Inheritance and Observability

Erika Abrahém, Mai Thuong Tran, and Martin Steffen

RWTH Aachen, Germany and University of Oslo, Norway

Nordic Workshop on Programming Theory, NWPT2011,
Visteras, Sweden, October 26-28, 2011

What are we dealing with?

@ Class-based object-oriented multi-threaded programming
languages with inheritance

What are we dealing with?

@ Class-based object-oriented multi-threaded programming
languages with inheritance

What's the observable behavior of open programs in
the presence of inheritance?

What are we dealing with?

@ Class-based object-oriented multi-threaded programming
languages with inheritance

What's the observable behavior of open programs in
the presence of inheritance?

@ Why important?
o verification
@ black-box testing
e compositionality, replacement, full abstraction

What are we dealing with?

@ Class-based object-oriented multi-threaded programming
languages with inheritance

What's the observable behavior of open programs in
the presence of inheritance?

@ Why important?
o verification
@ black-box testing
e compositionality, replacement, full abstraction

— Easy question, difficult answer
— Open semantics.

Notion of observation

public class C { // component
public static void main(String[] arg) {
O x = new O();
x.m(42); // call to the instance of O

}

class O { // external observer
public void m(int x) {

System.out. println (" success”);

}

Open systems

@ Component = set of objects + threads “running” in parallel

@ Environment = “context” = “observer”

@ Component and its environment communicate via
asynchronous method calls.

Characterizing the open semantics

= Corresponding semantics is “traces” as interface interactions
(messages, method calls and returns)

4

Characterizing the open semantics

® “message passing”! framework = in first approx.: semantics
= message interchange at the interface

@ open = environment absent/arbitrary

E

El

= does this mean: environment behavior arbitrary/chaotic?

no direct access to instance variables

Characterizing the open semantics

® “message passing”! framework = in first approx.: semantics
= message interchange at the interface

@ open = environment absent/arbitrary

E @ Assumptions

t t

E’ @ Assumptions’

= does this mean: environment behavior arbitrary/chaotic?

no direct access to instance variables

Characterizing the open semantics

@ well, depends ...

@ does “arbitrary trace” mean € Label* ?

@ we know C || E is a program of the language
@ well-formed
o well-typed
o class-structured with inheritance
@ ultimately: proof of completeness is constructive
¢ = formalization of “legal” traces

@ = constructive part: definability: given a trace, program a
component that realizes “exactly” this trace.

Open semantics

@ operational description:
@ assumption/commitment formulation
o Ass. C: Comm. 2 Ass. + € : Comm.

@ interface: 2 orthogonal abstractions:

@ static abstraction: type system
¢ dynamic abstraction of heap topology:

The influence of inheritance

What is the semantical import of classes and inheritance?

@ Interface separates component and observer classes
o Classes are generators of object (via new)

@ Component classes inherit from environment classes and vice
versa.

= instantiation and inheritance as interface interaction

Dynamic heap abstraction example

Component

P

Environment

C

o1 creates op
o1 calls 0p.m()

01

Dynamic heap abstraction: example

Component Environment

P : C . |

: 01 creates 0y
v o1 calls 0p.m()

01 Creates 03 ‘
o1 o1 calls 03.m() v

Dynamic heap abstraction: example

Component Environment

P : C |

: 01 creates oy
v op calls 0p.m()

01 creates 03 ‘
o1 o1 calls 03.m() v

03 returns o,

0> and o3 cannot “know” each other!

Dynamic heap abstraction: example

Component Environment

P : C

: 01 creates oy
v op calls 0p.m()

01 creates o3

- - I
01 o1 calls o3.m’'(07) merging:

o3 returns op

Dynamic heap abstraction: example

Component Environment

P : C

: 01 creates oy
v op calls 0p.m()

01 creates o3 :
merging!
ging oV

H

o1 o1 calls o3.m’(02)

0o returns o3

Observability of self-calls

@ general intuition: “cross-border” interaction =
interface-interaction

o self-calls: become observable
o cf. also [Viswanathan, 1998]

Cross-border inheritance

Comp. 5 Env. Comp. 5 Env.
exténds
; ;

Comp. 5 Env.

exténds

Cross-border inheritance and heap abstraction

Comp. . Env

Comp. . Env Comp. . Env

extends-C exte/ndsn

Cc fields * Cg fields

Consequences of inheritance

@ separation in component and environment class and
cross-border inheritance
— self-calls observable.
= abstraction of the heap topology
— State of an object is split into two halves.

Formal framework: object calculus

@ Types and classes:
@ statically typed, only well-typed components are considered
@ classes play role of types and generators of objects
@ single inheritance
@ Concurrency: based on active objects/asynchronous method
calls
@ References:
@ objects and threads have unique names, i.e. identities
@ new objects dynamically allocated on the heap

@ Fields are private

Grammar

o+ =3I TMTON

0| CllCly(n:T).C|n[O]]nlO,L]]|n(t)

n,M,F
I=m,...;l=m
I=f .. I=f
s(mT)A(x:T,...,x:T).t
v| Ly

v |stop |letx:T =eint
t|if v=vtheneelsee | if undef(v.I()) then eelse e
n@I(V) | v.I() | v.I() :==v

new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

x[n|()
LT

component
object
method suite
fields
method

field

thread

expr.

values
lock status

Open semantics and heap abstraction

@ Exact interface behavior
= Abstraction of the heap topology necessary

@ Keep track of “who has been told what":
N, EpAFHC:0;E

@ Assumption context: Eax € A x A = pairs of objects
o Written 01 — 05 :

@ Worst case: equational theory implied by Ea

01,00 € A Ertb o0 = 0

Operational semantics and heap abstraction

® as a labeled transition system

@ Judgments of the form:

N EAFC:0O:Eg or short =+-C

A and © are name contexts
Ea and Eg connectivity contexts

External steps

For interaction labels:

v == p{call 0.1(V)) | p(get(v)) | v(n:T), basic labels
a = ~7|~4! receive and send labels

External steps: change of assumption/commitment
contexts

o E.g., sending 0; to 0y, adds 0y < 07 to the equations
@ outgoing call
o a=n{call 0p.1(01))!

AEAFC: 0 Eg —2 A Ea-C:6:Es

@ assumption update: E_A = Exr+ 00— 01. We can have
definition of assumption update here, similarly for name
context check.

External steps: change of assumption/commitment
contexts

o E.g., sending 0; to 0y, adds 0y < 07 to the equations
@ outgoing call
o a=n{call 0p.1(01))!

AEAFC: 0 Eg —2 A Ea-C:6:Es

@ assumption update: E_A = Exr+ 00— 01. We can have
definition of assumption update here, similarly for name
context check.

@ incoming call
e a=n(call 02.1(01))?
AEAFC:0E0 —— AEa-C: 6,k

@ assumption check: Ex F 0 — 03

Some of the external steps

a = p(call 0.I(V))? =t a

+a

=k C | ofe,M,F,1] & =+ C| plletx:T = M.I(0)(V)in release(o); x) || o[c, M, F,

Some of the external steps

a = p(call 0.I(V))? =t a

+a

=k C | ofe,M,F,1] & =+ C| plletx:T = M.I(0)(V)in release(o); x) || o[c, M, F,

Simplified rule for incoming call
a = n{call o,.1(V))?
check context: =Fa
update contexts: ===+ a
semantic step (as in local semantics): from C to C

=+Cc3=z=+¢

CALLI

putting it together: legal traces

o formal system to characterize interface behavior
@ judgment:
=k as: trace

@ “after a and with assumption/commitment-contexts =, the
trace s is possible”

putting it together: legal traces

=t e: trace L-EMPTY

a = p(call 0.I(V))? =t a Z==+a =k s trace

L-CALLI
=F as: trace

Results

@ formalization of open (representation-independent) semantics
+ characterization of possible (legal) interface behavior

@ strict separation of assumptions and commitments
@ subject reduction

@ soundness of abstraction.

References |

[Abraham et al., 2008a] Abraham, E., Griiner, A., and Steffen, M. (2008a).
Abstract interface behavior of object-oriented languages with monitors.
Theory of Computing Systems, 43(3-4):322-361 (40 pages).

[Abraham et al., 2008b] Abraham, E., Griiner, A., and Steffen, M. (2008b).
Heap-abstraction for an object-oriented calculus with thread classes.
Journal of Software and Systems Modelling (SoSyM), 7(2):177-208 (32 pages)

[Abrahém et al., 2011] Abraham, E., Mai Thuong Tran, T., and Steffen, M. (2011).
Observable interface behavior and inheritance.
Technical Report 409, University of Oslo, Dept. of Informatics
www.ifi.uio.no/~msteffen/publications.html#techreports

[Steffen, 2006] Steffen, M. (2006).
Object-Connectivity and Observability for Class-Based, Object-Oriented Languages.
Habilitation thesis, Technische Faktultdt der Christian-Albrechts-Universitat zu Kiel.
281 pages.

[Viswanathan, 1998] Viswanathan, R. (1998).
Full abstraction for first-order objects with recursive types and subtyping.
In Proceedings of LICS '98. IEEE, Computer Society Press.

www.ifi.uio.no/~msteffen/publications.html#techreports

	Introduction
	Basic concepts and ideas
	Some inspiration
	Conclusion

