
Estimating Resource Bounds
for Software Transactions

Thi Mai Thuong Tran?, Martin Steffen, and Hoang Truong

Dept. of Computer Science, University of Oslo, Norway and University of Engineering
and Technology, Vietnam National University of Hanoi

1 Motivation

Software Transactional Memory (STM) has recently been introduced to concur-
rent programming languages as an alternative for locked-based synchronization.
STM enables an optimistic form of synchronization for shared memory. Each
transaction is free to read and write to shared variables and a log is used to
record these operations for validation or potentially rollbacks at commit time.
Maintaining the logs is a critical factor of memory resource consumption of STM.

One of the advanced transactional calculi recently introduced is Transac-
tional Featherweight Java (TFJ) [2], a transactional object calculus which sup-
ports nested and multi-threaded transactions. Multi-threaded transactions mean
that inside one transaction there can be more than one thread running in par-
allel. Nested means that inside one transaction, there can be another transac-
tion nested. Furthermore, nested transactions must commit before their parent
transaction, and if a parent transaction commits, all threads spawned inside a
transaction must join via a commit.

In this setting, a program execution may exceed the upper bound on the
number of transactions the system can afford. Transactions contribute to the
resource consumption which may lead to a memory overrun in the following
way:

– duplicating parent transactions for the conflict checking. Each time a new
thread is spawned, the log of its parent transaction is copied into the spawned
thread’s log. In other words, a spawned thread will “inherit” its parent trans-
actions. So the resources for the new thread need to be calculated to store
information in the parent transaction’s log apart from its own log.

– a certain amount of transactions run in parallel at the same time which will
increase the overall number of transactions in the system.

In this work, we will statically predict resource consumption in connection with
transactions by identifying the maximum number of logs produced at any given
point in time during the parallel execution of transactions. From that maximum,
we can infer information about resource consumption such as memory usage.

? E-mail: tmtran@ifi.uio.no

2

P ::= 0 | P ‖ P | p〈e〉 processes/threads
L ::= class C{f :T ; K; M} class definitions
K ::= C(f : T){this.f := f} contructors
M ::= m(x:T){e} : T methods
e ::= v | v.f | v.f := v |if v then e else e |let x:T = e in e | v.m(v) expressions

| new C(v) |spawn e |onacid|commit
v ::= r | x | null values

Table 1. Abstract syntax

2 A type and effect system for a transactional calculus

Syntax

The language used in this paper is, with some adaptations, taken from [2] and
a variant of Featherweight Java (FJ) [1] extended with transactions and a con-
struct for thread creation. The syntax of our calculus is given in Table 1. The
main adaptations are: we added standard constructs such as sequential compo-
sition (in the form of the let-construct) and conditionals.

The language is multi-threaded: spawn e starts a new thread of activity which
evaluates e in parallel with the spawning thread. Specific for TFJ are the two
constructs onacid and commit, two dual operations dealing with transactions.
The expression onacid starts a new transaction and executing commit success-
fully terminates a transaction.

Typing judgment

In order to estimate the maximal resource consumption used by an expression
in the program, we introduce the judgments of the expressions as follows:

n1 ` e :: n2, h, l, t, S (1)

The elements n1, n2, h, and l are natural numbers with the following interpre-
tation. n1 and n2 are the pre- and post-condition for the expression e, capturing
the nesting depth: starting at a nesting depth of n1, the depths is n2 after
termination of e. We call the numbers n1 resp. n2 also the current balance of
the thread. Starting from the pre-condition n1, the numbers h and l represent
the maximum resp., the minimum value of the balance during the execution of
e (the “highest” and the “lowest” balance during execution). The numbers so
far describe the balances of the thread executing e. During the execution of e,
however, new child threads may be created via the spawn-expression and the
remaining elements t and S take (also) their contribution into account. The
number t represents the maximal, overall (“total”) resource consumption dur-
ing the execution of e, including the contribution of all spawned threads. The
last component S is a multiset of pairs of natural numbers, i.e., it is of the form

3

{(p1, c1), (p2, c2), . . .}. For all spawned threads, S keeps its maximal contribution
to the resource consumption at the point after e, i.e., (pi, ci) represents that the
thread i can have maximally a resource need of pi + ci, where pi represents the
contribution of the spawning thread (“parent”), i.e., the current nesting depth at
the point when the thread is being spawned, and ci the additional contribution
of the child threads itself.

3 Main results

– We present a concurrent object-oriented calculus supporting nested and
multi-threaded transactions. The language features non-lexical starting and
ending of multi-threaded and nested transactions.

– We propose a type and effect system to guarantee safe commits and estimate
the upper bound of resource consumption during its execution. This helps
to predict the usage of resources in concurrent transaction systems.

– We show the soundness of the static analysis.

References

1. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In Object Oriented Programming: Systems, Languages,
and Applications (OOPSLA) ’99, pages 132–146. ACM, 1999. In SIGPLAN Notices.

2. S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional object calculus.
Science of Computer Programming, 57(2):164–186, Aug. 2005.

	Estimating Resource Bounds for Software Transactions

