Polymorphic Behavioural Lock Effects for
Deadlock Checking

Ka | Violet Pun, Martin Steffen, Volker Stolz

PMA Group, University of Oslo, Norway

The 23" Nordic Workshop for Programming Theory - NWPT '11
Vasteras, Sweden

26th ~ 28th October, 2011

http://www.uio.no

Overview

e Find potential deadlocks in programs statically
by detecting cyclic wait
e Each of two or more processes, which form a circular chain,
wait for a shared resource that is held by the next process in
the chain.
e Shared resources here: locks

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 2/15

Overview

o Capture abstract behaviour as effects with a type and effect
system

@ Use program points 7, to characterize locks according to their
origin

@ Execute the abstract behaviour to detect deadlock

@ Limit potential infinite state space by:

e Put an upper bound for reentrant lock counter
o Transform effects into coarser, tail-recursive effect
e Don't allow recursive thread/lock creation

@ Prove deadlock presrvation by defining a Deadlock and
Termination Sensitive Simulation

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 3/15

Syntax

m= stop| v |letx:T =eint

e »= t | vv |if etheneelsee |spawnt
| mnewl | v.lock| v.unlock
v = x|/ |fax:T.t |fun - T.x:T.t

Sequential composition e;; ey is represented by let-construct

let x:T = e inep x ¢ fv(e)

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 4/15

Syntax

m= stop| v |letx:T =eint

e »= t | vv |if etheneelsee |spawnt
| mnewl | v.lock| v.unlock
v = x|/ |fax:T.t |fun - T.x:T.t

Sequential composition e;; ey is represented by let-construct
let x:T = e inep x ¢ fv(e)

Dining Philosophers

let 11 = newyn, L, 12 = newy, L, 13 = newyr, L,
14 = newg, L, 15 = newgy, L in
let grab = fn:LXL—L. (1, r). 1l.lock; r.lock in
let release = fn:LXL—L. (1, r). l.unlock; r.unlock in

let phil = fun PHIL:LXL—L.(1l, r). think; grab(l, r);
eat; release(l, r); PHIL (1, r) in
spawn (phil(17,12));...;spawn(phil(1l5,171))

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking

4/15

Operational semantics

P:=0| p(t) | P||P (Processes)
ok P — o'+ P with o:Lw— {free,p(n)} (Configuration)

An example run:

‘D - p0<t> — ... [/1 — pl(l), /2 — po(l)] = p1</2. 10Ck> || p0</1. 10Ck>

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 5/15

Circular Wait

Definition (Waiting for a lock)

Given a configuration o - P,

waits(o = P, p, 1)

p{l.1ock)
St

if it is not the case that o - P , and furthermore there

p{l.Lock)
_

exists a ¢’ s.t. o' - P o+ P

Definition (Deadlock)

A configuration o = P is deadlocked if o(l;) = p;(n;) and
furthermore waits(o - P, pi, li4,1)
(where k > 2 and for all 0 < i < k —1).

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking

6/15

K. Pun, M. Steffen, V. Stolz

start - start -

L™ lock L™ lock

O+

L™ lock L™

o
]
w

Figure: Deadlock

Figure: Wait-for graph

Polymorphic Behavioural Lock Effects for Deadlock Checking

7/15

Type and Effect System

The judgment of our type and effect system is given by:
lFe: T

Types and effects are described by:

U = Bool|Int| L"| Thread basic types
T = U|USU | YoT types
rou= 7o location annotations

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 8/15

Type and Effect System

The judgment of our type and effect system is given by:
N-e: Ty

Types and effects are described by:

U = Bool|Int| L"| Thread basic types

T == U | USU | VoT types

rou= 7o location annotations
d = 0] plp) | @@ effects (global)

a u= spawng | vL" | L".lock| L".unlock labels/basic effects
a = alrT transition labels

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 8/15

Type and Effect System

The judgment of our type and effect system is given by:
N-e: Ty

Types and effects are described by:

U = Bool|Int| L"| Thread basic types

T == U | USU | VoT types

rou= 7o location annotations
d = 0] plp) | @@ effects (global)

o = €| X | oo | et | recXep | a effects (local)

a u= spawng | vL" | L".lock| L".unlock labels/basic effects
a = alrT transition labels

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 8/15

Deadlock Checking

To detect a deadlock in a program, we execute the abstract
behaviour of the program. In our example:

let 13 = newy, L, 12 = newgyg, L, 13 = newgp L,
14 = newg, L, 15 = newgygy L in
let grab = fn:LXL—L. (1, r). 1l.lock; r.lock in
let release = fn:LXL—L. (1, r). l.unlock; r.unlock in

let phil = fun PHIL:LXL—L.(1, r). think; grab(l, r);
eat; release(l, r); PHIL (1, r) in
spawn (phil (17,12));...;spawn(phil(1l5,17))

We have the effect:

vL™; ..., vL™; spawn (@p(m1,m2)); . . . ; spawn (@p(7s, m1))

©p(01,02) = rec X. think; L2 .lock; L%.1lock; eat;
L% unlock; L¢.unlock; X

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 9/15

Deadlock Checking

0F p(UL™L. . L™ spawn (pp(my, m2))i - - - s spawm (pp(ms, mp))) 2T,
[7y +— free] ... [w5 — free] - p(spawn (@p(71, 72)); . . . spawn (@p(ms, 71))) M»

[71 v free] . . . [m5 — free] - p1(L™1.1lock; L™2.lock; L™1. unlock; L™2. unlock;
rec X.L™1.lock;...) || ... ||

ps(L™5. lock; L™1. lock; L”™5. unlock; L™ 1. unlock;

L™1 lock
rec X.L™5.lock; . . .) (LT ock)

[71 — p1(1)][m2 — p2(2)] . . . [w5 +— p5(1)] F p1{L™2.lock; L™1. unlock; L™2. unlock;
rec X.L™1.lock;...) || ... ||
ps(L71.lock; L™5. unlock; L™ 1. unlock;

L™2 lock
rec X.L™5.1ock; . . .) ;u

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 9/15

Deadlock and termination sensitive simulation <P /<DPT

o1 ®1 —R— o F ®y
hp(ﬂ =/p(7)
oLF®, R oy B

(2)

o1F P —R— o Py
hﬂp(L"flocm

v
oy =) oh = D

(c)

—p(L™ lock)

o1 ®1 —R— o Py

‘P(a> p(a)
v

oL F) R oD

(b)

o1F®P1 —R— oo Oy
hp(%) p{V)

o F®, R ok @)

(d)

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 10 / 15

Infinite State Space

Two sources of infinity

@ Unboundedness of reentrant lock counters

@ Unboundedness of the “control stack” of non-tail recursive
behaviour descriptions

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 11 /15

Lock Counters Abstraction

Problem in state space:

Unbounded lock counters counting uuuuuuupppppp
(with recursion). ..

Solution:

Fix upper bound; unlocking from upper bound becomes
non-deterministic.

Lemma

Given a configuration o - ®, and let further denote o1 ™ & and
oo ™ © the corresponding configurations under the lock-counter
abstraction. If ny > ny, then oy F™ & <P gy -7 &.

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 12 /15

Random Behaviour 2

Assume @ over a set of locations r, then o - p(p) <PT o F p(Q)
h

[m]

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking

=

DA

13 /15

Theorem (Finite abstractions)

The lock counter abstraction and behavior abstraction (when
abstracting all locks and recursions) results in a finite state space.

Theorem (Soundness of the abstraction)

Given T+ P : ok :: ® and two heaps o1 = 0». Further, o) - &' is
obtained by lock-counter resp. behavior abstraction of o - ®.
Then if o, - & is deadlock free then so is o1 + P.

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 14 / 15

Summary

@ Conclusion:

o We have proven that our type systems is correct in the aspect
of capturing behavior of a program

e Abstract behavior correctly over-approximates the concrete one

e Deadlocks in a program are correctly detected in the abstract
run. ..

o Inference algorithm is partially formalized with Ott and Coq

o Future Work:

Applying to communication analysis of asynchronous systems
Relaxing the condition (e.g. lock creation in loop)
Abstracting processes

Implement our algorithm with model checker for real language
CEGAR - Counter-Example Guided Abstraction Refinement

K. Pun, M. Steffen, V. Stolz Polymorphic Behavioural Lock Effects for Deadlock Checking 15 / 15

	Introduction
	Syntax and Semantics
	Type and Effect System
	Abstract Behaviour
	Summary

