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Motivation

In concurrent programs, locks are commonly used to avoid simultaneous access to shared resources.
A deadlock occurs when multiple processes wait for locks in a cycle. The competition between these
processes for the access to shared resources can be interpreted as the race of the last two processes to
close the deadlock cycle.

Instead of developing/using a custom deadlock checker, we can thus use existing race checkers (e.g.
Chord [2] and Goblint [5]) for static race detection after instrumenting a program with suitable shared
variable accesses.

To facilitate the instrumentation, we present a type system which captures so-called second lock
points, a static over-approximation of program points where deadlocks can actually manifest themselves.
This type-information is used to transform the program into its corresponding instrumented version with
conflicting accesses to race variables. We show the soundness of our approach, which is that for a
program with a deadlock, a race analysis will report a race on the transformed program, and that the
transformation preserves deadlocks.

Type System and Transformation

Our type system algorithmically tracks which locks are actually handled in the interactions by annotating
each lock with the corresponding program point π of its creation. Furthermore, it tracks the relative
change to the lock count, denoted as ∆→ ∆′, through each statement. The type system uses constraints
[1, 3] to derive the smallest possible type (in terms of originating locations) for each variable of lock-
type in the program.

The instrumentation transforms the program by comparing the static analysis information with the
desired cycle. The cycle ∆cis expressed in terms of a “ring” of (abstract) processes, each one holding
a particular lock and requesting another one. This corresponds to a deadlock/deadlocked configuration
[4] with a heap σ and processes P where every involved process p has waits(σ ` P, p, l) is blocked on
taking l. (Such a deadlock can occur in various places in a program.)

We call a program location a static second lock point (SLP) for ∆c, where the analysis information
from the type indicates that both the lock “we” are trying to take is involved in the cycle, and we already
hold the corresponding other lock in ∆. As due to the over-approximation of locations a lock-statement
can refer to a set of possible lock locations, instrumentation must occur if any of the potential locks is
involved in the cycle.

The judgement of the type system is given as

Γ ` e : T :: ∆−→ ∆
′;C

which means that the expression e has type T and has the relative change to lock counts from ∆ to ∆′

under the constraint C.
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Below, we show some of the relevant typing rules of our system for a functional language with
locks. Lock creation in rule T-NEWL introduces an abstract location which is henceforth tracked in the
constraints.

Spawning a thread in rule T-SPAWN has no effect on the caller, and the premise of the rule checks
well-typedness of the expression being spawned. Note that for that expression, since it will be executed
in a new thread, all locks are assumed to be initially free (indicated by •).

Rules T-LOCK and T-UNLOCK describe the operations of locking and unlocking, simply counting
up, resp. down the lock counter, setting the post-condition to ∆⊕ρ , resp. ∆	ρ where ⊕ and 	 record
the change for the particular abstract lock. Note that the constraints can be solved after type checking
and before calculating the ∆s.

ρ fresh
T-NEWL

Γ `newπ L : Lρ :: ∆→ ∆;ρ ⊇ {π}

Γ ` e : T̂ :: •→ ∆2;C
T-SPAWN

Γ `spawn e : Thread:: ∆1→ ∆1;C

Γ ` v : Lρ :: ∆1→ ∆1; /0 ∆2 = ∆1⊕ρ

T-LOCK

Γ ` v. lock: Lρ :: ∆1→ ∆2; /0

Γ ` v : Lρ :: ∆1→ ∆1; /0 ∆2 = ∆1	ρ

T-UNLOCK

Γ ` v. unlock : Lρ :: ∆1→ ∆2; /0

Whether or not to prepend a race-variable to a single lock-statement depends on if it is a second
lock point or not.

The number of possible deadlocks does not depend on the number of abstract lock locations occur-
ring in the program: even a single location, i.e. all locks stem from the same new-statement, is sufficient
to form deadlocks of arbitrary length.

The number of introduced race variables increases (by one) for each cycle that we would like to
check for. It is possible to instrument a program for a set of potential cycles without the different race
variables interfering with each other. Alternatively, for scalability it is possible to e.g. parallelize race
checker-runs on programs instrumented for different (sub-sets of) cycles.

We illustrate our approach using the dining philosophers:

l e t l 1 = newπ1 L ; . . . ; l n = newπn L / / c r e a t e a l l l o c k s
p h i l = fun F ( x , y ) . ( x . l o ck ; y . l o ck ;

/∗ t h i n k ∗ /
y . unlock ; x . unlock ; F ( x , y ) )

in spawn ( p h i l ( l1, l2 ) ) ; . . . ; spawn ( p h i l ( ln, l1 ) )

As type for the philosopher-function, we obtain that each of the two arguments of lock-type has type
L{π1,...,πn}, i.e., they may origin from any of the new-statements. As the function is balanced, there is
no relative change, hence the pre-∆ corresponding to the first lock-statement will always be empty.
Thus this statement is correctly never identified as a sSLP. The second lock-statement however will be
instrumented by the transformation, and thus able to trigger a race if accessed simultaneously.

For the fixed dining philosophers, where e.g. the last philosopher accesses the locks in order l1, ln, al-
though the types change for both locks (the first lock-set no longer contains πn, the second no longer π1),
we still obtain the same instrumentation, and hence the same report about races, even though the pro-
gram does not have any concrete deadlock.

Gate locks To increase precision (as a race can be already triggered by just two processes), we add
gate-locks at appropriate places before the shared variable-accesses. This also requires reducing the
amount of code shared between processes, as the transformation needs to be able to create distinct
instrumentations for correlated SLPs. In the above philosophers example, all processes share the same
function definition, so the let has to be pushed into the spawns. This is here already sufficient to
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disentangle the confusion about the origin of the locks in the types. In general though, the introduced
gate locks are necessary to prevent the detection of partial cycles, but leave the overall behaviour with
regard to actual deadlocks unchanged – they only influence how race variables are accessed.

Results
We give a formal description for our type system and prove the soundness of our approach, i.e., a
program with a (potential) deadlock will be reported as having a race in its version instrumented/trans-
formed for that particular cycle. Deadlocks can only occur at static second lock points for each of the
involved processes. The transformation guarantees that each of these SLPs is protected by the same race
variable for that cycle which implies a race between any two of the involved processes.
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