) || p2(t2) ~~

NEwO

CLAIMo

pi(letx : T = release(0)); get@psz in grab(o); t1 || p2(t2)
piletz : T = get@pyint) || p2(v) ~> pi(letz : T =vint) GET
p(suspend(o);t) ~> p(release(o); grab(o); t) SUSPEND
¢, M, F, 1] || p{grab(o);t) = o[c, M, F, T] || p{t) GRAB
¢, M, F, T] || p(release(o);t) = o[c, M, F, 1] || p(t) RELEASE

ol
[

o

Table 6. Internal steps

Claiming as well as executing the get-expression fetches the value of a future
reference. The two expressions differ, however, whether or not the lock may be
released in case the requested future is not yet evaluated. Claiming a future
fetches the value without releasing the lock, if the value is already availabe (cf.
rule CLAIM;), and works in that situation identical to getting the value in rule
GET. If the value is not yet there, CLAIM; releases the lock temporarily, i.e.,
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the thread attempts to re-acquire it immediately afterward. There is no rule
corresponding to CLAIMs for get, i.e., trying to dereference a future reference
via get blocks without releasing the lock. Release and grap are dual an set the
lock to free resp. set it to the state T of “taken”. Both operations are not user
syntax. Suspend, finally, introduces a scheduling point by temporarily releasing
then then trying to re-acquire the lock.

The above reduction relations are used modulo structural congruence, which
captures the algebraic properties of parallel composition and the hiding operator.
The basic axioms for = are shown in Table [d where in the fourth axiom, n does
not occur free in C7. The congruence relation is imported into the reduction
relations in Table[® Note that all syntactic entities are always tacitly understood
modulo a-conversion.

0)|C=C Ci||Ce=Cao||Cr (Ci]|C) | C3=Cr || (C2 || C3)
Ch || v(n:T).Co = v(n:T).(Cy || Ca2) v(ni:T1).v(n2:Te).C = v(ne:Te).v(ni:1h).C

Table 7. Structural congruence

3.3.2 Typed operational semantics for open systems Next we define
the external semantics for the interaction between component and environment.

Interaction labels A component exchanges information via method calls and
when getting back the result of a method call (cf. Table @), i.e., via call and
get labels (by convention, referred to as v, and 74, for short). Interaction is
either incoming (?) or outgoing (!). In the labels, p is the identifier of the thread
carrying out the call resp. of being queried via claim or get. Scope extrusion of
fresh names across the interface is indicated by the v-binder. In v(n:T'),, the o
represents the identity of the object that creates the thread or object n.

C=~=C C~ C~C
C~C' clc"~c|c” v(n:T).C ~ v(n:T).C"

c=L=C cocC coc
cLc clec" e e’ v(n:T).C 5 v(n:T).C’

Table 8. Reduction modulo congruence
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~ 2= p(call 0.l(V)) | p{get(v)) | v(n:T)o basic labels
a:x=~7]9! receive and send labels

Table 9. Labels

Connectivity contexts and cligues An important condition in the rules of the
external semantics concerns which combinations of names can occur in commu-
nications. This is a consequence of the fact that there are methods and fields im-
plemented in the component and those implemented in the environment. Hence,
each instance state is split into a component and into an (absent) environment
half. A well-typed component thus takes into account the relation of objects
from the assumption context A amongst each other, and the knowledge of ob-
jects from A about those exported by the component, i.e., those from @. The
connectiwity conterts Ko and Fg over-approximate the heap structure, i.e., the
pointer structure of the objects among each other, divided into the component
part and the environment part. To facilitate notation, we use the following con-
ventions.

Notation 1 (Contexts) The semantics of an open component is given by la-
beled transitions between judgments of the form A; Eao b+ C : ©; Eg, where A and
© are name contexts (c¢f. Definition[d) and Ea and Eg connectivity contexts
(cf. Definition[d). We abbreviate the pair A; Ea and ©; Eg of both assumption
and commitment context by =, i.e., we write =+ C for A;EaA - C: O;Eg. The
= refers to the assumption context A; Ea, and Zg to ©; Eg. Furthermore we
understand = as consisting of A;EA and é;E@, etc.

Definition 2 (Name contexts). A and © are the assumption and commit-
ment contexts containing name bindings of the form n:T'. More precisely, bind-
ings o:c for object names and p:(T') for future references/thread names. Addition-
ally, we use © to represent the initial activity/initial clique. The pair of A and
O satisfy the following invariants. The © is contained in either A or in © (in-
dicating where the initial activity at the program start is located). Furthermore,
if AF o1 and O F o:co, then ¢y = co. Wrt. future references, the domains of
A and © are disjoint, i.e., if At p: (T), then Ot/ p: (T), and conversely. We
write A, @ for the “union” of both bindings, i.e., A,O+Fn:T if Abn:T or
OFkn:T.

Definition 3 (Connectivity contexts). The assumption connectivity con-
text is a binary relation of the following form, where A, refers to the object
identities of A, O, to the thread identities of O, etc.:

EaC (Ay X Ag)U(Ay x Z,) U (A, x Ay). (11)

Dually, Eg C (0, x O,)U(O, x Zp)U(O, x O,) is the commitment connectivity
context. We write ny < ng (“n1 may know ng”) for pairs from these relations.

In analogy to the name contexts A, connectivitycontexts 4 express assump-
tions about the environment, and Eg commitments of the component.
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Remark 4 (Invariant). The connectivity context of equation () consists of
three “parts”. The part from A, x A, over-approximates which environment
fields of objects may know which objects. Similarly a pair o — p from A, x =,
indicates that the (environment half of) object o may know future p. Since we do
not support first-class futures, which means, future references cannot be passed
around as arguments, there is exactly one object with o < p, which is the creator
of that future. In our setting that is the caller of the corresponding method. The
intuition for the pair of the form p — o is slightly different; it means that thread
p is executing inside object o (and thus “knows” o via the self-parameter). More
precisely, the thread has started executing in o by acquiring the lock, but so far
the result has not been obtained via executing get, so the thread p is not yet
garbage collected. As an invariant of the semantics, there is at most one object
such that p — o.

There is a further invariant, concerning o; — p and p — o9: if 07 and p
are both on “the same side”, say A F 0; and A F p, then there exists no oy
such that Eao b p < 02 or Eg - p < 05. And conversely: If Eo - p — o9
(i.e., p executes in an environment object o02), then Eg F 01 — p for some o;
with @ F 0y (i.e., the caller o; is active in © and its component fields know the
thread/future p). O

As mentioned, the component has to over-approximate via E4 which environ-
ment parts of the objects are potentially connected, and, symmetrically, for the
own part of the heap via Fg. The worst case concerning possible connections is
represented by the reflexive, transitive, and symmetric closure of the <—-relation:

Definition 4 (Acquaintance). Given A and Ea, we write = for the reflexive,
transitive, and symmetric closure of the —-pairs of objects from the domain of
A, i.e.,

=2 (=laxa, Ue—la,xa,) CA, x A, , (12)

where we write shorter A, X A, for dom(A,) x dom(A,).

Note that we close the —-relation concerning the environment-part of the
heap, only. As judgment, we use

A;Ealbkop = o0 . (13)

For © and FEg, the definitions are applied dually. Furthermore we write A; Ea -
0 — pif o — p € EA, an analogously A; Ex F p — 0. Note that we use the
transitive and reflexive closure for the connectivity among object identities, only.

Typed configurations The assumption contexts are an abstraction of the (ab-
sent) environment, consulted to check whether an incoming action is currently
possible, and updated in an outgoing communication. The commitments play
a dual role, i.e., they are updated in incoming communication. With the code
of the component present, the commitment contexts are not used for checks for
outgoing communication. Part of the check concerns type checking, i.e., basically
whether the values transmitted in a label correspond to the declared types for

24



7/

AOFc: [BU,(:0) 1el
A,OF find(c,l) =c

FINDq

AOF e [(BU, (U  1¢l AOFe<,ca A 6OF find(ca,l) =c3
A, 0t find(ci,l) = cs

FINDo

Table 10. Binding

the corresponding method. This is covered in the following two definitions, where
then first one searches the class hierarchy to determine the class that implements
a given member.

Definition 5 (Find). Given A, O, the function find takes a class name and a
member label | and returns the class which implements the member. The function
18 inductively given in Table I

The rules for the find function of Table [l work straightforwardly, determin-
ing the class a member is defined in. Unlike member function from Definition [
the functions here uses the interface information to find the class. The member
function from Table H for the closed semantics consults the class table to do the
same; this is no longer possible, as we do not have the complete class table at
hand in the open semantics.

Basically, the function searches the class hierarchy starting from ¢ and moving
to the super-classes and returns the first class that implements the member
labelled . In the base case of rule FINDy, the member [ is found in the current
class c: the signature [I:U, (7):0"] indicates that the member [ is implemented
by ¢ as opposed to being inherited from a super-class. If ¢ does not implement
the member in that [ ¢ [ (cf. rule FINDy), the function continues the search
recursively with the immediate super-class ¢y of ¢, as stipulated by the premise
A, 0 ¢1 <q co. Note that the implementing class is found based on the interface
information A, @, only.

Definition 6 (Well-typedness). Let a be an incoming communication label.
The assertion
Eta (14)

(“under the context =, label a is well-typed”) is given by the rules of Table 1
For outgoing communication, the definition is dual.

For an incoming call to be well-typed (cf. rule LT-CALLI), the callee name o
and future/thread name p must already be known at the interface (as required by
the first and the last premise). To be an interface interaction —here an incoming
call from the environment to the component— the code of the method [ must be
located at the component side. This is assured by the second and third premise:
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Table 11. Checking static assumptions

The find-function determines the class ¢’ where the method is implemented and
I'§ & ¢ assures that the class is part of the component, as in the open semantics,
only the class table I'§ of the component is available. Finally, the declared type
T — T of the method is checked against the communicated values ¥ and the
future reference p, which is to reference the method’s return value, must be of
the matching type (T'). Note that the last premise requires that the p is part
of assumption environment A. Well-typedness for get-labels used to fetch the
result from an asynchronous method calls is covered by rule LT-GETI, basically
requiring that type (T') of p corresponds to the type T' of the value v the name p
references. Rule LT-NEWI finally deals with incoming communication of a fresh
name n, either an object reference or a future reference. The only requirement
is that the name is indeed fresh, and that the type mentioned in the label is
actually a type (stipulated by =+ T).

The interface interaction of the open system provides also information that
updates the contexts.

Definition 7 (Name context update). Let = be a context and a an incoming
label, with = & a (c¢f. Definition@). The updated context =& = = + a is defined
as follows (dually for outgoing communication):

1. Ifa=v(n:T)y?, then A=AnT and © =0O.

2. If a = p(call 0.1(7))?, then A = A\ p and @ = O, p:(T) U (0:¢, 0:T'), where
At p: (T) and where the types T of the arguments U are determined by
Al v T;.

3. If a = plget(v))?, then A = A\p and © = O Uv:T, where A& p: (T).

Part [ covers communication of a fresh identity n where the assumption
context A is extended by the type information for the new identifier n; the com-
mitment context © is left unchanged. If n represents a future reference, (assumed
to be) freshly created by the environment, the update from A to A captures the
intuition that the new thread/future reference is issued by an asynchronous call
by (another) thread in the environment, and that initially, before actually grab-
bing the lock, the activity resides in the environment. If n represents a reference
to an object instantiated by the environment, the intuition is as follows. As
mentioned, the instance state of an object in the open semantics is split into
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two halves, one implemented by the component and one by the environment,
which therefore is not represented in the open configuration. At the time, when
an object is instantiated by the environment (which is the situation for incom-
ing communication), the new object identifier is communicated at the interface
through the v-label, and the half of the object belonging to the environment
is already instantiated, i.e., its fields and methods are (assumed to be) embed-
ded. The members of the component, however, are not yet embedded, i.e., after
the fresh object identifier has been communicated, only one half of the object
is instantiated, namely the half at the side, which executed the instantiation
command; in the case of incoming communication, that is the environment. Re-
member from the conditions on A and © from Definition B}, that a binding o:c
for an object identifier can be contained in A or © or in both (in the latter case
with the same type ¢). After v(o:c),?, the o is given a type in the environment
context, only.

That changes in part ] which deals with incoming call labels. The communi-
cation of the call label at the interface represents the moment where the method
actually grabs the lock of the callee, o in this case. At that point, the thread p
changes from the side of the caller to the side where the method body is imple-
mented. This means, the corresponding binding p:(T") is removed from A and
added to ©. That preserves the invariant from Definition Bl that future/thread
names are either bound in A or in @ but not in both. Part Blupdates © also wrt.
the callee identity o. Remember from the discussion in part [ that in the com-
munication step v(o:c),?, the corresponding binding o:c is added to A, only. In
the call-step now, also © is extended by that binding. Part Bl finally updates the
name contexts in case of an incoming get-communication. As our language does
not support first-class futures, each future is referenced at most once; afterwards
it can be garbage collected. This is reflected in the update, in that we remove
the binding from the corresponding context, here A.

Remark 5 (Instantiation). In the closed semantics, when an object is instanti-
ated, a new object reference is created and the code of the members (fields and
methods) is embedded into the newly created object. In the open semantics, only
one half of the members are actually available for the component, namely those
members whose code is implemented by a component class. So conceptually the
object state is split into two halves, only implemented by the component, the
other half belonging to the environment and only abstractly represented by the
assumption contexts. One question in the open semantics is: at which point be-
comes an instantiation visible at the interface (via a v(o:¢)-label) and when the
object is actually instantiated in the sense that the member record is embedded
into the object.

From the standpoint of observability, the point where the new identifier is cre-
ated is not necessarily identical with when that becomes known at the interface.
Our calculus does not support constructors, which means that an instantiation
alone has no real observable effect. Nonetheless, in the open semantics, an v-
label is exchanged at the exact point of instantiation. This is in contrast with
the treatment in related work dealing with open semantics and full abstraction
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Table 12. Connectivity check

for object-oriented languages (but without inheritance), where the v-label is
communicated only at the point in time where the object is first accessed (“lazy
instantiation”). See for instance [Z11A].

A complication in the setting with inheritance is the fact that the object
state is split into two halves. Indeed, both halves are not instantiated at the
same time: The half belonging to the side of the instantiator is instantiated
immediately, whereas the half on the opposite side is instantiated only at the
time of the first method call (as in lazy instantiation). The delay of instantiation
is reflected in the two cases ([l) and (@) of the name context update of Definition
@

There is a reason why the second half is not instantiated eagerly. Each call
constitutes a communication from a caller object to a callee object. For the
purpose of checking possible connectivity, it is important to remember the caller
in a call; in case of an incoming call, where (the environment half of) the caller
is not available, the origin of the call is guessed and remembered (the guessing is
not done as part of the incoming call communication, but at the point where the
new thread identity is communicated in rule NEwWTI). However, immediately
after object instantiation, an object cannot be the source of the call. That is
only possible if the object had been the target of a call itself. That an object
(half) can be the source of a call is part of the connectivity check in Definition
B in the case for calls. a

The checks of the connectivity assumptions are formalized as follows:

Definition 8 (Connectivity context check). Let = be a context and a be an
incoming communication label. Overloading the notation from Definition @, we
write = F a if the conditions of Table A are met. For outgoing communication,
the definition works dually. In the semantical rules, = = a means that both typing
and connectivity are checked.

For incoming r-labels, the connectivity is not checked. Remember from rule
LT-NEwI, that for well-typedness, the environment on the other side needs to
contain at least one object, required by A I o:c in the premise of the rule. For
incoming method calls, the caller, o’ in the rule is the object that issued the
asynchronous method call, checked by o' — p, where p is the thread to execute
the method body and furthermore o’ must be contained in the environment (by
AF o). For fetching the result of a method call via get, the caller o’ must know
the thread/future reference p, and since it is an incoming communication, the
acquaintance must follow from the commitment context Eg which implies that
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the call had been issued by the half of o/ contained in the component, not the
environment. Note further that the well-typedness assumption for incoming get-
communication requires (by the premise A b p: (T')), that the thread is actually
on the environment side, not the component side. The last two conditions assure
that that prior call had been issued already (as an outgoing call from the compo-
nent to the environment) and that the thread p is not just been created without
actually having started executing. The remaining premises in the rules for calls,
resp. for get-labels require that the “sender” of the information know the trans-
mitted arguments. In the case of incoming calls, the sender is the caller, o’ in the
rules. That it knows the arguments and caller o is required by Ea F o < o, 7.
For the incoming get-label, the sender of the information is the callee o, which
is required to know the argument v. In the premise EFa F p < o — v, the part
FEA F p — o determines o as the caller; in the connectivity update later, by
adding a pair p < o for method calls, the caller is remembered.

For updating connectivity, communication may bring objects in connection
which had been separate before, i.e., it may merge object cliques. For an incoming
call, this can be directly formulated by adding the fact that the receiver of the
communication now is acquainted with all transmitted arguments. As far as the
thread p is concerned: the fact that p starts executing in the callee o after the
call is remembered by adding p < o to the commitment connectivity. See part
of Definition [ below. Similarly in part Bl for incoming get information: the
object o dereferencing the future p now knows the value v communicated in
the communication. The object o is determined by the condition Fg - o — p.
Since the future reference/thread is garbage collected after dereferencing, the
connection o < p is removed from the connectivity context, as well. Furthermore
removed is the pair p < o, where o’ indicates the object that has executed the
method body leading to the result v. As mentioned, the incoming information
updates basically the connectivity for the commitment, but that is the case
only for the two cases Bl and Bl just discussed. For incoming fresh identifiers in
case[ll the assumed connectivity of the environment is updated, namely by the
assumption that the originator o’ of the new identifier n knows it.

Definition 9 (Connectivit/y context update). Assume = b a. The update

]

of the connectivity contexts = = = + a is defined as follows.

1. Ifa=v(n:T)y?, then E'y = Ea, 0 — n.

2. If a = p(call 0.1(0))?, then Ey = Eg,0 — U,p < o.

3. If a = p(get(v))?, then Efy = (Eg,0 — v) \(0o < p), where Eg F (0 — p),
and E'y = Ea\(p — o) (where Eatp— o).

The definition for outgoing communication is dual.
Ezxternal steps The semantics is given as labeled transitions between typing
judgments of the form

A;EAFC:T§,0;Eg; (15)
Note that only the class table I'§ of class definitions of the component is avail-

able, the environment classes are missing. As I'§ does not change during execu-
tion, we assume it given implicitly and do not mention it explicitly in the rules.
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As before, we abbreviate the judgment of equation ([[H) as = + C (cf. Notation
). The steps of the external semantics are of the form

EFCYLERC. (16)

Based on the previous definitions to check and update the context informa-
tion, the typed operational rules of the external semantics are given in Table
Conceptually, the rules fall into two groups, namely those for incoming commu-
nication and those for outgoing communication (plus a few internal ones).

As shown in equation (@) also the class table I'¢ is split into an assump-
tion and a commitment half (I'§ and I'§). As the environment part I'§ is not
available, instantiation can embed only those members of a new object which
are actually provided by I'§. We have to adapt Definition [l for embedding fields
and methods during instantiation to deal with the fact that the whole class ta-
ble is no longer available. Given a class table I'§ plus the interface information,
which in particular contains information about the class hierarchy, the function
members looks up the implementation of the members of an instance of class c.

Definition 10. Let A, O be a well-formed typing context, I'§ the component
half of the class table, and ¢ a class name. Given A, 0 and I'§, the function
members on class names c is defined as follows:

members(c) = {R.l | A,0F find(c,l) =c and I'5 = [R),["“g }. (17)
The definition for I'§ works dually.

Using the find-function from Definition B the function members finds the im-
plementation for all (public) component members of a class ¢. As the function
returns the code, the interface information A, © alone is not good enough, we
need the class table. Once, find has determined the (name of the) class, the class
table I'§ is consulted to extract the methods and fields of the class, from which
R.[ pics the intended one.

Now to the operational rules of the open semantics. The first four rules of Ta-
ble [[3 deal with exchange of “new” information, i.e., with identifiers created at
one side and communicated to the other. In rule NEWOO, the component instan-
tiates a new object. Executing the new c-expression creates o as a fresh identifier
and the component heap is extended by the new object instance olc, M, F, 1].
In our semantics, that object represents only one half of the global view on
the object, namely the half which contains the record M, F' of those members
(methods and fields) actually implemented by component classes. The function
members determines that record and embeds it into o, consulting the interface
information A and © (as part of =) and the component half of the class-table
I'§. Immediately after instantiation, the lock is free, represented by L. The step
of the component is labelled by v(o:¢),!, which is used to update the interface
information in = to £ = Z + a. Part of the label is the creating object o
whose identity is determined by the premise Eg F p — o'. The second part of
the context information which is updated by = + a is the connectivity. In case
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of NEWOO, the label communicates information about a new identity and it’s
the sender’s connectivity information which is updated, which means for outgo-
ing communication, the connectivity of the component side. For the receiving,
environment side, the object o is not yet added to the corresponding context
A (see Definition [[I)). For the communication labels later, which do not deal
with transmitting fresh information, the situation is dual: sending information
from the component to the environment updates the environment information
(especially connectivity), not the component information. Rule NEWOT is dual
to NEWOO and deals with the situation that a new object identity is transmit-
ted from the environment to the component, indicated by a label of the form
v(0:¢)y?. The premises = + a and Z = Z + a check whether the communi-
cation is possible, resp., update the context appropriately. The premise = F «a
for checking whether the interaction a is possible as a next step has not been
present (in dual form) in NEwWOO: For steps initiated by the component, such
as creating a new object and publishing its identity at the interface, it is not nec-
essary whether the step is actually possible: the fact that the code executes the
state shows that it’s possible. Note that unlike in rule NEWOO, no object half
is actually instantiated in step (see Remark H). Outgoing calls are dealt with by
the rules NEWTO and CALLO. In NEWTO, the component executes the expres-
sion 0@[(¥) for asynchronous method calls, creating a new process (and future
reference) p and a message p{call 0.1(7))!. The step does not distinguish between
internal and external method calls. The fresh identity p of the new thread is
immediately communicated to the environment by the label v(p:(T')),!, and the
contexts = is updated to z appropriately (the creator o’ of the thread is deter-
mined in the same way as in rule NEwWOO). Rule NEWTTI deals with the dual
situation. As in general for steps of the environment, we need to check whether
the step is possible, which is done by the premise = F a.

The message for an outgoing call is communicated at the interface in rule
CALLQ, i.e., the rule describes as situation continuing from a configuration af-
ter a NEWTO-step. To be an external call requires that the callee object o does
not implement the called method ! (formulated by the premise M.l = L1). Since
M.l = 1 and since we assume all programs to be well-typed, the method must
be implemented by the environment and thus is assumed to be embedded in the
environment part of the object. Another pre-condition for the step concerns the
lock of the object. Note that we assume that the interface interaction represent-
ing an outgoing call atomically captures the step when the lock is actually taken.
Since in the configuration, we conceptually represent only the perspective of the
component on the “shared” lock, we require that, from the perspective of the
component, it is free by requiring that the object is of the form olc, M, F, 1].
Even if we don’t know whether the environment has “actually” taken the lock
or not, the CALLO-step is enabled based on that fact that the component does
not hold the lock. Having abstracted away from the environment, it’s enough to
know that there exists an environment that currently does not hold the lock, in
other words, that the lock may be free. Note further that after the CALLO-step,
the lock, as represented in the semantics, is free still! Even if the interface step
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is understood as atomically taking the lock, it is unobservable when it frees it
again, so in absence of an environment and in absence of interference, it’s pos-
sible that the lock is free again next time the component does a step, so the
semantics might as well not take the lock at all. In other words: whether or
not the environment is in possession of the lock or not is unobservable for the
component. See also the discussion in Remark [0

The two CALLI-rules are dual to CALLO and deal with incoming calls. As
objects created by the environment are instantiated at the component only when
they are called for the first time, we distinguish two situations: the object half is
not yet instantiated or it is already (rules CALLI; and CALLIy). In the first case,
the new object needs to be instantiated, using the members-function analogously
to the instantiation in rule NEWOO to embed the members of the object. After
the instantiation, the lock is taken, since the communication step corresponds to
the point in time where the method actually starts executing. In case of CALLIs,
the callee object is already present in the component. The same is done for all
object reference arguments from the actual parameters ¢; we simply write C(7)
do denote the corresponding newly instantiated object-halves (cf. also Remark
). To be able to accept the incoming call, the lock must be free before the step,
and is it taken afterwards. Again, by writing M.l(0)(¥) we mean especially, that
the methods M of the callee o actually contain the method labelled [ and hence
it is an incoming call from the environment to the component. In both CALLI
rules, the well-typedness and connectivity is checked in the premises, and the
contexts updated appropriately.

The CrLAaMI- and GETI-rules all deal with the component receiving the result
of a method call by referencing the corresponding future reference, p’ in the rules.
Remember that there are two constructs with which to obtain the return value
of a method call: claim and get. Both have the same “functional behavior” but
behave differently as far as the lock-handling is concerned (cf. also the rules of the
internal semantics of Table ). That means that the checks for well-formedness,
typing, and connectivity coincide for both kinds of interactions. The same applies
for the context updates. When claiming a future, there are two possible reactions
of the thread executing the claim: either the claim is immediately successful (in
rule CrammI;) and the value is imported, or the future is not yet evaluated
in which case claiming thread releases the lock temporarily in an internal step
(cf. rule CLAMI). In both cases, the future is located in the environment, as
requested by A F p’; in case of CLAIMI;, that is part of the check £ + a.
An outgoing get-communication in rule GETO simply updates the contexts and
removes the consumed future from the component.

Remark 6 (Incoming object references as arguments). In the CALLI-rules but
also for incoming arguments via claim or get, objects whose references are trans-
mitted as arguments of the communications are instantiated in case they are
not already. More precisely, the component half of the object is instantiated at
that point. Looking specifically at rule CALLI;, which captures the situation
where the callee object is not yet instantiated, it is clear that as an effect of that
rule, the callee is freshly instantiated. Whether also the objects transmitted as
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Table 13. External steps

argument should be instantiated at that point is not so clear. We decided they
should be instantiated basically to make the treatment symmetric.

In more detail: Remember that the object halves are instantiated not at the
same time: The half at the side of the creator is instantiated immediately, the
other side only when the instance (not just the reference) is actually “needed”.
The reason why we make that distinction is to characterize when an object
(which “in reality” of course is instantiated always fully, not half-way) cannot
be already active on one side, i.e., it cannot be the source of a method call.
This “activation” occurs only at the time when it is the callee of a method
call. That alone would be an argument that being mentioned as parameter in
a communication does not instantiate the object half, i.e., an argument for not
writing C(¢) in the corresponding rules for incoming communication.
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However, for the situation of outgoing communication, we need to formalize
assumptions about whether or not the environment half is active or not. More
precisely we must characterize whether it is possible that the environment half
of the object is active or not. Being transmitted as argument, in that situation,
makes it indeed possible that the object is active, which means that we extend
the assumption A accordingly by adding the object reference to the domain of A.
Therefore, to keep it symmetric, we extend also for an incoming communication
the commitment by the information that the object half is instantiated (and thus,
since the commitment reflects what is going on in the component, we instantiate
that half in the same step). O

Remark 7 (Communication of fresh identifiers). To communicate freshly cre-
ated identities, we use the v-binder as known from the w-calculus expressing a
new, fresh identity with dynamic scope, which is communicated across the inter-
face by the rules NEwWOO and NEWTO, resp. the dual counterparts. The identity
of a freshly created object or thread is immediately communicated to the environ-
ment. An alternative would be to publish new identities non-deterministically at
an arbitrary point, or at the latest possible, when (and if) they are actually trans-
mitted as argument. Instead of having a separate communication label v(n:T)
in Table @l (we omit the information about the creator of the fresh identifier in
this informal discussion), the labels would then be of the form

v(ni:Ty,...n:Tk) .y,

where all fresh identities mentioned in v are mentioned it the binding prefix
V(ﬁ:f). This representation has been used in our previous work, for instance in
[21H]. In this paper, the semantics records the creation of a new object, resp. of
a new thread/future identifier immediately at the point when it is created. This
makes the individual rules slightly simpler (at the price of extra rules to deal
with the v-part of the labels). O

Remark 8 (Interface information). The interface information, as far as typing is
concerned, is kept in A and © and contains the names of the (publicly available)
interface types, i.e., their signature. Furthermore, the class hierarchy is part
of the interface information, i.e., which class extends which one. A final piece
of information relevant at the interface is not only to mention the available
methods, but also, whether a method needs actually to be implemented by the
class, or whether it’s inherited from a super-class.

The last piece of information is typically not part of an interface description;
interfaces in Java, for instance, do not specify that. There is a good reason why
it’s included in our representation, namely: whether or not a class overrides a
method or inherits it is observable from the outside. ad

Remark 9 (Object instantiation). As mentioned, the representation of an object
in the open semantics is split into two halves, one half resides at the component
and the other half is part of the environment (only the lock is conceptually
shared). The lock of a newly instantiated object is free, as given by the internal
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semantics. The locks are binary and have the two possible values L and T.
In the open semantics, only the half of the object implemented by component
classes is represented in the semantics, the half belonging to the environment
is missing, or more precisely, the environment part is represented abstractly by
the assumption contexts, only. In the open semantics, the state of the lock does
not represent the actual value of the object lock, only the state of the lock from
the perspective of the component. So the two states 1 and T are understood as
follows. T means that the lock is taken by the component, which implies that it
is not taken by the environment. Conversely, L means the lock is not taken by
the component, but it may or may not be taken by the environment. O

Remark 10 (Lock). The state of an object, i.e., its fields, are represented in the
open semantics split: only the fields pertaining the component are represented,
those of the environment are not. The lock can be seen as part of the instance
state, but it does not belong exclusively to one of the two sides, it is shared. In a
configuration of the open semantics, each object represented therefore contains
“one half” of its lock, interpreted as follows. A lock taken T represents the
situation that a component thread is in possession of the lock. A free lock | means
the opposite: no component thread currently holds the lock. This, however, does
not represents information about the status of the lock as far as the environment
is concerned. A lock status | means that the environment may or may not
currently hold the lock. Due to the asynchronous nature of communication and
(related to that) due to absence of re-entrant threading, a lock status of L
from the perspective of the component has no implications about whether the
environment holds the lock or not. Even if the component has issued a call to an
environment method, which during execution holds the lock, the component does
not know whether the execution has not yet started, is under way, or is already
finished. The latter case, that a particular method that has been called by the
component and executed by the environment has finished can be “observed” by
the fact that the methods return value is available. But then again, the way to
“observe” that is via claim or get, which do not allow to observe the negative fact
that the value is not yet there and that consequently the particular method has
not yet given back that lock. And after the value is available, it’s unobservable
from the perspective of the component, whether or not another thread has taken
the lock. In summary: if, from the perspective of the component, the lock is free,
the component can never be sure about the lock-status as far as the environment
is concerned. In that sense, the component and the environment are decoupled.
In a Java-like setting with synchronous method calls and re-entrant monitors,
this is not the case and complicates matters considerably (cf. [6], which deals
with re-entrant monitor behavior). O

Remark 11 (Concurrency model). The results of this paper are formulated for a
concurrent, object-oriented language based on active objects and asynchronous
method calls. The concurrency model is thus different from the concurrency
model based on multi-threading used in languages as Java and C!. As far as
the inheritance is concerned, the situation in our calculus resembles closely to
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the one in those mentioned languages, representing the mainstream of object-
oriented languages: late-bound methods and a single-inheritance class-hierarchy.

This means that in principle the results of this work apply to a multi-threaded
setting, as well, namely that inheritance makes self-calls observable, and that
approximation of the heap structure is relevant interface information. Concerning
the details, using a language based on multi-threading, re-entrant monitors, and
inheritance, would considerably complicate the interface behavior.

One reason is that the presence of the synchronized keyword as in Java
complicates the setting in at least one of the following two ways, depending on
which decision is taken wrt. whether being synchronized or not is public interface
information.

If the question of being synchronized is part of the interface information
of a method, the interaction trace reveals in many cases information, that the
re-entrant lock of a given object is definitely taken, and that information must
be taken into account. In our setting here, the information that a lock is taken is
not part of the interface information which simplifies the treatment considerably.
The consequences of multi-threading with re-entrant locks are explored in [5], but
without inheritance. If, alternatively, the decision is taken that synchronized
is not part of the interface information, a synchronized method does not really
provide protection against interference, especially if an unsynchronized method
is inherited.

We consider these (considerable) complications as a serious counter-argument
against the multi-threading concurrency model. O

4 Interface behavior

Next we characterize the possible (“legal”) interface behavior as interaction
traces between component and environment. Half of the work has been done
already in the definition of the external steps in Table For incoming com-
munication, for which the environment is responsible, the assumption contexts
are consulted to check whether the communication originates from a realizable
environment. Concerning the reaction of the component, no such checks were
necessary. To characterize when a given trace is legal, the behavior of the com-
ponent side, i.e., the outgoing communication, must adhere to the dual discipline
we imposed on the environment for the open semantics. This means, we analo-
gously abstract away from the program code, rendering the situation symmetric.

4.1 Legal traces system

The rules of Table [ specify legality of traces. We use the same conventions
and notations as for the operational semantics (cf. Notation [[l). The judgments
in the derivation system are of the form

ZF s trace . (18)
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ZFe: trace L-EMPTY

a=v(ne),? Era E=Z+a EFs:trace
L-NEwl
ZEFas: trace
a = p(call 0.1(V))? Eta E=E5+a Z+ s: trace
L-CaLLI
EFas:trace
a=7p'(get(v))? Eta E=EF+a EZt s:trace
L-GeTI

EF as: trace

Table 14. Legal traces (dual rules omitted)

We write = F s : trace, if there exists a derivation according to the rules of
Table [[4 with an instance of L-EMPTY as axiom. The empty trace is always
legal (cf. rule L-EMPTY), and distinguishing according to the first action a of
the trace, the rules check whether a is possible. Furthermore, the contexts are
updated appropriately, and the rules recur checking the tail of the trace. With the
connectivity contexts Fo and Fg as part of the judgment, we must still clarify
what it “means”, i.e., when does = F C': ok hold? Besides the typing part, this
concerns the commitment part Fg. The relation Fg asserts about the component
C' that the connectivity of (mainly) the objects halves from the component is
not larger than the connectivity entailed by Eg, i.e., Eg is a conservative over-
approximation of the component connectivity. Given a component C' and two
names o from @ and n from O, A, we write CFo—n, if C=C" | of...,f =
n,...], i.e., o contains in one of its fields a reference to n. Furthermore, for a
thread name p in O, we write C - p — o, if either C = C’ || p{(...release(o); v)
or p(v). We can thus define:

Definition 11. The judgment =+ C holds, if

1. AFC: O (well-typedness)

2. Connectivity:
(a) C'F o1 — og implies Eo - 01 = 02
(b) CF o< pimplies Eg 0 — p.
(c) CFp<— o implies Eg Fp — o.

We simply write = F C to assert that the judgment is satisfied. Note that
references mentioned in threads do not “count” as acquaintance.

We need to show that the behavioral description of Table [[d actually does
what it claims to do, to characterize the possible interface behavior. We show
the soundness of this abstraction plus the necessary ancillary lemmas such as
subject reduction. Subject reduction means, preservation of well-typedness under
reduction.

Lemma 1 (Subject reduction). Assume =+ C
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1. (a) If C ~ C', then E+ C.
) IfC 5 C', then =+ C.
(c) IfC=C", then 5+ C.

2. IfEFCSERC, then 2+ C.

Proof. Straightforward. a
Lemma 2 (Subject reduction). =+ C and 5+ C == Z+ C imply Z+ C.
Proof. A consequence of preservation under single steps (Lemma [I). a

An interesting invariant concerns the connectivity of names transmitted bound-
edly. Incoming communication, e.g., not only updates the commitment contexts
—something one would expect— but also the assumption contexts. The fact
that no new information is learnt about already known objects (“no surprise”)
in the assumptions can be phrased using the notion of conservative extension.

Definition 12 (Conservative extension). Given two contexts Za and = Ea
where A is an extension of A. Then we write o F Za if Za F ny = no implies
EAFny = ng, for all ny,ne with A+ ny,ne.

Lemma 3 (No surprise). Let 5 - C % Z+C for some incoming label a.
Then =+ =. For outgoing steps, the situation is dual.

Proof. By definition of the incoming steps from Table [[3 using the context
update from Definition [ and @ O

Lemma 4 (Soundness). If 5y - C and S+ C == then So s : trace.

Proof. By induction on the number of steps in ==. The base case of zero steps
(which implies s = €) is immediate, using L-EMPTY. The induction for internal
steps of the form & F C = = F C follow by subject reduction for internal
steps from Lemma B in particular, internal steps do not change the context =
Remain the external steps of Table First note the contexts = are updated by
each external step to Z the same way as the contexts are updated in the legal
trace system.

The cases for incoming communication are checked straightforwardly, as the
operational rules check incoming communication already, i.e., the premises of
the operational rules have their counterparts in the rules for legal traces.

Case: NEWOI

Immediate, as the premises of L-NEWI coincide with the ones of NEWOI; note
that the name n included object names o. The case for NEWTI works analo-
gously.
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Case: CALLI; and CALLI,
Both cases are covered immediately by L-CALLI. The cases for incoming get
labels are likewise immediate.

The cases for outgoing communication are slightly more complex, as the label
in the operational rule is not type-checked or checked for well-connectedness as
for incoming communication and as is done in the rules for legality. For all cases
of outgoing communication we need therefore to check that the condition = F a,
stating that the (legal) trace can be extended by label a is actually satisfied.
We concentrate in the argument on the connectivity part, as the typing part is
checked straightforwardly. Cf. Table
Case: NEWOO with a = v(0:¢) !

The connectivity part of = F a for a v-label is empty. Concerning typing: As for
LT-NEWO of Table [ the premise @ F o follows from the premise Fg - p —

0.

Case: CALLO with a = p{call 0.1(7))!
The open semantics specifies, that a CALLO-step (sending the call message) must
be preceded by a NEWTO-step, which creates the new future/thread reference,
p in this case. The premise of NEWTO implies Eg - p/ < o (where Eg is
the connectivity context before that step, o’ is the creating object and p’ the
spawning thread). Furthermore, the update premise =/ = = 4 v(p:(T)),! of
the NEWTO-step implies for the connectivity after that step: Eé) Fo — p.
Since no information is ever forgotten, also Eg F o’ < p and ©  ¢o':c. Finally,
Eo t 0o — 0,7, since we have = F C before the step (by subject reduction), i.e.,
Fo is a sound over-approximation of the connectivity of C.

The remaining cases work similarly. a

5 Conclusion

This paper investigates in a formal manner the interface behavior of a (concur-
rent) object-oriented languages with class inheritance. The interface behavior is
characterized in the form of a typed operational semantics of an open system,
consisting of a set of classes. The semantics is formalized in the form of commit-
ments of the component and in particular assumptions about the environment.
The fact that the components are open wrt. inheritance, i.e., a component can
inherit from the environment and vice versa, has as a consequence that the as-
sumptions and commitments need contain an abstraction of the heap topology,
keeping track of which object may be in connection with other objects. We show
the soundness of the abstractions.

Related work Banerjee and Naumann [7] are concerned with observable equiv-
alence of classes resp. objects and substitutability in a setting of a class-based,
object-oriented language with inheritance. Whereas in our approach, where ob-
jects are inherently concurrent, they are focusing on the “data” aspect of object-
oriented languages, i.e., they are interested in whether two class-based implemen-
tations of some data structure are indistinguishable by any observer or context.
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To capture observable equivalence they use the well-known notion of represen-
tation independence [10] (cf. also [IH] [9] [I7] [I8]). It is a formal definition of
when the representation of a data type does not influence the rest of the pro-
gram and thus it is a contextual characterization of encapsulation. Technically,
representation independence is defined as follows: the internal states of the two
data types are related by a simulation relation, called local coupling relation
in [7, and the two implementations are representation independent if the two
locally coupled internal representations do not lead to an observable difference
in the global system, which is formalized by stating that the two global systems
are connected by a global (or induced) coupling relation. While in our setting we
aim for a behavioral interface description ensuring substitutability, representa-
tion independence, e.g. in [7], defines criteria on the internal representation of a
data type to assure that two “components” with the same static interface (the
method signature) have the same “dynamic” interface behavior. Those criteria
boil down to the following: Encapsulation or confinement of the representation
assures representation independence and thus observable equivalence. Encap-
sulation is ensured statically in [7] by ownership restrictions. In contrast, our
behavioral interface description takes a “black-box” view and considers two sys-
tem to be equivalent, if they exhibit the same traces at the interface. Also [I6]
uses the notion of representation independence as a criterion of what is a good
description of an interface behavior. In the tradition of Featherweight Java and
related proposals, the language they study is an object-oriented calculus similar
to the one we use with mainly two differences: their language is sequential (and
thus deterministic) and they don’t use an unstructured heap. Instead, inspired
by ownership concepts, the heap is hierarchically structured into nested “boxes”.
Each object belongs to exactly one (directly surrounding) box. Important for the
question of interface behavior is that the boxes form one basis for their notion of
run-time component. Statically and as in our framework, a component consists
of a set of classes. There is, however, an important restriction in [I6]: to form a
component, the corresponding set of classes must be “closed” in that all classes,
methods, etc. used in code of the component are actually defined in the com-
ponent itself (which is “declaration complete” in the terminology of [I6]; in our
notation, the component C' is defined with an empty assumption context, i.e.,
e - C : ©). Hence a component cannot instantiate classes of the environment
nor can it inherit from environment classes. Note that dually the environment
needs not to be declaration complete: The environment can mention compo-
nent classes and methods, but not vice versa. Conceptually, one can think of
a definition complete component as a form of library, where the program can
refer to the library, but not vice versa. Technically that restriction implies that
when describing the possible interface behavior of a component, connectivity is
irrelevant, as the component can neither instantiate classes outside the compo-
nent nor can it inherit methods from outside. In our setting, a component is not
definition complete. However, the environment is represented abstractly as as-
sumption (and the component announces its classes and methods in the form of
commitments), i.e., the assumption-commitment formulation allows to avoid the
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(severe) restriction requiring declaration completeness. Similarly as in our work,
[16] needs to characterize allowed interactions at the interface of the component
or box, in their case to be able to define properly their “behavior semantics” and
representation independence. This involves answering the question that given a
trace (called history in [T6]), what is the reaction of the component. Such a re-
action is defined only when the history is actually well-formed, which basically
corresponds conceptually to our formalization of legal traces. Again, however,
connectivity does not play a role due to their restrictions. Similarly, in the con-
text of observable equivalence and a fully abstract semantics based on interface
traces, [I2] and [II] do not need to consider connectivity: in [I1], because the
language is object-based, i.e., without classes at all.; [T2], in contrast, avoids con-
sidering connectivity by introducing packages as units of composition, which, in
the terminology of [T6] are definition complete. Also [22] consider an object-based
setting. In absence of class inheritance and method overriding, object-based lan-
guages (or proto-type based languages) typically support method update, i.e.,
the replacement of methods at run-time. Apart from the technical results in the
paper, which is not a trace based formulation of the semantics but the observable
equivalence between an object-oriented program and its translation into a lower
level representation (translational full abstraction), their results show that self-
calls become observable when considering late-binding and method update. This
is similar to the observable semantics here which shows that with late-binding
and method overriding, self-calls must be considered in the interface behavior.
Compared to our setting, the calculus is simpler in that it does not have pointers
at all (hence the question of connectivity does not arise in the first place). Nei-
ther do they consider concurrency. The enhanced “distinguishing power” when
adding inheritance is also relevant proof-theoretically, i.e., when trying to ver-
ify object-oriented programs and design proof systems for that. [T3] develop a
proof technique based on bisimulations to capture contextual equivalence for a
class-based language (without and with inheritance).

The results here extends previous work namely by considering inheritance.
Earlier we considered the problem of characterizing the interface behavior of an
open system for different choices of language features (but without inheritance).
E.g., H] deals with futures and promises, i.e., using a similar concurrency model
than the one here. One of the challenges there was to capture the influence
of promises by a “resource aware” type and effect system as promises can be
“fulfilled”, i.e., bound to code, only once. [§] investigates the influence of locks
and monitors on the interface behavior. Again, the results reported therein are
rather similar as far as the goals and general setting is concerned. Unlike here, the
calculus is inspired by Java’s model of concurrency, i.e., based on multi-threading
and re-entrant locks, whereas here we are basing our study on active objects.
The seemingly innocent change of the communication and synchronization model
(from rpc or remote method call communication to asynchronous method calls,
from re-entrant locks to binary locks) leads to a quite more complicated interface
behavior for Java-like monitors. Ultimately, the reason for that complication
can be attributed to the more tighter coupling of objects in the multi-threaded
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setting. Object-connectivity for the interface behavior was first investigated in
B] [2], as a consequence of cross-border instantiation, but not inheritance (see
also [21]).
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