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What are we dealing with?

Effect of facets of object-oriented languages on the observable
behavior of open programs

Classes: units of code

Inheritance: code re-use

Concurrency: multi-threading and active objects

Synchronization: locks and monitors

Why important?

verification

black-box testing

compositionality, replacement, full abstraction

=⇒ Easy question, difficult answer

=⇒ Open semantics.
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Notion of observation

pub l i c c l a s s C { // component
pub l i c s t a t i c vo i d main ( S t r i n g [ ] a rg ) {

O x = new O( ) ;
x .m( 4 2 ) ; // c a l l to the i n s t a n c e o f O

}
}

c l a s s O { // e x t e r n a l o b s e r v e r
pub l i c vo i d m( i n t x ) {

. . .
System . out . p r i n t l n (” s u c c e s s ” ) ;

}
}



Open systems

Component = set of objects + threads “running” in parallel

Environment = “context” = “observer”

Component and its environment communicate via method
calls.



Characterizing the open semantics

“message passing”1 framework ⇒ the corresponding open
semantics is “traces” as interface interactions (method calls
and returns)

1no direct access to instance variables



Characterizing the open semantics

“message passing”1 framework ⇒ the corresponding open
semantics is “traces” as interface interactions (method calls
and returns)

open = environment absent/arbitrary

1no direct access to instance variables



Characterizing the open semantics

operational description: assumption/commitment formulation

Ass. ` C : Comm.
a−→ ´Ass. ` Ć : ´Comm. (1)

formal system to characterize interface behavior

∆ ` C : Θ
a−→ ∆́ ` Ć : Θ́ , (2)

interaction labels:

γ ::= p〈call o.l(~v)〉 | p〈return(v)〉 | ν(n:T )o basic labels
a ::= γ? | γ! receive/send labels



Characterizing the observable behavior

abstracting away the component, too:

∆,Θ ` r B t : trace

inductive derivation system for legal traces:

check context: ∆,Θ ` a

update context: ∆́, Θ́ = ∆,Θ + a

∆́, Θ́ ` r a B t : trace other conditions

∆,Θ ` r B a t : trace

(3)



Classes?

what is the semantical import of classes?

1 interface separates observer and component classes

⇒ instantiation requests as interface interaction

2 class = generators of object (via new)2

3 abstraction of the heap topology

2Classes in Java or C] serve also as kind of types, and furthermore for
inheritance. We ignore that mostly here.



Cross-border instantiation & heap abstraction



Heap separation

heap is separated in component and environment part:



Dynamic heap abstraction example
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Cross-border inheritance

Comp. Env.
CC CE

mC

mE

oE !mE

Comp. Env.

CC

CEextends

mC

mE

oE !mE

Comp. Env.

CC

CEextends

mC

mE

mE

self!mE



Consequences of inheritance

Separation in component & environment class + cross-border
inheritance

1 self-calls observable.

2 abstraction of the heap topology

3 State of an object is split into two halves.



Synchronization

shared (instance) state + concurrency ⇒ mutex

sync. mechanism: monitors

for instance in Java

but: re-entrant monitors (recursion)



What changes?

Now:

The addition of monitors increase or de-
crease the discriminating power?

intuitively: 2 plausible answers:

the observer sees less!
the observer sees more!
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data dependence
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returned by second thread n2 afterwards
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Example

γc1 ? γc2 ? γ′c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

question: is that trace possible?

the answer is no!

data: “n1 before n2”

monitors:
the outgoing call of n1 shows that n1 must have the lock now

⇒ n2 cannot have it now: ⇒
“n2 before n1”



Example
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Note: non-atomic lock-grabbing ⇒ no order!
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! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

question: is that trace possible?

γc1?

n1

��

γc2?

γ′c1
!

(3)

Note: there is no order between events of n1 and n2!



Example

γc1 ? γc2 ? γ′c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

question: is that trace possible?

γc1?

n1

��

o′

��

γc2?

n2

��
γ′c1

! γr2!

ZZ

(4)

Note:

data dependence because of o ′



Active object

active objects

aynchronous method calls ⇒ each method call = new thread
no re-entrance
unit of “state” ⇒ unit of concurrency

lock state not observable

observable semantics much easier

better compositionality



Conclusions

Object-orientation and modularity.

Concurrency.

Synchronization.
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