
Inheritance and Observability

Erika Ábrahám, Mai Thuong Tran, and Martin Steffen

RWTH Aachen, Germany and University of Oslo, Norway

Nordic Workshop on Programming Theory, NWPT2011,

Väster̊as, Sweden, October 26-28, 2011

What are we dealing with?

Class-based object-oriented multi-threaded programming
languages with inheritance

What’s the observable behavior of open programs in
the presence of inheritance?

Why important?

verification
black-box testing
compositionality, replacement, full abstraction

=⇒ Easy question, difficult answer

=⇒ Open semantics.

What are we dealing with?

Class-based object-oriented multi-threaded programming
languages with inheritance

What’s the observable behavior of open programs in
the presence of inheritance?

Why important?

verification
black-box testing
compositionality, replacement, full abstraction

=⇒ Easy question, difficult answer

=⇒ Open semantics.

What are we dealing with?

Class-based object-oriented multi-threaded programming
languages with inheritance

What’s the observable behavior of open programs in
the presence of inheritance?

Why important?

verification
black-box testing
compositionality, replacement, full abstraction

=⇒ Easy question, difficult answer

=⇒ Open semantics.

What are we dealing with?

Class-based object-oriented multi-threaded programming
languages with inheritance

What’s the observable behavior of open programs in
the presence of inheritance?

Why important?

verification
black-box testing
compositionality, replacement, full abstraction

=⇒ Easy question, difficult answer

=⇒ Open semantics.

Notion of observation

p u b l i c c l a s s C { // component
p u b l i c s t a t i c vo i d main (S t r i n g [] a rg) {

O x = new O() ;
x .m(4 2) ; // c a l l to the i n s t a n c e o f O

}
}

c l a s s O { // e x t e r n a l o b s e r v e r
p u b l i c v o i d m(i n t x) {

. . .
System . out . p r i n t l n (” s u c c e s s ”) ;

}
}

Open systems

Component = set of objects + threads “running” in parallel

Environment = “context” = “observer”

I

n

t

e

r

f

a

c

e

incoming/outgoing calls

C E

Component and its environment communicate via
asynchronous method calls.

Characterizing the open semantics

⇒ Corresponding semantics is “traces” as interface interactions
(messages, method calls and returns)

C

E ′C ′

t t̄

E

Characterizing the open semantics

“message passing”1 framework ⇒ in first approx.: semantics
= message interchange at the interface

open = environment absent/arbitrary

C

C ′

t t̄

E

E ′

⇒ does this mean: environment behavior arbitrary/chaotic?

1no direct access to instance variables

Characterizing the open semantics

“message passing”1 framework ⇒ in first approx.: semantics
= message interchange at the interface

open = environment absent/arbitrary

C

C ′

t t̄

E

E ′

C

C ′

t

Assumptions

Assumptions′

⇒ does this mean: environment behavior arbitrary/chaotic?

1no direct access to instance variables

Characterizing the open semantics

well, depends . . .

does “arbitrary trace” mean ∈ Label∗ ?

we know C ‖ E is a program of the language

well-formed
well-typed
class-structured with inheritance

ultimately: proof of completeness is constructive

⇒ formalization of “legal” traces
⇒ constructive part: definability: given a trace, program a

component that realizes “exactly” this trace.

Open semantics

operational description:

assumption/commitment formulation

Ass. ⊢ C : Comm.
a
−→ ´Ass. ⊢ Ć : ´Comm.

interface: 2 orthogonal abstractions:

static abstraction: type system
dynamic abstraction of heap topology:

The influence of inheritance

What is the semantical import of classes and inheritance?

Interface separates component and observer classes

Classes are generators of object (via new)

Component classes inherit from environment classes and vice
versa.

⇒ instantiation and inheritance as interface interaction

Dynamic heap abstraction example

EnvironmentComponent

o1

P

o2

C

o1 creates o2

o1 calls o2.m()

Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m()

Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m()

o3 returns o2

o2 and o3 cannot “know” each other!

Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m
′(o2)

o3 returns o2

merging!

Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m
′(o2)

o2 returns o3

merging!

Observability of self-calls

general intuition: “cross-border” interaction ⇒
interface-interaction

self-calls: become observable

cf. also [Viswanathan, 1998]

Cross-border inheritance

Comp. Env.
CC CE

mC

mE

oE !mE

Comp. Env.

CC

CEextends

mC

mE

oE !mE

Comp. Env.

CC

CEextends

mC

mE

mE

self!mE

Cross-border inheritance and heap abstraction

Comp. Env.

CC

CE
extends

newCC

CC fields CE fields

Comp. Env.

CC

CE
extends

newCC

newCC

o1

o2

Comp. Env.

CC
CE

extends

o1.set(o2)

o1

o2

Comp. Env.

CC
CE

extends

o1.set(o2)

o1

o2

Consequences of inheritance

separation in component and environment class and
cross-border inheritance

=⇒ self-calls observable.
=⇒ abstraction of the heap topology
=⇒ State of an object is split into two halves.

Formal framework: object calculus

Types and classes:

statically typed, only well-typed components are considered
classes play role of types and generators of objects
single inheritance

Concurrency: based on active objects/asynchronous method
calls

References:

objects and threads have unique names, i.e. identities
new objects dynamically allocated on the heap

Fields are private

Grammar

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[O, L] | n〈t〉 component

O ::= n, M, F object
M ::= l = m, . . . , l = m method suite
F ::= l = f , . . . , l = f fields
m ::= ς(n:T).λ(x :T , . . . , x :T).t method
f ::= v | ⊥n′ field
t ::= v | stop | let x :T = e in t thread
e ::= t | if v = v then e else e | if undef (v .l()) then e else e expr.

| n@l(~v) | v .l() | v .l() := v

| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | ⊤ lock status

Open semantics and heap abstraction

Exact interface behavior

⇒ Abstraction of the heap topology necessary

Keep track of “who has been told what”:

∆;E∆ ⊢ C : Θ;EΘ

Assumption context: E∆ ⊆ ∆ × ∆ = pairs of objects

Written o1 →֒ o2 :

Worst case: equational theory implied by E∆

o1, o2 ∈ ∆ : E∆ ⊢ o1 ⇌ o2

Operational semantics and heap abstraction

as a labeled transition system

Judgments of the form:

∆;E∆ ⊢ C : Θ;EΘ or short Ξ ⊢ C

∆ and Θ are name contexts

E∆ and EΘ connectivity contexts

External steps

For interaction labels:

γ ::= p〈call o.l(~v)〉 | p〈get(v)〉 | ν(n:T)o basic labels
a ::= γ? | γ! receive and send labels

External steps: change of assumption/commitment
contexts

E.g., sending o1 to o2, adds o2 →֒ o1 to the equations

outgoing call

a = n〈call o2.l(o1)〉!

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

assumption update: É∆ = E∆ + o2 →֒ o1. We can have
definition of assumption update here, similarly for name
context check.

incoming call

a = n〈call o2.l(o1)〉?

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

assumption check: E∆ ⊢ o2 →֒ o1

External steps: change of assumption/commitment
contexts

E.g., sending o1 to o2, adds o2 →֒ o1 to the equations

outgoing call

a = n〈call o2.l(o1)〉!

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

assumption update: É∆ = E∆ + o2 →֒ o1. We can have
definition of assumption update here, similarly for name
context check.

incoming call

a = n〈call o2.l(o1)〉?

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

assumption check: E∆ ⊢ o2 →֒ o1

Some of the external steps

a = p〈call o.l(~v)〉? Ξ ⊢ a Ξ́ = Ξ + a

Ξ ⊢ C ‖ o[c, M, F ,⊥]
a
−→ Ξ́ ⊢ C ‖ p〈let x :T = M.l(o)(~v) in release(o); x〉 ‖ o[c, M,F ,⊤

Simplified rule for incoming call

a = n〈call or .l(~v)〉?
check context: Ξ ⊢ a

update contexts: Ξ́ = Ξ + a

semantic step (as in local semantics): from C to Ć
CallI

Ξ ⊢ C
a
−→ Ξ́ ⊢ Ć

Some of the external steps

a = p〈call o.l(~v)〉? Ξ ⊢ a Ξ́ = Ξ + a

Ξ ⊢ C ‖ o[c, M, F ,⊥]
a
−→ Ξ́ ⊢ C ‖ p〈let x :T = M.l(o)(~v) in release(o); x〉 ‖ o[c, M,F ,⊤

Simplified rule for incoming call

a = n〈call or .l(~v)〉?
check context: Ξ ⊢ a

update contexts: Ξ́ = Ξ + a

semantic step (as in local semantics): from C to Ć
CallI

Ξ ⊢ C
a
−→ Ξ́ ⊢ Ć

putting it together: legal traces

formal system to characterize interface behavior

judgment:

Ξ ⊢ a s : trace

“after a and with assumption/commitment-contexts Ξ, the
trace s is possible”

putting it together: legal traces

Ξ ⊢ ǫ : trace L-Empty

a = p〈call o.l(~v)〉? Ξ ⊢ a Ξ́ = Ξ + a Ξ́ ⊢ s : trace
L-CallI

Ξ ⊢ a s : trace

Results

formalization of open (representation-independent) semantics
+ characterization of possible (legal) interface behavior

strict separation of assumptions and commitments

subject reduction

soundness of abstraction.

References I

[Ábrahám et al., 2008a] Ábrahám, E., Grüner, A., and Steffen, M. (2008a).
Abstract interface behavior of object-oriented languages with monitors.
Theory of Computing Systems, 43(3-4):322–361 (40 pages).

[Ábrahám et al., 2008b] Ábrahám, E., Grüner, A., and Steffen, M. (2008b).
Heap-abstraction for an object-oriented calculus with thread classes.
Journal of Software and Systems Modelling (SoSyM), 7(2):177–208 (32 pages).

[Ábrahám et al., 2011] Ábrahám, E., Mai Thuong Tran, T., and Steffen, M. (2011).
Observable interface behavior and inheritance.
Technical Report 409, University of Oslo, Dept. of Informatics.
www.ifi.uio.no/~msteffen/publications.html#techreports .

[Steffen, 2006] Steffen, M. (2006).
Object-Connectivity and Observability for Class-Based, Object-Oriented Languages.
Habilitation thesis, Technische Faktultät der Christian-Albrechts-Universität zu Kiel.
281 pages.

[Viswanathan, 1998] Viswanathan, R. (1998).
Full abstraction for first-order objects with recursive types and subtyping.
In Proceedings of LICS ’98. IEEE, Computer Society Press.

www.ifi.uio.no/~msteffen/publications.html#techreports

	Introduction
	Basic concepts and ideas
	Some inspiration
	Conclusion

