Design issues in concurrent object-oriented
languages and observability

Mai Thuong Tran and Martin Steffen
University of Oslo, Norway

International Conference on Knowledge and Systems Engineering,
Hanoi, Vietnam, October 14-17, 2011

What are we dealing with?

Effect of facets of object-oriented languages on the observable
behavior of open programs

What are we dealing with?

Effect of facets of object-oriented languages on the observable
behavior of open programs

Classes: units of code

°
@ Inheritance: code re-use

@ Concurrency: multi-threading and active objects
°

Synchronization: locks and monitors

What are we dealing with?

Effect of facets of object-oriented languages on the observable
behavior of open programs

@ Classes: units of code
@ Inheritance: code re-use
@ Concurrency: multi-threading and active objects
@ Synchronization: locks and monitors
Why important?
@ verification
@ black-box testing

@ compositionality, replacement, full abstraction

What are we dealing with?

Effect of facets of object-oriented languages on the observable
behavior of open programs

@ Classes: units of code
@ Inheritance: code re-use
@ Concurrency: multi-threading and active objects
@ Synchronization: locks and monitors
Why important?
@ verification
@ black-box testing
@ compositionality, replacement, full abstraction

— Easy question, difficult answer

— Open semantics.

Notion of observation

public class C { // component
public static void main(String[] arg) {
O x = new O();
x.m(42); // call to the instance of O

}

class O { // external observer
public void m(int x) {

System.out. println (" success”);

}

Open systems

e Component = set of objects + threads “running” in parallel

@ Environment = “context” = "observer”

@ Component and its environment communicate via method
calls.

Characterizing the open semantics

@ “message passing”! framework = the corresponding open
semantics is “traces” as interface interactions (method calls
and returns)

:

G

*no direct access to instance variables

Characterizing the open semantics

o “message passing”! framework = the corresponding open
semantics is “traces” as interface interactions (method calls
and returns)

@ open = environment absent/arbitrary

'no direct access to instance variables

Characterizing the open semantics

@ operational description: assumption/commitment formulation
Ass. b C: Comm. 2 Ass. - C : Comm. (1)
o formal system to characterize interface behavior
A-C:0 3 ArC: o, (2)
@ interaction labels:

v = plcall o(V)) | p(return(v)) | v(n:T), basic labels
a == 79! receive/send lal

Characterizing the observable behavior

@ abstracting away the component, too:
A, ©OF r>t: trace

@ inductive derivation system for legal traces:

check context: A,© F a
update context: A,© = A,0 + a
A,©Frap t:trace other conditions

A,©OFr> at: trace

Classes?

what is the semantical import of classes?

interface separates observer and component classes
instantiation requests as interface interaction

class = generators of object (via new)?

©o0 ! e

abstraction of the heap topology

2Classes in Java or C* serve also as kind of types, and furthermore for
inheritance. We ignore that mostly here.

Cross-border instantiation & heap abstraction

Theta Delta

Heap separation

@ heap is separated in component and environment part:

Thela

Cexlla

Dynamic heap abstraction example

The=La, [re=lla,
¢l I 2
al
v a5 a2

ol

Dynamic heap abstraction: example

The=La, [re=lla,

¢l I 2

ol

at
2] a6 ¥

Dynamic heap abstraction: example
Thela Della

el cd o)
al

v a5 a2
al

ol a6 v
3'34 o

Dynamic heap abstraction: example

The=La, [re=lla,

¢l I 2

az
] afy

Dynamic heap abstraction: example

The=La, [re=lla,

¢l I 2

az
] afy

Cross-border inheritance

Comp. : Env. Comp. : Env.

Comp. . Env.

Consequences of inheritance

Separation in component & environment class + cross-border
inheritance

)

@ self-calls observable.
@ abstraction of the heap topology
© State of an object is split into two halves.

Synchronization

@ shared (instance) state + concurrency = mutex
@ sync. mechanism: monitors
e for instance in Java

@ but: re-entrant monitors (recursion)

What changes?

e Now:

The addition of monitors increase or de-
crease the discriminating power?

@ intuitively: 2 plausible answers:

What changes?

e Now:

The addition of monitors increase or de-
crease the discriminating power?

@ intuitively: 2 plausible answers:
o the observer sees less!

What changes?

o Now:

The addition of monitors increase or de-
crease the discriminating power?

@ intuitively: 2 plausible answers:

o the observer sees less!
o the observer sees more!

Example

@ 2 calls, competing for the same (component) lock
@ data dependence

o 0 received by the first call (of np)
e returned by second thread 1, afterwards
e note: o' is new

Tes , Des

v

@ question: is that trace possible?

Example

@ 2 calls, competing for the same (component) lock
@ data dependence
o 0 received by the first call (of ny)

e returned by second thread 7, afterwards
o note: o' is new

Ya?! Ve ! ’Yél! Vry! =

(vo':c)n(call 0.1(0"))? nalcall 0.1())7 ny{call 6.1())! ny(return(o’))!

@ question: /s that trace possible?

Example

Ya? V! Vo' V! =

(vo':c)m(call 0.1(0"))? nolcall 0.1())7 ny{call 6.1())! na(return(o’))!

@ question: is that trace possible?
@ the answer is no!
e data: “n; before ny"

@ monitors:

o the outgoing call of n; shows that n; must have the lock now
= np cannot have it now: =

“ny before ny”

Example

Ya? Y ! Vo' ! =

(vo':c)ni(call 0.1(0"))? nolcall 0.1())7 ny{call 6.1())! ny(return(o’))!

@ question: /s that trace possible?

Yo Ve !

)

Note: non-atomic lock-grabbing = no order!

Example

Ya! Ve ! 721 Ly, =

(vo':c)ni(call 0.1(0"))? nolcall 0.1())7 ny{call 6.1())! ny(return(o’))!

@ question: is that trace possible?

’761 ? chz ?

lm

.

Ve

®3)

Note: there is no order between events of ny and ny!

Example

Ya?! Ve ! 'Yél! Vr,! =

(vo':c)ni(call 0.1(0"))? nalcall 0.1())7 ny{call 6.1())! ny(return(o’))!

@ question: /s that trace possible?

Yer? Ver?

Note:

e data dependence because of o

Active object

@ active objects

e aynchronous method calls = each method call = new thread
@ no re-entrance
e unit of “state” = unit of concurrency

@ lock state not observable
@ observable semantics much easier

@ better compositionality

Conclusions

@ Object-orientation and modularity.
e Concurrency.

@ Synchronization.

References |

[Abrahém et al., 2008a] Abraham, E., Griiner, A., and Steffen, M. (2008a).
Abstract interface behavior of object-oriented languages with monitors.
Theory of Computing Systems, 43(3-4):322-361 (40 pages).

[Abraha’m et al., 2008b] Abraham, E., Griiner, A., and Steffen, M. (2008b).
Heap-abstraction for an object-oriented calculus with thread classes.
Journal of Software and Systems Modelling (SoSyM), 7(2):177-208 (32 pages).
[Steffen, 2006] Steffen, M. (2006).
Object-Connectivity and Observability for Class-Based, Object-Oriented Languages.
Habilitation thesis, Technische Faktultdt der Christian-Albrechts-Universitat zu Kiel
281 pages.

	Introduction
	Basic concepts and ideas
	Concurrency and locks

	Conclusion

