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Abstract. There are many mechanisms for concurrency control in high-level
programming languages. In Java, the original mechanism for concurrency con-
trol, based on synchronized blocks, is lexically scoped. For more flexible control,
Java 5 introduced non-lexical operators, supporting lock primitives on re-entrant
locks. These operators may lead to run-time errors and unwanted behavior; e.g.,
taking a lock without releasing it, which could lead to a deadlock, or trying to
release a lock without owning it. This paper develops a static type and effect sys-
tem to prevent the mentioned lock errors for non-lexical locks. The effect type
system is formalized for an object-oriented calculus which supports non-lexical
lock handling. Based on an operational semantics, we prove soundness of the ef-
fect type analysis. Challenges in the design of the effect type system are dynamic
creation of threads, objects, and especially of locks, aliasing of lock references,
passing of lock references between threads, and reentrant locks as found in Java.

1 Introduction

With the advent of multiprocessors, multi-core architectures, and distributed web-based
programs, effective parallel programming models and suitable language constructs are
needed. Many concurrency control mechanisms for high-level programming languages
have been developed, with different syntactic representations. One option is lexical
scoping; for instance, synchronized blocks in Java, or protected regions designated
by an atomic keyword. However, there is a trend towards more flexible concurrency
control where protected critical regions can be started and finished freely. Two pro-
posals supporting flexible, non-lexical concurrency control are lock handling via the
ReentrantLock class in Java 5 [13] and transactional memory, as formalized in Trans-
actional Featherweight Java (TFJ) [9]. While Java 5 uses lock and unlock operators
to acquire and release re-entrant locks, TFJ uses onacid and commit operators to start
and terminate transactions. Even if these proposals take quite different approaches to-
wards dealing with concurrency —“pessimistic” or lock-based vs. “optimistic” or based
on transactions— the additional flexibility of non-lexical control mechanisms comes at
a similar price: improper use leads to run-time exceptions and unwanted behavior.

A static type and effect system for TFJ to prevent unsafe usage of transactions was
introduced in [12]. This paper applies that approach to a calculus which supports lock
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handling as in Java 5. Our focus is on lock errors; i.e., taking a lock without releasing
it, which could lead to a deadlock, and trying to release a lock without owning it.

Generalizing our approach for TFJ to lock handling, however, is not straightforward:
In particular, locks are re-entrant and have identities available at the program level. Our
analysis technique needs to take identities into account to keep track of which lock is
taken by which thread and how many times it has been taken. Furthermore, the analysis
needs to handle dynamic lock creation, aliasing, and passing of locks between threads.
As transactions have no identity at program level and are not re-entrant, these problems
are absent in [12]. Fortunately, they can be solved under reasonable assumptions on
lock usage. In particular, aliasing can be dealt with due to the following observation:
for the analysis it is sound to assume that all variables are non-aliases, even if they may
be aliases at run-time, provided that, per variable, each interaction history with a lock is
lock error free in itself. This observation allows us to treat soundness of lock-handling
compositionally, i.e., individually per thread. So the contribution of the paper is a static
analysis preventing lock-errors for non-lexical use of re-entrant locks. A clear separa-
tion of local and shared memory allows the mentioned simple treatment of aliasing.

The paper is organized as follows. Sections 2 and 3 define the abstract syntax and
the operational semantics of our language with non-lexically scoped locks. Section 4
presents the type and effect system for safe locking, and Section 5 shows the correctness
of the type and effect system. Sections 6 and 7 conclude with related and future work.

2 A concurrent, object-oriented calculus

Consider a variant of Featherweight Java (FJ) [7] with concurrency and explicit lock
support, but without inheritance and type casts. Table 1 shows the abstract syntax of
this calculus. A program consists of a sequence ~D of class definitions.Vector notation
refers to a list or sequence of entities; e.g., ~D is a sequence D1, . . . ,Dn of class defini-
tions and~x a sequence of variables. A class definition class C(~f :~T ){~f :~T ; ~M} consists of
a name C, fields ~f with corresponding types ~T (assuming that all fi’s are different), and
method definitions ~M. Fields get values when instantiating an object; ~f are the formal
parameters of the constructor C. When writing ~f :~T (and in analogous situations) we as-
sume that the lengths of ~f and ~T correspond, and let fi : Ti refer to the i’th pair of field
and type. We omit such assumptions when they are clear from the context. For simplic-
ity, the calculus does not support overloading; each class has exactly one constructor
and all fields and methods defined in a class have different names. A method definition
m(~x:~T ){t} : T consists of a name m, the typed formal parameters~x:~T , the method body
t, and the declaration of the return type T . Types are class names C, (unspecified) basic
types B, and Unit for the unit value. Locks have type L, which corresponds to Java’s
Lock-interface, i.e., the type for instances of the class ReentrantLock.

The syntax distinguishes expressions e and threads t. A thread t is either a value v,
the terminated thread stop, error representing exceptional termination, or sequential
composition. The let-construct generalizes sequential composition: in let x:T = e in t,
e is first executed (and may have side-effects), the resulting value after termination is
bound to x and then t is executed with x appropriately substituted. (Standard sequen-
tial composition e; t is syntactic sugar for let x:T = e in t where x does not occur
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D ::= class C(~f :~T ){~f :~T ; ~M} class definitions
M ::= m(~x:~T ){t} : T methods

t ::= stop | error | v | let x:T = e in t threads
e ::= t |if v then e else e | v. f | v. f := v | v.m(~v) | new C(~v) expressions
| spawn t |new L | v. lock | v. unlock | if v. trylock then e else e

v ::= r | x | () values
T ::= C | B | Unit | L

Table 1. Abstract syntax

free in t.) Values v are expressions that can not be evaluated further. We ignore stan-
dard values like booleans and integers, so values are references r, variables x (including
this), and the unit value (). We distinguish references o to objects and references l to
locks. This distinction is for notational convenience; the type system can distinguish
both kinds of references. Conditionals if v then e1 else e2, field access v. f , field up-
date v1. f := v2, method calls v.m(~v) and object instantiation new C(~v) are standard.
The language is multi-threaded: spawn t starts a new thread which evaluates t in par-
allel with the spawning thread. The expression new L dynamically creates a new lock,
like instantiating Java’s ReentrantLock class. The operations v. lock and v. unlock
denote lock acquisition and release. The conditional if v. trylock then e1 else e2
checks the availability of a lock v for the current thread, in which case v is taken.

3 Operational semantics

The operational semantics of the calculus is split into steps at the local level of one
thread and at the global level. We focus here on global rules which concern more than
one sequential thread or lock-manipulating steps. See [10] for the full semantics. Local
configurations are written as σ ` e and local reduction steps as σ ` e−→ σ ′ ` e′, where
σ is the heap, a finite mapping from references to objects and locks. Re-entrant locks
are needed for recursive method calls. A lock is either free (represented by the value 0),
or taken by a thread p (represented by p(n) for n≥ 1 where n specifies that p holds the
lock n times). A global configuration σ ` P consists of a shared heap σ and a “set” of
processes, where the processes are given by the following grammar:

P ::= 0 | P ‖ P | p〈t〉 processes/named threads (1)

0 represents the empty process, P1 ‖ P2 the parallel composition of P1 and P2, and p〈t〉
a process (or named thread), where p is the process identity and t the thread being exe-
cuted. The binary ‖-operator is associative and commutative with 0 as neutral element.
Furthermore, thread identities must be unique. Global steps are of the form

σ ` P−→ σ
′ ` P′ . (2)

The corresponding rules are given in Table 2. Rule R-LIFT lifts the local reduction
steps to the global level and R-PAR expresses interleaving of the parallel composition
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of threads. Spawning a new thread is covered in rule R-SPAWN. The new thread gets
a fresh identity and runs in parallel with the spawning thread. Rule R-NEWL creates
a new lock and extends the heap with a fresh identity l and the lock is initially free.
The lock can be taken, if it is free, or a thread already holding the lock can execute
the locking statement once more, increasing the lock-count by one (cf. R-LOCK1 and
R-LOCK2). The R-TRYLOCK-rules describe conditional lock taking. If the lock l is
available for a thread, the expression l. trylock evaluates to true and the first branch of
the conditional is taken (cf. the first two R-TRYLOCK-rules). Additionally, the thread
acquires the lock. If the lock is unavailable, the else-branch is taken and the lock is
unchanged (cf. R-TRYLOCK3). Unlocking works dually and only the thread holding
the lock can execute the unlock-statement on that lock. If the lock has value 1, the lock
is free afterwards, and with a lock count of 2 or larger, it is decreased by 1 in the step
(cf. R-UNLOCK1 and R-UNLOCK2). The R-ERROR-rules formalize misuse of a lock:
unlocking a non-free lock by a thread that does not own it or unlocking a free lock (cf.
R-ERROR1 and R-ERROR2). Both steps result in an error-term.

4 The type and effect system

A type and effect system combines rules for well-typedness with an effect part [1]. Here,
effects track the use of locks and capture how many times a lock is taken or released.
The underlying typing part is standard (the syntax for types is given in Table 1) and
ensures, e.g., that actual parameters of method calls match the expected types for that
method and that an object can handle an invoked method.

The type and effect system is given in Table 3 (for the thread local level) and Table 4
(for the global level). At the local level, the derivation system deals with expressions
(which subsume threads). Judgments of the form

Γ ;∆1 ` e : T :: ∆2[&v] (3)

are interpreted as follows: Under the type assumptions Γ , an expression e is of type T .
The effect part is captured by the effect or lock contexts: With the lock-status ∆1 before
the e, the status after e is given by ∆2. The typing contexts (or type environments) Γ

contain the type assumptions for variables; i.e., they bind variables x to their types, and
are of the form x1:T1, . . . ,xn:Tn, where we silently assume the xi’s are all different. This
way, Γ is also considered a finite mapping from variables to types. By dom(Γ ) we refer
to the domain of that mapping and write Γ (x) for the type of variable x. Furthermore,
we write Γ ,x:T for extending Γ with the binding x:T , assuming that x /∈ dom(Γ ). To
represent the effects of lock-handling, we use lock environments (denoted by ∆ ). At the
local level of one single thread, the lock environments are of the form v1:n1, . . . ,vk:nk,
where a value vi is either a variable xi or a lock reference li, but not the unit value.
Furthermore, all vi’s are assumed to be different. The natural number ni represents the
lock status, and is either 0 in case the lock is marked as free, or n (with n≥ 1) capturing
that the lock is taken n times by the thread under consideration. We use the same no-
tations as for type contexts, i.e., dom(∆) for the domain of ∆ , further ∆(v) for looking
up the lock status of the lock v in ∆ , and ∆ ,v:n for extending ∆ with a new binding,
assuming v /∈ dom(∆). We write • for the empty context, containing no bindings. A
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σ ` t −→ σ ′ ` t ′

R-LIFT
σ ` p〈t〉 −→ σ

′ ` p〈t ′〉

σ ` P1 −→ σ ′ ` P′1
R-PAR

σ ` P1 ‖ P2 −→ σ
′ ` P′1 ‖ P2

p′ fresh
R-SPAWN

σ ` p〈let x:T =spawn t ′ in t〉 −→ σ ` p〈let x : T = () in t〉 ‖ p′〈t ′〉

l /∈ dom(σ) σ ′ = σ [l 7→0]
R-NEWL

σ ` p〈let x:T =new L in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = 0 σ ′ = σ [l 7→ p(1)]
R-LOCK1

σ ` p〈let x : T = l. lock in t〉 −→ σ
′ ` p〈let x : T = l in t〉

σ(l) = p(n) σ ′ = σ [l 7→ p(n+1)]
R-LOCK2

σ ` p〈let x : T = l. lock in t〉 −→ σ
′ ` p〈let x : T = l in t〉

σ(l) = 0 σ ′ = σ [l 7→ p(1)]
R-TRYLOCK1

σ ` p〈let x : T =if l. trylock then e1 else e2 in t〉 −→ σ
′ ` p〈let x : T = e1 in t〉

σ(l) = p(n) σ ′ = σ [l 7→ p(n+1)]
R-TRYLOCK2

σ ` p〈let x : T =if l. trylock then e1 else e2 in t〉 −→ σ
′ ` p〈let x : T = e1 in t〉

σ(l) = p′(n) p 6= p′

R-TRYLOCK3
σ ` p〈let x : T =if l. trylock then e1 else e2 in t〉 −→ σ ` p〈let x : T = e2 in t〉

σ(l) = p(1) σ ′ = σ [l 7→0]
R-UNLOCK1

σ ` p〈let x : T = l. unlock in t〉 −→ σ
′ ` p〈let x : T = l in t〉

σ(l) = p(n+2) σ ′ = σ [l 7→ p(n+1)]
R-UNLOCK2

σ ` p〈let x : T = l. unlock in t〉 −→ σ
′ ` p〈let x : T = l in t〉

σ(l) = p′(n) p 6= p′

R-ERROR1
σ ` p〈let x : T = l. unlock in t〉 −→ σ ` p〈error〉

σ(l) = 0
R-ERROR2

σ ` p〈let x : T = l. unlock in t〉 −→ σ ` p〈error〉

Table 2. Global semantics

lock context ∆ corresponds to a local view on the heap σ in that ∆ contains the status
of the locks from the perspective of one thread, whereas the heap σ in the global se-
mantics contains the status of the locks from a global perspective. See also Definition
3 of projection later, which connects heaps and lock contexts. The final component of
the judgment from Equation 3 is the value v after the &-symbol. If the type T of e is the
type L for lock-references, type effect system needs information in which variable resp.
which lock reference is returned. If T 6= L, that information is missing; hence we write
[&v] to indicate that it’s “optional”. In the following we concentrate mostly on the rules
dealing with locks, and therefore with an &v-part in the judgment.
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At run-time, expressions do not only contain variables (and the unit value) as values
but also references. They are stored in the heap σ . To check the well-typedness of
configurations at run-time, we extend the type and effect judgment from Equation 3 to

σ ;Γ ;∆1 ` e : T :: ∆2[&v] (4)

The rules of Table 3 are mostly straightforward. We concentrate on the rules relevant
for lock handling, the full set of rules is shown in [10]. To define the rules, we need two
additional auxiliary functions. We assume that the definition of all classes is given. As
this information is static, we do not explicitly mention the corresponding “class table”
in the rules; relevant information from the class definitions is referred to in the rules by
`C : ~T →C (the constructor of class C takes parameters of types ~T as arguments; the
“return type” of the constructor corresponds to C), `C.m : ~T → T :: ∆1→ ∆2 (method
m of class C takes input of type ~T and returns a value of type T ). Concerning the effects,
the lock status of the parameters must be larger or equal as specified in the pre-condition
∆1, and the effect of method m is the change from ∆1 to ∆2. Similarly, `C. f : T means
that the field f of instances of class C is of type T . Because fields simply contain values,
they have no effect.

Values have no effect and thus ∆1 = ∆2 (cf. the rule T-VAL). A conditional expres-
sion is well-typed with type T if the conditional expression is a boolean and if both
branches have the common type T . Also for the effect, rule T-COND insists that both
branches are well-typed with the same pre- and post-condition. Field update in rule
T-ASSIGN has no effect, and the type of the field must coincide with the type of the
value on the right-hand side of the update.

For looking up a field containing a lock reference (cf. T-FIELD), the local variable
used to store the reference is assumed with a lock-counter of 0. Rule T-LET, dealing
with the local variable scopes and sequential composition, requires some explanation.
First, it deals only with the cases not covered by T-NEWL or T-FIELD, which are ex-
cluded by the first premise. The two recursive premises dealing with the sub-expressions
e and t basically express that the effect of e precedes the one for t: The post-condition
∆2 of e is used in the pre-condition when checking t, and the post-condition ∆3 after t
in the premise then yields the overall postcondition in the conclusion. Care, however,
needs to be taken in the interesting situation where e evaluates to a lock reference: In this
situation the lock can be referenced in t by the local variable x or by the identifier which
is handed over having evaluated e, i.e., via v′ in the rule. Note that the body is analysed
under the assumption that originally x, which is an alias of v′, has the lock-counter 0.
The last side condition deals with the fact that after executing e, only one lock reference
can be handed over to t, all others have either been existing before the let-expression or
become “garbage” after e, since there is no way in t to refer to them. To avoid hanging
locks, the rule therefore requires that all lock values created while executing e must end
free, i.e., they must have a lock count of 0 in ∆2. This is formalized in the predicate
FE(∆1,∆2,v) in the rule’s last premise where FE(∆1,∆2,v) holds if ∆2 = ∆ ′1,~v:~0,v:n
for some ∆ ′1 such that dom(∆ ′1) = dom(∆1) or dom(∆ ′1,v:n) = dom(∆1).

As for method calls in rule T-CALL, the premise `C.m : ~T → T :: ∆ ′1→ ∆ ′2 spec-
ifies ~T → T as the type of the method and ∆ ′1 → ∆ ′2 as the effect; this corresponds to
looking up the definition of the class including their methods from the class table. To
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be well-typed, the actual parameters must be of the required types ~T and the type of the
call itself is T , as declared for the method. For the effect part, we can conceptually think
of the pre-condition ∆ ′1 of the method definition as the required lock balances and ∆1
the provided ones at the control point before the call. For the post-conditions, ∆ ′2 can be
seen as the promised post-condition and ∆2 the actual one. The premise ∆1 ≥ ∆ ′1[~v/~x]
of the rule requires that the provided lock status of the locks passed as formal param-
eters must be larger or equal to those required by the precondition ∆ ′1 declared for the
method. The lock status after the method is determined by adding the effect (as the
difference between the promised post-condition and the required pre-condition) to the
provided lock status ∆1 before the call. In the premises, we formalize those checks and
calculations as follows:

Definition 1. Assume two lock environments ∆1 and ∆2. The sum ∆1 + ∆2 is defined
point-wise, i.e., ∆ = ∆1 + ∆2 is given by: ∆ ` v : n1 + n2 if ∆1 ` v : n1 and ∆2 ` v : n2.
If ∆1 ` v : n1 and ∆2 6` v then ∆ ` v : n1, and dually ∆ ` v : n2, when ∆1 6` v and
∆2 ` v : n2. The comparison of two contexts is defined point-wise, as well: ∆1 ≥ ∆2
if dom(∆1) ⊇ dom(∆2) and for all v ∈ dom(∆2), we have n1 ≥ n2, where ∆1 ` v : n1
and ∆2 ` v : n2. The difference ∆1−∆2 is defined analogously. Furthermore we use
the following short-hand: for v ∈ dom(∆), ∆ + v denotes the lock context ∆ ′, where
∆ ′(v) = 1 if ∆(v) = 0, and ∆ ′(v) = n+1, if ∆(v) = n. ∆ − v is defined analogously.

For the effect part of method specifications C.m :: ∆1→ ∆2, the lock environments
∆1 and ∆2 represent the pre- and post-conditions for the lock parameters. We have to
be careful how to interpret the assumptions and commitments expressed by the lock
environments. As usual, the formal parameters of a method have to be unique; it’s not
allowed that a formal parameter occurs twice in the parameter list. Of course, the as-
sumption of uniqueness does not apply to the actual parameters; i.e., at run-time, two
different actual parameters can be aliases of each other. The consequences of that situ-
ation are discussed in the next example.

Example 1 (Method parameters and aliasing). Consider the following code:

Listing 1.1. Method with 2 formal parameters
m( x1 : L , x2 : L ) {

x1 . u n l oc k ; x2 . u n l oc k
}

Method m takes two lock parameters and performs a lock-release on each one. As
for the effect specification, the precondition ∆1 should state that the lock stored in x1
should have at least value 1, and the same for x2, i.e.,

∆1 = x1:1,x2:1 (5)

With ∆1 as pre-condition, the effect type system accepts the method of Listing 1.1 as
type correct, because the effects on x1 and x2 are checked individually. If at run-time the
actual parameters, say l1 and l2 happen to be not aliases, and if each of them satisfies
the precondition of Equation 5 individually, i.e., at run-time, the lock environment ∆ ′1 =
∆1[l1/x1][l2/x2] i.e.,

∆
′
1 = l1:1, l2:1 (6)
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executing the method body does not lead to a run-time error. If, however, the method is
called such that x1 and x2 become aliases, i.e., called as o.m(l, l), where the lock value
of l is 1, it results in a run-time error. That does not mean that the system works only if
there is no aliasing on the actual parameters. The lock environments express resources
(the current lock balance) and if x1 and x2 happen to be aliases, the resources must be
combined. This means that if we substitute in ∆1 the variables x1 and x2 by the same
lock l, the result of the substitution is

∆
′
1 = ∆1[l/x1][l/x2] = l:(1+1)

i.e., l is of balance 2. ut

This motivates the following definition of substitution for lock environments.

Definition 2 (Substitution for lock environments). Given a lock environment ∆ of
the form ∆ = v1:n1, . . . ,vk:nk, with k≥ 0, and all the natural numbers ni ≥ 0. The result
of the substitution of a variable x by a value v in ∆ is written ∆ [v/x] and defined as
follows. Let ∆ ′ = ∆ [v/x]. If ∆ = ∆ ′′,v:nv,x:nx, then ∆ ′ = ∆ ′′,v:(nv +nx). If ∆ = ∆ ′′,x:n
and v /∈ dom(∆ ′′), then ∆ ′ = ∆ ′′,v:n. Otherwise, ∆ ′ = ∆ .

Example 2 (Aliasing). The example continues from Example 1, i.e., we are given the
method definition of Listing 1.1. Listing 1.2 shows the situation of a caller of m where
first, the actual parameters are without aliases. Before the call, each lock (stored in the
fields f1 and f2) has a balance of 1, as required in m’s precondition, and the method
body individually unlocks each of them once.

Listing 1.2. Method call, no aliasing
f1 := new L ;
f2 := new L ; / / f1 and f2 : no a l i a s e s
f1 . l o c k ; f2 . l o c k ;
o .m( f1 , f2 ) ;

If we change the code of the call site by making f1 and f2 aliases, setting f2 := f1
in the second line, instead of f2 :=new L, again there is no run-time error, as after
executing f1. lock and f2. lock, the actual balance of the single lock stored in f1 as
well as in f2 is 2. ut

Why aliasing f1 and f2 in the situation of Example 2 is unproblematic is illustrated
in Figure 1. Figures 1(a) and 1(b) show the change of two different locks over time,
where the y-axis represents the lock balance. The behavior of each lock is that it starts
at a lock-count of zero, counts up and down according to the execution of lock and
unlock and at the end reaches 0 again. It is important that at no point in time the lock
balance can be negative, as indicated by the red, dashed arrow in the left sub-figure.

Connecting the figures to the example above, the two lock histories correspond to
the situation of Listing 1.2 where f1 and f2 are no aliases. When they are aliases, the
overall history looks as shown in Figure 1(c). This combined history, clearly, satisfies
the mentioned condition for a lock behavior: it starts and ends with a lock balance of
0 and it never reaches a negative count as it is simply the “sum” of the individual lock
histories.
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The identity of a new thread is irrelevant, i.e., spawning carries type Unit (cf.
T-SPAWN). Note for the effect part of T-SPAWN that the pre-condition for checking
the thread t in the premise of the rule is the empty lock context •. The reason is that
the new thread starts without holding any lock. Note further that for the post-condition
of the newly created thread t, all locks that may have been acquired while executing
t must have been released again; this is postulated by ∆ ′ ` free. Typing for new locks
is covered by T-NEWL. As for the effect, the pre-context ∆1 is extended by a bind-
ing for the new lock initially assumed to be free, i.e., the new binding is x:0. The two
operations for acquiring and releasing a lock carry the type L. The type rules here are
formulated on the thread-local level, i.e., irrespective of any other thread. Therefore, the
lock contexts also contain no information about which thread is currently in possession
of a non-free lock, since the rules are dealing with one local thread only. The effect of
taking a lock is unconditionally to increase the lock counter in the lock context by one
(cf. Definition 1). Dually in rule T-UNLOCK, ∆ − v decreases v’s lock counter by one.
To do so safely, the thread must hold the lock before the step, as required by the premise
∆ ` v : n+1. The expression for tentatively taking a lock is a two-branched conditional.
The first branch e1 is executed if the lock is held, the second branch e2 is executed if
not. Hence, e1 is analysed in the lock context ∆1 + v as precondition, whereas e2 uses
∆1 unchanged (cf. T-TRYLOCK). As for ordinary conditionals, both branches coincide
concerning their type and the post-condition of the effects, which in turn also are the
type, resp. the post-condition of the overall expression.

The type and effect system in Table 3 dealt with expressions at the local level, i.e.,
with expression e and threads t of the abstract syntax of Table 1. We proceed analysing
the language “above” the level of one thread, and in particular of global configurations
as given in Equation 1.

The effect system at the local level uses lock environments to approximate the effect
of the expression on the locks (cf. Equation 4). Lock environments ∆ are thread-local
views on the status of the locks, i.e., which locks the given thread holds and how often.
In the reduction semantics, the locks are allocated in the (global) heap σ , which contains
the status of all locks (together with the instance states of all allocated objects). The
thread-local view can be seen as a projection of the heap to the thread, as far as the

balance

t

(a) Lock 1

balance

t

(b) Lock 2

balance

t

(c) Combined 1 + 2

Fig. 1. Two lock histories
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σ ;Γ ` v : L ∆ ` v
T-VAL

σ ;Γ ;∆ ` v : L :: ∆&v

σ ;Γ ` v : Bool σ ;Γ ;∆1 ` e1 : T :: ∆2&v σ ;Γ ∆1 ` e2 : T :: ∆2&v
T-COND

σ ;Γ ;∆1 `if v then e1 else e2 : T :: ∆2&v

σ ;Γ ` v′ : C `C. f : L σ ;Γ ,x:L;∆1,x:0 ` t : T :: ∆2&v
T-FIELD

σ ;Γ ;∆1 `let x : L = v′. f in t : T :: ∆2&v

σ ;Γ ;∆ ` v1 : C :: ∆ `C. fi : Ti σ ;Γ ;∆ ` v2 : Ti :: ∆&v2
T-ASSIGN

σ ;Γ ;∆ ` v1. f := v2 : Ti :: ∆&v2

e /∈ {new L, v. f} σ ;Γ ;∆1 ` e : T1 :: ∆2&v′ (σ ;Γ ,x:T1;∆2,x:0 ` t : T2 :: ∆3&v′′)[v′/x] FE(∆1,∆2,v′)
T-LET

σ ;Γ ;∆1 `let x : T1 = e in t : T2 :: ∆3[v′/x]&v′′[v′/x]

`C.m = λ~x.t σ ;Γ `~v : ~T σ ;Γ ` v : C `C.m : ~T → T :: ∆ ′1→ ∆ ′2

∆1 ≥ ∆ ′1[~v/~x] ∆2 = ∆1 +(∆ ′2−∆ ′1)[~v/~x] T 6= L
T-CALL

σ ;Γ ;∆1 ` v.m(~v) : T :: ∆2

σ ;Γ ,x:L;∆1,x:0 ` t : T :: ∆2&v
T-NEWL

σ ;Γ ;∆1 `let x:L =new L in t : T :: ∆2&v

σ ;Γ ;• ` t : T :: ∆ ′ ∆ ′ ` free
T-SPAWN

σ ;Γ ;∆ `spawn t : Unit:: ∆

∆ ` v σ ;Γ ` v : L
T-LOCK

σ ;Γ ;∆ ` v. lock: L :: ∆ + v&v

∆ ` v : n+1 σ ;Γ ` v : L
T-UNLOCK

σ ;Γ ;∆ ` v. unlock: L :: ∆ − v&v

σ ;Γ ` v : L σ ;Γ ;∆1 + v ` e1 : T :: ∆2&v′ σ ;Γ ;∆1 ` e2 : T :: ∆2&v′

T-TRYLOCK
σ ;Γ ;∆1 `if v. trylock then e1 else e2 : T :: ∆2&v′

Table 3. Type and effect system (thread-local)

locks are concerned. This projection is needed to connect the local part of the effect
system to the global one (cf. T-THREAD of Table 4).

Definition 3 (Projection). Assume a heap σ with σ `ok and a thread p.1 The projec-
tion of σ onto p, written σ ↓p is inductively defined as follows:

• ↓p = •
(σ , l:0) ↓p = σ ↓p, l:0

(σ , l:p(n)) ↓p = σ ↓p, l:n
(σ , l:p′(n)) ↓p = σ ↓p, l:0 if p 6= p′

(σ ,o:C(~v)) ↓p = σ ↓p .

Note the case where a lock l is held by a thread named p′ different from the thread
p we project onto, the projection makes l free, i.e., l:0. At first sight, it might look
strange that the locks appears to be locally free where it is actually held by another
thread. The reason is that the type system captures a safety property about the locks
and furthermore that locks ensure mutual exclusion between threads. Safety means that
the effect type system gives, as usual, no guarantee that the local thread can actually
take the lock, it makes a statement about what happens after the thread has taken the

1 Cf. the technical report [10] for the standard definition of σ `ok.
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lock. If the local thread can take the lock, the lock must be free right before that step.
The other aspect, namely mutual exclusion, ensures that for the thread that has the lock,
the effect system calculates the balance without taking the effect of other thread into
account. This reflects the semantics as the locks of course guarantee mutual exclusion.
As locks are manipulated only via l. lock and l. unlock, there is no interference by
other threads, which justifies the local, compositional analysis.

Now to the rules of Table 4, formalizing judgments of the form

σ ` P : ok , (7)

where P is given as in Equation 1. In the rules, we assume that σ is well-formed, i.e.,
σ ` ok. The empty set of threads or processes 0 is well-formed (cf. T-EMPTY). Well-
typedness is a “local property” of threads, i.e., it is compositional: a parallel compo-
sition is well-typed if both sub-configurations are (cf. T-PAR). A process p〈t〉 is well-
typed if its code t is (cf. T-THREAD). As precondition ∆1 for that check, the projection
of the current heap σ is taken. . As for the post-condition ∆2, we require that the thread
has given back all the locks, postulated by ∆2 ` free. The remaining rules do not deal
with run-time configurations σ ` P, but with the static code as given in the class dec-
larations/definitions. Rule T-METH deals with method declarations. The first premise
looks up the declaration of method m in the class table. The declaration contains, as
usual, the argument types and the return type of the method. Beside that, the effect
specification ∆1 → ∆2 specifies the pre- and post-condition on the lock parameters.
We assume that the domain of ∆1 and ∆2 correspond exactly to the lock parameters
of the method. The second premise then checks the code of the method body against
that specification. So t is type-checked, under a type and effect context extended by
appropriate assumptions for the formal parameters ~x and by assuming type C for the
self-parameter this. Note that the method body t is checked with an empty heap • as
assumption. As for the post-condition ∆2,∆

′
2 of the body, ∆ ′2 contains lock variables

other than the formal lock parameters (which are covered by ∆2). The last premise re-
quires that the lock counters of ∆ ′2 must be free after t. The role of the lock contexts as
pre- and post-conditions for method specifications and the corresponding premises of
rule T-CALL are illustrated in Figure 2. Assume two methods m and n, where m calls
n, i.e., m is of the form m(){. . . ;x.n() . . .}. Let’s assume the methods operate on one
single lock, whose behavior is illustrated by the first two sub-figures of Figure 2. The
history in Figure 2(a) is supposed to represent the lock behavior m up to the point where
method n is called, and Figure 2(b) gives the behavior of n in isolation. The net effect of
method n is to decrease the lock-count by one (indicated by the dashed arrow), namely
by unlocking the lock twice but locking it once afterwards again. It is not good enough
as a specification for method n to know that the overall effect is a decrease by one. It
is important that at the point where the method is called, the lock balance must be at
least 2. Thus, the effect specification is ∆1→ ∆2, where ∆1 serves as precondition for
all formal lock parameters of the method, and T-CALL requires current lock balances
to be larger or equal to the one specified. The type system requires that the locks are
handed over via parameter passing and the connection between the lock balances of
the actual parameters with those of the formal ones is done by the form of substitution
given in Definition 2. The actual value of the lock balances after the called method n is
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then determined by the lock balances before the call plus the net-effect of that method.
See Figure 2(c) for combining the two histories of Figures 2(a) and 2(b). Finally, a class
definition class C(~f :~T ){~f :~T ; ~M} is dealt with in rule T-CLASS, basically checking that
all method definitions are well-typed. For a program (a sequence of class definitions) to
be well-typed, all its classes must be well-typed (we omit the rule).

5 Correctness

We prove the correctness of our analysis. A crucial part is subject reduction, i.e., the
preservation of well-typedness under reduction. (The full proofs can be found in [10].)

Next we prove subject reduction for the effect part of the system of Tables 3 and 4.

Lemma 1 (Substitution). Let x be a variable of type L and l be a lock reference If
∆1 ` t :: ∆2&v, then ∆1[l/x] ` t[l/x] :: ∆2[l/x]&v[l/x].

The next lemma expresses that given a lock environment ∆1 as precondition for an
expression e such that the effect of e leads to a post-condition of ∆2, e is still well-
typed if we assume a ∆ ′1 where the lock balances are increased, and the corresponding
post-condition is then increased accordingly.

Lemma 2 (Weakening). If ∆1 ` e :: ∆2, then ∆1 +∆ ` e :: ∆2 +∆ .

Lemma 3 (Subject reduction (local)). Let σ ` t be well-typed. Assume further ∆1 `
t :: ∆2&v where ∆1 = σ ↓p for a thread identifier p and ∆2 ` free. If σ ` t −→ σ ′ ` t ′,
then ∆ ′1 ` t ′ :: ∆ ′2&v′, with ∆ ′1 = σ ↓p and with ∆ ′2 ` free.

Lemma 4 (Subject reduction (global)). If σ ` P : ok and σ ` P−→ σ ′ ` P′ where the
reduction step is not one of the two R-ERROR-rules, then σ ′ ` P′ : ok.

Lemma 5. Let P = P′ ‖ p〈t〉. If σ ` P : ok then σ ` P 6−→ σ ` P′ ‖ p〈error〉.

The next result captures one of the two aspects of correct lock handling, namely that
never an exception is thrown by inappropriately unlocking a lock.

Theorem 1 (Well-typed programs are lock-error free). Given a program in its initial
configuration • ` P0 : ok. Then it’s not the case that • ` P0 −→∗ σ ′ ` P ‖ p〈error〉.

balance

t

(a) Method m

balance

t

(b) Method n

balance

t

(c) Method n

Fig. 2. Lock balance of methods m and n
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The second aspect of correct lock handling means that a thread should release all
locks before it terminates. We say, a configuration σ ` P has a hanging lock if P = P′ ‖
p〈stop〉where σ(l) = p(n) with n≥ 1, i.e., one thread p has terminated but there exists
a lock l still in possession of p.

Theorem 2 (Well-typed programs have no hanging locks). Given a program in its
initial configuration • ` P0 : ok. Then it’s not the case that • ` P0 −→∗ σ ′ ` P′, where
σ ′ ` P′ has a hanging lock.

6 Related work

Our static type and effect system ensures proper usage of non-lexically scoped locks in
a concurrent object-oriented calculus to prevent run-time errors and unwanted behav-
iors. As mentioned, the work presented here extends our previous work [12], dealing
with transactions as a concurrency control mechanism instead of locks. The extension
is non-trivial, mainly because locks have user-level identities. This means that, unlike
transactions, locks can be passed around, can be stored in fields, and in general alias-
ing becomes a problem. Furthermore, transactions are not “re-entrant”. See [11] for a
more thorough discussion of the differences. There are many type systems and formal
analyses to catch already a compile time various kinds of errors. For multi-threaded
Java, static approaches so far are mainly done to detect data races or to guarantee free-
dom of deadlocks, of obstruction or of livelocks, etc. There have been quite a number
of type-based approaches to ensure proper usage of resources of different kinds (e.g.,
file access, i.e., to control the opening and closing of files). See [6] for a recent, rather
general formalization for what the authors call the resource usage analysis problem (the
paper discusses approaches to safe resource usage in the literature). Unlike the type
system proposed here, [6] considers type inference (or type reconstruction). Their lan-
guage, a variant of the λ -calculus, however, is sequential. [15] uses a type and effect
system to assure deadlock freedom in a calculus quite similar to ours in that it supports
thread based concurrency and a shared mutable heap. On the surface, the paper deals
with a different problem (deadlock freedom) but as part of that it treats the same prob-
lem as we, namely to avoind releasing free locks or locks not owned, and furthermore,

T-EMPTY
σ ` 0 : ok

σ ` P1 : ok σ ` P2 : ok
T-PAR

σ ` P1 ‖ P2 : ok

∀i. `Mi : ok
T-CLASS

`C(~f :~T ){~f :~T ; ~M} : ok

∆1 = σ ↓p σ ;•;∆1 ` t : T :: ∆2 t 6= error ∆2 ` free
T-THREAD

σ ` p〈t〉 :ok

`C.m : ~T → T :: ∆1→ ∆2 •;~x:~T ,this:C;∆1 ` t : T :: ∆2,∆
′
2 ∆ ′2 ` free

T-METH
`C.m(~x:~T ){t} : ok

Table 4. Type and effect system (global)
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do not leave any locks hanging. The language of [15] is more low-level in that it sup-
ports pointer dereferencing, whereas our object-oriented calculus allows shared access
on mutable storage only for the fields of objects and especially we do not allow pointer
dereferencing. Pointer dereferencing makes the static analysis more complex as it needs
to keep track of which thread is actually responsible for lock-releasing in terms of read
and write permissions. We do not need the complicated use of ownership-concepts, as
our language is more disciplined dealing with shared access: we strictly separate be-
tween local variables (not shared) and shared fields. In a way, the content of a local
variable is “owned” by a thread; therefore there is no need to track the current owner
across different threads to avoid bad interference. Besides that, our analysis can han-
dle re-entrant locks, which are common in object-oriented languages such as Java or
C], whereas [15] covers only binary locks. The same restriction applies to [16], which
represents a type system assuring race-freedom. Gerakios et.al. [5] present a uniform
treatment of region-based management and locks. A type and effect system guarantees
the absence of memory access violations and data races in the presence of region alias-
ing. The main subject in their work is regions, however, not locks. Re-entrant locks
there are just used to protect regions, and they are implicit in the sense that each lock
is associated with a region and has no identity. The regions, however, have an identity,
they are non-lexically scoped and can be passed as arguments. The safety of the region-
based management is ensured by a type and effect system, where the effects specify
so-called region capabilities. Similar to our lock balances, the capabilities keep track of
the “status” of the region, including a count on how many times the region is accessed
and a lock count. As in our system, the static analysis keeps track of those capabilities
and the soundness of the analysis is proved by subject reduction (there called “preser-
vation”). [4] uses “flow sensitive” type qualifiers to statically correct resource usage
such as file access in the context of a calculus with higher-order functions and mutable
references. Also the Vault system [3] uses a type-based approach to ensure safe use of
resources (for C-programs). Laneve et. al. [2] develop a type system for statically en-
suring proper lock handling also for the JVM, i.e., at the level of byte code as part of
Java’s bytecode verifier. Their system ensures what is known as structured locking, i.e.,
(in our terminology), each method body is balanced as far as the locks are concerned,
and at no point, the balance reaches below 0. As the work does not consider non-lexical
locking as in Java 5, the conditions apply per method only. Extending [14], Iwama and
Kobayashi [8] present a type system for multi-threaded Java programs on the level of
the JVM which deals with non-lexical locking. Similar to our system, the type system
guarantees absence of lock errors (as we have called it), i.e., that when a thread is termi-
nated, it has released all its acquired locks and that a thread never releases a lock it has
not previously acquired. Unlike our system, they cannot deal with method calls, i.e., the
system analyses method bodies in isolation. However, they consider type inference.

7 Conclusion

We presented a static type and effect system to prevent certain errors for non-lexical lock
handling as in Java 5. The analysis was formalized in an object-oriented calculus in the
style of FJ. We proved the soundness of our analysis by subject reduction. Challenges
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for the static analysis addressed by our effect system are the following: with dynamic
lock creation and passing of lock references, we face aliasing of lock references, and
due to dynamic thread creation, the effect system needs to handle concurrency.

Aliasing is known to be tricky for static analysis; many techniques have been devel-
oped to address the problem. Those techniques are known as alias or pointer analyses,
shape analyses, etc. With dynamic lock creation and since locks are meant to be shared,
one would expect that a static analysis on lock-usage relies on some form of alias anal-
ysis. Interestingly, aliasing poses no real challenge for the specific problem at hand,
under suitable assumptions on the use of locks and lock variables. The main assump-
tion restricts passing the lock references via instance fields. Note that to have locks
shared between threads, there are basically only two possible ways: hand over the iden-
tity of a lock via the thread constructor or via an instance field: it’s not possible to hand
the lock reference to another thread via method calls, as calling a method continues
executing in the same thread. Our core calculus does not support thread constructors,
as they can be expressed by ordinary method calls, and because passing locks via fields
is more general and complex: passing a lock reference via a constructor to a new thread
means locks can be passed only from a parent to a child thread. The effect system then
enforces a single-assignment policy on lock fields. The analysis also shows that this
restriction can be relaxed in that one allows assignment concerning fields whose lock
status corresponds to a free lock. Concerning passing lock references within one thread,
parameter passing must be used. The effect specification of the formal parameters con-
tains information about the effect of the lock parameters. We consider the restriction not
to re-assign a lock-variable as a natural programming guideline and common practice.

Like aliasing, concurrency is challenging for static analysis, due to interference. Our
effect system checks the effect of interacting locks, which are some form of shared vari-
ables. An interesting observation is that locks are, of course not just shared variables,
but they synchronize threads for which they ensure mutual exclusion. Ensuring absence
of lock errors is thus basically a sequential problem, as one can ignore interference; i.e.,
a parallel program can be dealt with compositionally. See the simple, compositional rule
for parallel composition in Table 4. The treatment is similar to the effect system for TFJ
dealing with transactions instead of locks. However, in the transactional setting, the
local view works for a different reason, as transactions are not shared between threads.

The treatment of the locks here is related to type systems governing resource usage.
We think that our technique in this paper and a similar one used in our previous work
could be applied to systems where run-time errors and unwanted behaviors may happen
due to improperly using syntactical constructs for, e.g., opening/closing files, allocat-
ing/deallocating resources, with a non-lexical scope. Currently, the exceptional behav-
ior due to lock-mishandling is represented as one single error-expression. Adding a
more realistic exception mechanism including exception handling and finally-clauses
to the calculus is a furthrer step in our research. Furthermore we plan to implement
the system for empirical results. The combination of our two type and effect systems,
one for TFJ [12] and one for the calculus in this paper, could be a step in setting up an
integrated system for the applications where locks and transactions are reconciled.
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