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Abstract. Deadlocks are a common problem in programs with lock-based con-
currency and are hard to avoid or even to detect. One way for deadlock prevention
is to statically analyse the program code to spot sources of potential deadlocks.
We reduce the problem of deadlock checking to race checking, another promi-
nent concurrency-related error for which good (static) checking tools exist. The
transformation uses a type and effect-based static analysis, which analyses the
data flow in connection with lock handling to find out control-points which are
potentially part of a deadlock. These control-points are instrumented appropri-
ately with additional shared variables, i.e., race variables injected for the purpose
of the race analysis. To avoid overly many false positives for deadlock cycles of
length longer than two, the instrumentation is refined by adding “gate locks”. The
type and effect system, and the transformation are formally given. We prove our
analysis sound using a simple, concurrent calculus with re-entrant locks.

1 Introduction

Concurrent programs are notoriously hard to get right and at least two factors contribute
to this fact: Correctness properties of a parallel program are often global in nature, i.e.,
a result from the correct interplay and cooperation of multiple processes. Hence also
violations are non-local, i.e., they cannot typically be attributed to a single line of code.
Secondly, the non-deterministic nature of concurrent executions makes concurrency-
related errors are hard to detect and to reproduce. Since typically the number of different
interleavings is astronomical or infinite, testing will in general not exhaustively cover
all behavior, and errors may remain undetected until the software is in use.

Arguably the two most important and most investigated classes of concurrency er-
rors are data races [2] and deadlocks [9]. A data race is the simultaneous, unprotected
access to mutable shared data with at least one write access. A deadlock occurs when
a number of processes are unable to proceed, when waiting cyclically for each other’s
non-shareable resources without releasing one’s own [7]. Deadlocks and races con-
stitute equally pernicious, but complementary hazards: locks offer protection against
races by ensuring mutually exclusive access, but may lead to deadlocks, especially us-
ing fine-grained locking, or are at least detrimental to the performance of the program
by decreasing the degree of parallelism. Despite that, both share some commonalities,
too: a race, respectively a deadlock, manifests itself in the execution of a concurrent
program, when two processes (for a race) resp. two or more processes (for a deadlock)
reach respective control-points that when reached simultaneously, constitute an unfor-
tunate interaction: in case of a race, a read-write or write-write conflict on a shared
variable, in case of a deadlock, running jointly into a cyclic wait.



In this paper, we define a static analysis for multi-threaded programs which allows
reducing the problem of deadlock checking to race condition checking. The analysis is
based on a type and effect-system which formalizes the data-flow of lock usages and,
in the effects, works with an over-approximation on how often different locks are being
held. The information is used to instrument the program with additional variables to
signal a race at control points that potentially are involved in a deadlock. Despite the fact
that races, in contrast to deadlocks, are a binary global concurrency error in the sense
that only two processes are involved, the instrumentation is not restricted to deadlock
cycles of length two. To avoid raising too many spurious alarms when dealing with
cycles of length > 2, the transformation adds additional locks, to prevent that already
parts of a deadlock cycle give raise to a race, thus falsely or prematurely indicating a
deadlock by a race.

Our approach widens the applicability of freely available state-of-the-art static race
checkers: Goblint[25] for the C language, which is not designed to do any deadlock
checking, will report appropriate data races from programs instrumented through our
transformation, and thus becomes a deadlock checker as well. Chord [20] for Java only
analyses deadlocks of length two for Java’s synchronized construct, but not explicit
locks from java.util.concurrent, yet through our instrumentation reports correspond-
ing races for longer cycles and for deadlocks involving explicit locks.

The remainder of the paper is organised as follows. Section 2 presents syntax and
operational semantics of the calculus. Afterwards, Section 4 formalizes the data flow
analysis in the form of a (constraint-based) effect system. The obtained information is
used in Sections 5 and 6 to instrument the program with race variables and additional
locks. The sections also prove the soundness of the transformation. We conclude in
Section 7 discussing related and future work.

2 Calculus

In this section we present the syntax and (operational) semantics for our calculus, for-
malizing a simple, concurrent language with dynamic thread creation and higher-order
functions. Locks likewise can be created dynamically, they are re-entrant and support
non-lexical use of locking and unlocking. The abstract syntax is given in Table 1. A pro-
gram P consists of a parallel composition of processes p〈t〉, where p identifies the pro-
cess and t is a thread, i.e., the code being executed. The empty program is denoted as /0.
As usual, we assume ‖ to be associative and commutative, with /0 as neutral element. As
for the code we distinguish threads t and expressions e, where t basically is a sequential
composition of expressions. Values are denoted by v, and let x:T = e in t represents
the sequential composition of e followed by t, where the eventual result of e, i.e., once
evaluated to a value, is bound to the local variable x. Expressions, as said, are given by
e, and threads are among possible expressions. Further expressions are function appli-
cation, conditionals, and the spawning of a new thread, written spawn t. The last three
expressions deal with lock handling: new L creates a new lock (initially free) and gives
a reference to it (the L may be seen as a class for locks), and furthermore v.lock and
v.unlock acquires and releases a lock, respectively. Values, i.e., evaluated expressions,
are variables, lock references, and function abstractions, where we use fun f :T1.x:T2.t
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for recursive function definitions. Note that the grammar insists that, e.g., in an appli-
cation, both the function and the arguments are values, analogously when acquiring a
lock, etc. This form of representation is known as a-normal form [15]. Obviously, the
more “general” expressions like e1 e2 or e. lock etc. can straightforwardly be trans-
formed into a-normal form, by adding local variables, in case of the application, e.g.,
by writing let x1 = e1 in (let x2 = e2 in x1 x2). We use this representation to slightly
simplify the formulation of the operational semantics and in particular of the type sys-
tems, without sacrificing expressivity.

P ::= /0 | p〈t〉 | P ‖ P program
t ::= v value
| let x:T = e in t local variables and sequ. composition

e ::= t thread
| v v application
| if v then e else e conditional
| spawn t spawning a thread
| new L lock creation
| v. lock acquiring a lock
| v. unlock releasing a lock

v ::= x variable
| lr lock reference
| true | false truth values
| fn x:T.t function abstraction
| fun f :T.x:T.t recursive function abstraction

Table 1. Abstract syntax

The grammar for types, effects, and annotations is given Table 2, where π represents
labels (used to label program points where locks are created), r represents (finite) sets
of πs, where ρ is a corresponding variable. Labels π are an abstraction of concrete lock
references which exist at run-time (namely all those references created at that program
point) and therefore we refer to labels π as well as lock sets r also as abstract locks.
Types include basic types B such as integers, booleans, etc., left unspecified, function
types T̂1

ϕ−→ T̂2, and in particular lock types L. To capture the data flow concerning locks,
the lock types are annotated with a lock set r, i.e., they are of the form Lr. This informa-
tion will be inferred, and the user, when using types in the program, uses types without
annotations (the “underlying” types). We write T,T1,S′, . . . as meta-variables for the un-
derlying types, and T̂ and its syntactic variants for the annotated types, as given in the
grammar. For the deadlock and race analysis we need not only information which locks
are used where, but also an estimation about the “value” of the lock, i.e., how often the
abstractly represented locks are taken.

Estimation of the lock values, resp. their change is captured in the behavioral effects
ϕ in the form of pre- and post-specifications ∆1 → ∆2. Abstract states (or lock envi-
ronments) ∆ are of the form r0:n0,r1:n1, . . .. The constraint based type system works
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r ::= ρ | {π} | r∪ r lock/label sets
T̂ ::= B | Lr | T̂

ϕ−→ T̂ | types
ϕ ::= ∆ → ∆ effects/pre- and post specification
∆ ::= • | ∆ ,r:n lock env./abstract state
C ::= /0 | ρ ⊇ r, C constraints

Table 2. Types

on lock environments using variables only, i.e., the ∆ are of the form ρ0:n0,ρ1:n1, . . .,
maintaining that each variable occurs at most once. Thus, in the type system, the en-
vironments ∆ are mappings from variables ρ to lock counter values n, where n is an
integer value including ∞, i.e., from Z∞. As for the syntactic representation of those
mappings: we assume that a variable ρ not mentioned in ∆ corresponds to the binding
ρ:0, e.g. in the empty mapping •. Constraints C finally are finite sets of subset inclu-
sions of the form ρ ⊇ r. We assume that the user provides the underlying types, i.e.,
without location and effect annotation, while our type system which is introduced in
Section 4 derives the smallest possible type in terms of originating locations for each
variable of lock-type L in the program.

2.1 Semantics

Next we present the operational semantics, given in the form of a small-step semantics,
distinguishing between local and global steps (cf. Tables 3 and 4). The local semantics
deals with reduction steps of one single thread of the form

t1 −→ t2 . (1)

Rule R-RED is the basic evaluation step which replaces the local variable in the con-
tinuation thread t by the value v (where [v/x] represents capture-avoiding substitution).
The Let-construct generalizes sequential composition and rule R-LET restructures a
nested let-construct expressing associativity of that construct. Thus it corresponds to
transforming (e1; t1); t2 into e1;(t1; t2). Together with the first rule, it assures a deter-
ministic left-to-right evaluation within each thread. The two R-IF-rules cover the two
branches of the conditional and the R-APP-rules deals with function application (of
non-recursive, resp. recursive functions).

The global steps are given in Table 4, formalizing transitions of configurations of
the form σ ` P, i.e., the steps are of the form

σ ` P−→ σ
′ ` P′ , (2)

where P is a program, i.e., the parallel composition of a finite number of threads running
in parallel, and σ is a finite mapping from lock identifiers to the status of each lock
(which can be either free or taken by a thread where a natural number indicates how
often a thread has acquired the lock, modelling re-entrance). Thread-local steps are
lifted to the global level by R-LIFT. Rule R-PAR specifies that the steps of a program
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let x:T = v in t −→ t[v/x] R-RED

let x2:T2 = (let x1:T1 = e1 in t1) in t2 −→ let x1:T1 = e1 in (let x2:T2 = t1 in t2) R-LET

let x:T = if true then e1 else e2 in t −→ let x:T = e1 in t R-IF1

let x:T = if false then e1 else e2 in t −→ let x:T = e2 in t R-IF2

let x:T = (fn x′:T ′.t ′) v in t −→let x:T = t ′[v/x′] in t R-APP1

let x:T = (fun f :T1.x′:T2.t ′) v in t −→ let x:T = t ′[v/x′][fun f :T1.x′:T2.t ′/ f ] in t R-APP2

Table 3. Local steps

consist of the steps of the individual threads, sharing σ . Executing the spawn-expression
creates a new thread with a fresh identity which runs in parallel with the parent thread
(cf. rule R-SPAWN). Globally, the process identifiers are unique; for P1 and P2 to be
composed in parallel, the ‖-operator requires dom(P1) and dom(P2) to be disjoint, which
assures global uniqueness. A new lock is created by new L (cf. rule R-NEWL) which
allocates a fresh lock reference in the heap. Initially, the lock is free. A lock l is acquired
by executing l. lock. There are two situations where that command does not block,
namely the lock is free or it is already held by the requesting process p. The heap update
σ +p l is defined as follows: If σ(l) = free, then σ +p l = σ [l 7→ p(1)] and if σ(l) = p(n),
then σ +p l = σ [l 7→ p(n+1)]. Dually σ −p l is defined as follows: if σ(l) = p(n+1),
then σ −p l = σ [l 7→ p(n)], and if σ(l) = p(1), then σ −p l = σ [l 7→ free]. Unlocking
works correspondingly, i.e., it sets the lock as being free resp. decreases the lock count
by one (cf. rule R-UNLOCK). In the premise of the rules it is checked that the thread
performing the unlocking actually holds the lock.

t1 −→ t2
R-LIFT

σ ` p〈t1〉 −→ σ ` p〈t2〉

σ ` P1 −→ σ ′ ` P′1
R-PAR

σ ` P1 ‖ P2 −→ σ
′ ` P′1 ‖ P2

σ ` p1〈let x:T = spawn t2 in t1〉 −→ σ ` p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉 R-SPAWN

σ ′ = σ [l 7→ free] l is fresh
R-NEWL

σ ` p〈let x:T =new L in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = free∨σ(l) = p(n) σ ′ = σ +p l
R-LOCK

σ ` p〈let x:T = l. lock in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = p(n) σ ′ = σ −p l
R-UNLOCK

σ ` p〈let x:T = l. unlock in t〉 −→ σ
′ ` p〈let x:T = l in t〉

Table 4. Global steps
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To analyze deadlocks and races, we specify which locks are meant statically by
labelling the program points of lock creations with π , i.e., lock creation statements
new L are augmented to newπ L where the annotations π are assumed unique for a given
program. We assume further that the lock references l are also labelled lρ ; the labelling
is done by the type system presented next.

3 Type system

The judgments of the type system are of the following form

C;Γ ` e : T̂ :: ϕ (3)

(where ϕ is of the form ∆1→ ∆2). Equivalently equivalently, we write also C;Γ ;∆1 `
e : T :: ∆2 for the judgment. The judgment expresses that e is of type T̂ , where for
annotated lock types of the form Lr where r expresses the potential points of creation
of the lock. The effect ϕ = ∆1→ ∆2 expresses the change in the lock counters, where
∆1 is the pre-condition and ∆2 the post-condition (in a partial correctness manner). The
types and the effects contain variables ρ and hence the judgement is interpreted relative
to solutions of the set of constraints C.

The rules for the type system are given in Table 5. The type of a variable is de-
termined by its declaration in the context Γ (cf. rule T-VAR) and it has no effect, i.e.,
its pre- and post-condition are identical. As a general observation and as ususal, val-
ues don’t have an effect. Also lock creation in rule T-NEWL does not have an effect.
As for the flow: π labels the point of creation of the lock; hence it must be a con-
sequence of the constraints that π is contained in the annotation ρ of the lock type,
written as C ` ρ ⊇ {π} in the premise of the rule. The case for lock references lρ in
rule T-LREF works analogously, where the constraints ensure that the lock variable
ρ is contained in the annotation ρ ′ of the lock type. For function abstraction in rule
T-ABS1, the premise checks the body e of the function with the typing context appro-
priately extended. Note that in the function definition, the type of the formal parameter
is declared as (un-annotated) type T , the declaration is remembered in the context as
the binding x:dTe. The operation dTe turns all occurrences of lock types L in T into
their annotated counter-parts Lρi . Rule T-ABS2 for recursive functions works similarly,
where the effect ϕ of the body e and coincides with the latent effect assumed for the
binding for function’s recursion variable f in the context for the function body. Note
that the body of the recursive function is checked under the assumption that f , the re-
cursion variable representing the function, has an empty (latent) effect, indicated by the
assumption f :T̂1

ε−→ T̂2. The resulting latent effect of the function then is the fix-point of
the body’s effect ϕ . Given ϕ = ∆1→ ∆2, the “fix-point” fix ϕ is defined as follows: if
ϕ ′ = fix ϕ , then ϕ ′ = •→ ∆ ′2 where ∆ ′2(ρ) = ∞, if (∆2	∆1)(ρ)≥ 1, and ∆ ′2(ρ) = 0,
otherwise (for all ρ). The sum and difference operations on abstract states are defined
in the obvious way, i.e., point-wise (cf. Definition 1).

Definition 1 (Operations on ∆ ). ∆1⊕∆2 is defined point-wise, i.e., for ∆ = ∆1⊕∆2,
we have ∆(ρ) = ∆1(ρ)+∆2(ρ), for all ρ . Remember that, for the syntactic representa-
tion of abstract states, variables which are not mentioned are assumed to be 0, e.g., for
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the “empty” abstract state, •(ρ) = 0 for all ρ . The difference operation ∆1	∆2 is de-
fined analogously using −. Let ϕ = ∆1→ ∆2; then ∆ ⊕ϕ is defined as ∆ ⊕ (∆2	∆1).
We also use ∆ ⊕ ρ as abbreviation for ∆ ⊕ (ρ:1), analogously for ∆ 	 ρ . The order
on abstract states, written ∆1 ≤ ∆2, is defined point-wise. Analogously the least upper
bound ∆1∨∆2 and the greatest lower bound ∆1∧∆2.

Function application is covered in rule T-APP. The typing part checks that the type
T̂ ′2 is a sub-type of the input type as derived in the first premise. As for the effects,
note that the function as well as the argument are both values, hence their effects are
empty and the overall effect of the application is directly the latent effect ϕ of v1.
In the conclusion the pre-condition ∆ is transformed into the post-condition by cal-
culating ∆ ⊕ϕ (see Definition 1). The treatment of conditionals is standard (cf. rule
T-COND), where the resulting type is an upper bound for the types of the two branches.
In a sequential composition (cf. rule T-LET), the post-condition of the first condition
serves as pre-condition of the second. As far as the type is concerned, the (annotated)
type T̂1 as derived for e1 must be compatible with the type T1 as declared. The opera-
tion bT̂1c simply erases all annotations and gives back the corresponding un-annotated
type. Spawning a thread in rule T-SPAWN has no effect, where the premise of the rule
checks well-typedness of the expression being spawned. Note that for that expression,
all locks are assumed to be free, assuming • as pre-condition. The last two rules deal
with locking and unlocking, simply counting up, resp. down the lock counter, setting
the post-condition to ∆ ⊕ρ , resp. ∆ 	ρ (cf. again Definition 1). The last one is the rule
of subsumption, where the order on abstract states is defined in Definition 1.

The typing rules from Table 5 work on the thread local level. Keeping track of the
lock-counter, the problem is basically a single-threaded one, i.e., each thread can be
considered in isolation. This is a consequence of the fact that, even if shared, locks
are obviously protected from interference. For subject reduction later, we also need to
analyse processes running in parallel. The definition is straightforward, since a global
program is well-typed simply if all its threads are. For for one thread, p〈t〉 : p〈ϕk;C〉,
if C ` t : T̂ :: ϕ for some type T̂ (cf. Table 6). We will abbreviate p1〈ϕ1;C1〉 ‖ . . . ‖
pk〈ϕk;Ck〉 by Φ . Note that for a named thread p〈t〉 to be well-typed, the actual type T̂
of t is irrelevant. We assume that the variables used in the constraint sets C1 and C2 are
disjoint, and the same for ϕ1 and ϕ2. Under this assumption ϕ1 ‖ ϕ2 is the independent
combination of ϕ1 and ϕ2, i.e., for ϕ1 = ∆1 −→ ∆ ′1 and ϕ2 = ∆2 −→ ∆ ′2, then their parallel
combination is given by ∆ −→ ∆ ′ with ∆ is the parallel combination of the functions ∆1
and ∆2; analogously for the post-condition. Furthermore, a running thread at the global
level does not contain free variables (as the semantics is based in substitutions; cf. rule
R-RED). Therefore, the premise uses an empty typing context Γ to analyse t.

The constraint sets are solved by (ground) substitutions, i.e., mappings from label
set variables ρ to finite label sets. We write θ |= C if θ is a solution of C. Furthermore
we write C1 |= C2 if θ |= C1 implies θ |= C2, for all ground substitutions θ . For the
simple super-set constraints of the form ρ ⊇ r, constraints always have a unique min-
imal solution. A heap σ satisfies an abstract state ∆ , if ∆ over-approximates the lock
counter for all locks in σ : Assuming that ∆ does not contain any ρ-variables, σ |= ∆

if ∑π∈r σ(lπ) ≤ ∆(r) (for all r in dom(∆)). Given a constraint set C, an abstract state
∆ and a heap σ , we write σ |=C ∆ (“σ satisfies ∆ under the constraints C”), iff θ |= C
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Γ (x) = T̂
T-VAR

C;Γ ` x : T̂ :: ∆ −→ ∆

C ` ρ ⊇ {π}
T-NEWL

C;Γ `newπ L : Lρ :: ∆ → ∆

C ` ρ ′ ⊇ ρ

T-LREF

C;Γ ` lρ : Lρ ′ :: ∆ → ∆

T̂1 = dT1e C;Γ ,x:T̂1 ` e : T̂2 :: ϕ ϕ = • −→ ∆2
T-ABS1

C;Γ ` fn x:T1.e : T̂1
ϕ−→ T̂2 :: ∆1 −→ ∆1

T̂1 = dT1e T̂2 = dT2e C;Γ , f :T̂1
ε−→ T̂2,x:T̂1 ` e : T̂2 :: ϕ ϕ = • −→ ∆2

T-ABS2

C;Γ ` fun f :T1 −→ T2,x:T1.e : T̂1
fix ϕ−−−→ T̂2 :: ∆1 −→ ∆1

C;Γ ` v1 : T̂2
ϕ−→ T̂1 :: ∆ −→ ∆ C;Γ ` v2 : T̂ ′2 :: ∆ −→ ∆ C ` T̂ ′2 ≤ T̂2

T-APP

C;Γ ` v1v2 : T̂1 :: ∆ −→ (∆ ⊕ϕ)

C ` T̂1 ≤ T̂ C ` T̂2 ≤ T̂
C;Γ ` v : Bool:: ∆1 −→ ∆1 C;Γ ` e1 : T̂1 :: ∆1 −→ ∆2 C;Γ ` e2 : T̂2 :: ∆1 −→ ∆2

T-COND

C;Γ ` if v then e1 else e2 : T̂ :: ∆1→ ∆2

C;Γ ` e1 : T̂1 :: ∆1 −→ ∆2 bT̂1c= T1 C;Γ ,x:T̂1 ` e2 : T̂2 :: ∆2 −→ ∆3
T-LET

C;Γ ` let x:T1 = e1 in e2 : T̂2 :: ∆1→ ∆3

C;Γ ` e : T̂ :: •→ ∆2
T-SPAWN

C;Γ `spawn e : Thread:: ∆1→ ∆1

C;Γ ` v : Lρ :: ∆1 −→ ∆1 ∆2 = ∆1⊕ρ

T-LOCK

C;Γ ` v. lock: Lρ :: ∆1 −→ ∆2

C;Γ ` v : Lρ :: ∆1 −→ ∆1 ∆2 = ∆1	ρ

T-UNLOCK

C;Γ ` v. unlock : Lρ :: ∆1→ ∆2

C;Γ ` e : T̂ :: ∆1→ ∆2 ∆ ′1 ≤ ∆1 ∆2 ≤ ∆ ′2
T-SUB

C;Γ ` e : T̂ :: ∆
′
1→ ∆

′
2

Table 5. Type and effect system

C;` t : T̂ :: ϕ

T-THREAD

` p〈t〉 :: p〈ϕ;C〉

` P1 :: Φ1 ` P2 :: Φ2
T-PAR

` P1 ‖ P2 :: Φ1 ‖Φ2

Table 6. Type and effect system

implies σ |= θ∆ , for all θ . A heap σ satisfies a global effect Φ (written σ |= Φ), if
σ |=Ci ∆i for all i≤ k where Φ = σ |= p1〈ϕ1;C1〉 ‖ . . . ‖ pk〈ϕk;Ck〉 and ϕi = ∆i −→ ∆ ′i .

The next lemma expresses that effectively the exact precondtion concerning the
lock-counters is in itself no relevant when specifying the effect of an expression in the
form of a pre/post-specification. The behavior is rather specified by the “difference”
between the pre- and the post-specification.

Lemma 1. If C;∆1 ` e : T̂ :: ∆2, then C;∆1⊕∆ ` e : T̂ :: ∆2⊕∆ .

Proof. By straightforward induction on the derivation. ut
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The ≤-relation on types, capturing the subset relation on lock sets (relative to a
given constraint set C) is defined in Table 7, basically lifting C |=⊆ r over the structure
of the (arrow and lock) types, where C |= r1 ⊆ r2 means that θ |= C implies θr1 ⊆ θr2,
for all ground substitutions θ .

T̂ ≤ T̂ S-REFL
C ` T̂ ′1 ≤ T̂1 C ` T̂2 ≤ T̂ ′2

S-ARROW

C ` T̂1
ϕ−→ T̂2 ≤ T̂ ′1

ϕ ′−→ T̂ ′2

C |= r1 ⊆ r2
S-LOCK

C ` Lr1 ≤ Lr2

Table 7. Subtyping

3.1 Soundness

Next we prove soundness of the analysis wrt. the semantics. The core of the proof is the
preservation of well-typedness under reduction (“subject reduction”). The static analy-
sis does not only derive types (as an abstraction of resulting values) but also effects (in
the form of pre- and post-specification). While types are preserved, we cannot expect
that the effect of an expression, in particular its pre-condition, remains unchanged un-
der reduction. As the pre- and post-conditions specify (upper bounds on) the allowed
lock values, the only steps which change are locking and unlocking steps. To relate
the change of pre-condition with the steps of the system we assume the transitions to
be labelled. Relevant is only the lock set variable ρ; the label π and the actual iden-
tity of the lock are not relevant for the formulation of subject reduction, hence we
do not include that information in the labels here and the steps for lock-taking are
of the form σ1 ` p〈t1〉

p〈ρ.lock〉−−−−→ σ2 ` p〈t2〉; unlocking steps analogously are labelled
by p〈ρ. unlock〉 and all other steps are labelled by τ , denoting internal steps. As a
side remark: as for now, τ steps do not change the σ . Nonetheless, subject reduction in
Lemma 3(1) is formulated in a way that mentions σ2 as a state after the step possibly
different from the state σ1 before the step. If our language featured mutable state (apart
from the lock counters), which we left out as orthogonal for the issues at hand, the
more general formulation would be more adequate. Also later, when introducing race
variables, which are mutable shared variables, τ-steps may change σ , and so we chose
the more general formulation already here, even if strictly speaking not needed yet. The
formulation of subject reduction can be seen as a form of simulation (cf. Figure 1): The
concrete steps of the system —for one process in the formulation of subject reduction—
are (weakly) simulated by changes on the abstract level; weakly, because τ-steps are ig-
nored in the simulation. To make the parallel between simulation and subject reduction
more visible, we write ∆1

ρ.lock−−−→ ∆2 for ∆2 = ∆1⊕ρ (and analogously for unlocking).

Lemma 2 (Subject reduction (local)). Assume C;Γ ` t1 : T̂ :: ∆1 −→ ∆2 and t1
τ−→ t2,

then C;Γ ` t2 : T̂ :: ∆1 −→ ∆2.
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Proof. Straightforward.
ut

Lemma 3 (Subject reduction (global)). Assume Γ ` P ‖ p〈t1〉 :: Φ ‖ p〈∆1→ ∆2;C〉,
and furthermore θ |= C for some ground substitution and σ1 |= θ∆1 and σ1 |= Φ .

1. σ1 ` P ‖ p〈t1〉
p〈τ〉−−→ σ2 ` P ‖ p〈t2〉, then Γ ` P ‖ p〈t2〉 :: Φ ‖ p〈∆1 −→ ∆2;C〉 where

σ2 |= θ∆1 and σ2 |= Φ .

2. σ1 ` P ‖ p〈t1〉
p〈ρ.lock〉−−−−→ σ2 ` P ‖ p〈t2〉, then Γ ` P ‖ p〈t2〉 :: Φ ‖ p〈∆ ′1 −→ ∆2;C〉

where ∆ ′1 = ∆1⊕ρ . Furthermore σ2 |= θ∆ ′1 and σ2 |= Φ .

3. σ1 ` P ‖ p〈t1〉
p〈ρ.unlock〉−−−−−−→ σ2 ` P ‖ p〈t2〉, then Γ ` P ‖ p〈t2〉 :: Φ ‖ p〈∆ ′1 −→ ∆2;C〉

where ∆ ′1 = ∆1	ρ . Furthermore σ2 |= θ∆ ′1 and σ2 |= Φ .

The property of the lemma is shown pictorially in Figure 1.

Proof. We start by observing that we can replace the subsumption rule T-SUB of Ta-
ble 5 by a slightly more restricted formulation, namely disallowing to strengthen the
precondition:

C;Γ ` e : T̂ :: ∆1→ ∆2 ∆2 ≤ ∆ ′2
T-SUB

C;Γ ` e : T̂ :: ∆1→ ∆
′
2

Lemma 1 immediately gives that the alternative formulation is equivalent to the one in
Table 5. In the rest of the proof, we work with this alternative formulation.

Concentrating on a single thread, assume Γ ` p〈t1〉 :: p〈∆1 −→ ∆2;C〉, and further-
more θ |= C1 and σ1 |= θ∆1 . Part 1 for τ-steps follows from Lemma 2.

Part 2, given σ1 ` p〈t1〉
p〈ρ.lock〉−−−−→ σ2 ` p〈t2〉, which can be justified by only R-LOCK

in Table 4:

Case: R-LOCK: σ1 ` p〈let x:T = lρ . lock in t〉 p〈ρ.lock〉−−−−→ σ2 ` p〈let x:T = lρ in t〉
where σ1(l) = free or σ1(l) = p(n) and σ2 = σ1 +p l. The assumption of well-typedness

∆ ∆

σ1 ` p〈t1〉 σ2 ` p〈t2〉

=

p〈τ〉

|= θ |= θ

∆1 ∆ ′1

σ1 ` p〈t1〉 σ2 ` p〈t2〉

ρ. lock

p〈ρ. lock〉

|= θ |= θ

Fig. 1. Subject reduction (case of unlocking analogous)

10



and inverting rules T-THREAD, T-SUB, T-LET, T-LOCK, and T-LREF gives

C ` ρ
′ ⊇ ρ

C;Γ ` lρ : Lρ ′ :: ∆1 −→ ∆1

T-LOCK

C;Γ ` lρ . lock : Lρ ′ :: ∆1 −→ ∆
′′
1 ∆

′′
1 ≤ ∆

′
1

C;Γ ` lρ . lock : Lρ ′ :: ∆1 −→ ∆
′
1 C;Γ ,x:Lρ ′ ` t : T̂ :: ∆

′
1 −→ ∆

′
2

T-LET

C;Γ ` let x:T = lρ . lock in t : T̂ :: ∆1 −→ ∆
′
2 ∆

′
2 ≤ ∆2

T-SUB

C;Γ ` let x:T = lρ . lock in t : Lρ ′ :: ∆1 −→ ∆2

Γ ` p〈let x:T = lρ . lock in t〉 :: p〈∆1 −→ ∆2;C〉

where ∆ ′1 = ∆1⊕ρ ′. For the configuration after the step, applying rules T-LREF, T-LET,
T-SUB and T-THREAD gives:

C ` ρ
′ ⊇ ρ

T-LREF
C;Γ ` lρ : Lρ ′ :: ∆

′
1 −→ ∆

′
1 C;Γ ,x:Lρ ′ ` t : T̂ :: ∆

′
1 −→ ∆

′
2

T-LET
C;Γ `let x:T = lρ in t : Lρ ′ :: ∆

′
1 −→ ∆

′
2 ∆

′
2 ≤ ∆2

T-SUB
C;Γ `let x:T = lρ in t : Lρ ′ :: ∆

′
1 −→ ∆2

Γ ` p〈let x:T = lρ in t〉 :: p〈∆ ′1 −→ ∆2;C〉

Given that σ1 |= θ∆1 and σ2 = σ1 +p l, this together with ∆ ′1 = ∆1⊕ρ ′ and C ` ρ ′ ⊇ ρ

gives σ2 |= ∆ ′1. Since σ2 = σ1 +p l means that process p is holding the lock l, and does
not affect the local states of the other processes, therefore σ2 |= Φ , which concludes the
case.

Part 3 for unlocking works analogously. ut

4 Constraint generation

In this section, we present a variation of the type system from Section 3, instead of
assuming a fixed set of constraints given a priori and checked at appropriate places in
the derivation, constraints are generated (at those places) on the fly. Apart from that, the
formulation is analogous. The judgments of the system are of the form

Γ ` e : T̂ :: ϕ;C , (4)

where ϕ is of the form ∆1→ ∆2. Equivalently, we write also Γ ;∆1 ` e : T :: ∆2;C for the
judgment. The judgment expresses that e is of type T̂ , where for annotated lock types
of the form Lr where r expresses the potential points of creation of the lock. The effect
ϕ = ∆1→ ∆2 expresses the change in the lock counters, where ∆1 is the pre-condition
and ∆2 the post-condition (in a partial correctness manner). The types and the effects
contain variables ρ and hence the judgement is interpreted relative to the solutions of
the set of constraints C. Given Γ and e, the constraint set C is generated during the
derivation. Furthermore, the pre-condition ∆1 is considered as given, whereas ∆2 is
derived.
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The rules for the type system are given in Table 8. The type of a variable is deter-
mined by its declaration in the context Γ (cf. rule TA-VAR), it has no effect, and it does
not generate any constraints. Also lock creation in rule TA-NEWL does not have an ef-
fect. As for the flow: π labels the point of creation of the lock; hence, a new constraint
is generated, requiring ρ ⊇ {π} for the ρ-annotation in the lock type. The case for an-
notated lock references lρ in rule TA-LREF works analogously, where the generated
constraint uses the lock variable ρ instead of the concrete point of creation. For func-
tion abstraction in rule TA-ABS1, the premise checks the body e of the function with
the typing context appropriately extended. Note that in the function definition, the type
of the formal parameter is declared as (un-annotated) type T , the declaration is remem-
bered in the context as the binding x:dTeA. The operation dTeA turns all occurrences
of lock types L in T into their annotated counter-parts Lρi , using fresh variables ρi.
Rule TA-ABS2 for recursive functions works similarly. Note that the body of the recur-
sive function is checked under the assumption that f , the recursion variable represent-
ing the function, has an empty (latent) effect, indicated by the assumption f :T̂1

ε−→ T̂2.
The resulting latent effect of the function then is the fix-point of the body’s effect ϕ .
Given ϕ = ∆1→ ∆2, the “fix-point” fix ϕ is defined as follows: if ϕ ′ = fix ϕ , then
ϕ ′ = •→ ∆ ′2 where ∆ ′2(ρ) = ∞, if (∆2	∆1)(ρ)≥ 1, and ∆ ′2(ρ) = 0, otherwise (for all
ρ). The sum and difference operations on abstract states are defined in the obvious way,
i.e., point-wise (cf. Definition 1).

The rule TA-APP covers the function application. For typing it is required that type
T̂ ′2 is a sub-type of the input type as derived in the first premise, which is added as
a new constraint. The judgement T̂ ′2 ≤ T̂2 ` C in the premises is used to generate (the
minimum amount of) constraints C from requiring the≤ relation between the two types.
The definition is standard (cf. for instance [19]); however, in the higher-order case we
note that latent effects do not play a role in sub-typing. As for the effects, note that the
function as well as the argument are both values, hence their effects are empty and the
overall effect of the application is directly the latent effect ϕ of v1. In the conclusion
the pre-condition ∆ is transformed into the post-condition by calculating ∆ ⊕ϕ . The
treatment of conditionals is standard (cf. rule TA-COND). To assure that the resulting
type is an upper bound for the types of the two branches, two corresponding additional
constraints are generated; note that the post-condition is a least upper bound of the
post-conditions of the two branches. In a sequential composition (cf. rule TA-LET), the
post-condition of the first condition serves as the pre-condition of the second. As far
as the type is concerned, the (annotated) type T̂1 as derived for e1 must be compatible
with the type T1 as declared. The operation bT̂1c simply erases all annotations and gives
back the corresponding un-annotated type. The overall constraints simply combine the
constraints of the sub-expressions. Spawning a thread in rule TA-SPAWN has no effect,
where the premise of the rule checks well-typedness of the thread being spawned. The
last two rules deal with locking and unlocking, simply counting up, resp. down the lock
counter, setting the post-condition to ∆ ⊕ρ , resp. ∆ 	ρ .

The type system is basically a single-threaded analysis. For subject reduction later
and soundness of the analysis, we also need to analyse processes running in parallel.
The definition is straightforward, since a global program is well-typed simply if all its
threads are. For for one thread, p〈t〉 : p〈ϕk;C〉, if ` t : T̂ :: ϕ;C for some type T̂ . We
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Γ (x) = T̂
TA-VAR

Γ ` x : T̂ :: ∆ −→ ∆ ; /0

ρ fresh
TA-NEWL

Γ ` newπ L : Lρ :: ∆ → ∆ ;ρ ⊇ {π}

ρ ′ fresh
TA-LREF

Γ ` lρ : Lρ ′ :: ∆ → ∆ ;ρ
′ ⊇ ρ

Γ ` t : T̂ :: •→ ∆2;C
TA-SPAWN

Γ `spawn t : Thread:: ∆1→ ∆1;C

T̂1 = dT1eA Γ ,x:T̂1 ` e : T̂2 :: ϕ;C ϕ = • −→ ∆2
TA-ABS1

Γ ` fn x:T1.e : T̂1
ϕ−→ T̂2 :: ∆1 −→ ∆1;C

T̂1 = dT1eA T̂2 = dT2eA Γ , f :T̂1
ε−→ T̂2,x:T̂1 ` e : T̂2 :: ϕ;C ϕ = • −→ ∆2

TA-ABS2

Γ ` fun f :T1 −→ T2,x:T1.e : T̂1
fix ϕ−−−→ T̂2 :: ∆1 −→ ∆1;C

Γ ` v1 : T̂2
ϕ−→ T̂1 :: ∆ −→ ∆ ; /0 Γ ` v2 : T̂ ′2 :: ∆ −→ ∆ ; /0 T̂ ′2 ≤ T̂2 `C

TA-APP

Γ ` v1 v2 : T̂1 :: ∆ −→ (∆ ⊕ϕ);C

bT̂1c= bT̂2c= T T̂ = dTeA T̂1 ≤ T̂ `C′1 T̂2 ≤ T̂ `C′2 ∆ ′ = ∆1 ∨∆2

Γ ` v : Bool:: ∆ −→ ∆ ; /0 Γ ` e1 : T̂1 :: ∆ −→ ∆1;C1 Γ ` e2 : T̂2 :: ∆ −→ ∆2;C2
TA-COND

Γ ` if v then e1 else e2 : T̂ :: ∆ → ∆
′;C1 ∪C2 ∪C′1 ∪C′2

Γ ` e : T̂1 :: ∆1 −→ ∆2;C1 bT̂1c= T1 Γ ,x:T̂1 ` t : T̂2 :: ∆2→ ∆3;C2
TA-LET

Γ ` let x:T1 = e in t : T̂2 :: ∆1→ ∆3;C1 ∪C2

Γ ` v : Lρ :: ∆1→ ∆1;C ∆2 = ∆1⊕ρ

TA-LOCK

Γ ` v. lock: Lρ :: ∆1→ ∆2;C

Γ ` v : Lρ :: ∆1→ ∆1;C ∆2 = ∆1	ρ

TA-UNLOCK

Γ ` v. unlock : Lρ :: ∆1→ ∆2;C

Table 8. Constraint based type and effect system

will abbreviate p1〈ϕ1;C1〉 ‖ . . . ‖ pk〈ϕk;Ck〉 by Φ . The rules are shown in Table 9.
Note that for a named thread p〈t〉 to be well-typed, the actual type T̂ of t is irrelevant.
Furthermore, a running thread at the global level does not contain free variables (as the
semantics is based in substitutions; cf. rule R-RED). Therefore, the premise uses an
empty typing context Γ to analyse t.

() ` t : T̂ :: ϕ;C
T-THREAD

` p〈t〉 :: p〈ϕ;C〉

` P1 :: Φ1 ` P2 :: Φ2
T-PAR

` P1 ‖ P2 :: Φ1 ‖Φ2

Table 9. Type and effect system (global)

4.1 Equivalence of the two formulations

Before we connect the static analysis to the operational semantics, proving that it gives a
static over-approximation, we show that the two alternative formulations are equivalent.
Notationally, we refer to judgements and derivations in the system from Section 3 using
`s (for “specification”) and `a for the one where the constraints are generated by `a
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(for “algorithm”). Soundness of `a (wrt. `s) states that everything derivable in the `a-
system is analogously derivable in the original one.

Lemma 4 (Soundness). Given Γ `a t : T̂ :: ∆1 −→ ∆2;C, then C;Γ `s t : T̂ :: ∆1 −→ ∆2.

Proof. We are given a derivation of Γ `a t : T̂ :: ∆1 −→ ∆2;C. The proof proceeds by
straightforward induction on the derivation. The case for variables in rule TA-VAR is
immediate; no constraints are needed for T-VAR. Rules TA-NEWL and TA-LREF gen-
erate the constraint ρ ⊇ {π}, resp. ρ ′ ⊇ ρ , needed in the premise of T-NEWL, resp.
T-LREF. The two rules for function abstraction followed by straightforward induction.
Likewise rule TA-APP, where again the constraint needed in the premise of T-APP is
generated by the rule of the generating system. Also the case for conditionals follows
by straightforward induction. Observe that the least upper bound ∆1 ∨∆2 mentioned
in the premise of TA-COND is an upper bound of ∆1 and ∆2, by using subsumption,
both branches agree on the same post-condition, as required in T-COND. For sequen-
tial composition in rule TA-LET, we get by induction C1;Γ ` e1 : T̂1 :: ∆1 −→ ∆2 and
C2;Γ ,x:T̂1 ` e2 : T̂2 :: ∆2 −→ ∆3 from which the result follows by weakening and T-LET.
The remaining cases follow by straightforward induction. ut

Completeness is the inverse; in general we cannot expect that the constraints gener-
ated by `a are the ones used when assuming a derivation in `s. Since `a generates as
little constraints as possible, the ones given back by `a are weaker, less restrictive than
the ones assumed in `s. An analogous relationship holds for the post-conditions.

Lemma 5 (Completeness). Given C;Γ `s t : T̂ :: ∆1 −→ ∆2, then Γ `a t : T̂ :: ∆1 −→
∆ ′2;C′ where C |= C′ and ∆2 ≤ ∆ ′2.

Proof. Assume C;Γ `s t : T̂ :: ∆1 −→ ∆2. The proof proceeds by induction on the deriva-
tion. The case T-VAR for variables is immediate; note that for the empty set of con-
straint, C |= /0. For lock creation in T-NEWL, we know C ` ρ ⊇ {π} by the premise
of the rule, and thus the case follows by TA-NEWL, with C′ = ρ ⊇ {π}. The case for
TA-LREF works analogously. The two cases for abstraction follow by straightforward
induction. For conditionals,

C ` T̂1 ≤ T̂ C ` T̂2 ≤ T̂
C;Γ `s v : Bool:: ∆ −→ ∆ C;Γ `s e1 : T̂1 :: ∆ −→ ∆ ′ C;Γ `s e2 : T̂2 :: ∆ −→ ∆ ′

C;Γ `s if v then e1 else e2 : T̂ :: ∆ → ∆
′

Using induction on the premises of T-COND gives Γ `a e1 : T̂1 :: ∆ → ∆ ′1;C′1 and
Γ `a e2 : T̂2 :: ∆→∆ ′2;C′2, where ∆ ′1≤∆ ′, ∆ ′2≤∆ ′, and additionally C |=C′1 and C |=C′2.
Having C′′1 and C′′2 given by T̂1 ≤ T̂ `C′′1 and T̂2 ≤ T̂ `C′′2 , we furthermore get C |= C′′1
and C |= C′′2 , which together gives C |= C′1∪C′2∪C′′1 ∪C′′2 . Since ∆1∨∆2 ≤ ∆ ′, we can
conclude with TA-COND:

T̂1 ≤ T̂ `C′′1 T̂2 ≤ T̂ `C′′2
∆ ′ = ∆1∨∆2 Γ `a e1 : T̂1 :: ∆ −→ ∆ ′1;C′1 Γ `a e2 : T̂2 :: ∆ −→ ∆ ′2;C′2

Γ `a if v then e1 else e2 : T̂ :: ∆ → ∆
′;C′1∪C′2∪C′′1 ∪C′′2

The remaining cases are similar. ut

14



4.2 Soundness

Next we carry over subject reduction and soundness of the type system to the algo-
rithmic formulation. We start with subject reduction, which corresponds to Lemma
3 (see also Figure 1). Again we concentrate on the effect part. Since now the type
system calculates the minimal effect, in particular, given a pre-condition, a minimal
post-condition, reduction may lead to an stricter post-condition. Similarly for the set of
constraints.

Lemma 6 (Subject reduction). Assume Γ `a P ‖ p〈t1〉 :: Φ ‖ p〈∆1 → ∆2;C1〉, and
furthermore θ |= C1 for some ground substitution and σ1 |= θ∆1 and σ1 |= Φ .

1. σ1 ` P ‖ p〈t1〉
p〈τ〉−−→ σ2 ` P ‖ p〈t2〉, then Γ `a P ‖ p〈t2〉 :: Φ ‖ p〈∆1 −→ ∆ ′2;C2〉 where

C1 |= C2 and σ2 |= θ∆1 and σ2 |= Φ and furthermore ∆ ′2 ≤ ∆2.

2. σ1 ` P ‖ p〈t1〉
p〈ρ.lock〉−−−−→ σ2 ` P ‖ p〈t2〉, then Γ `a P ‖ p〈t2〉 :: Φ ‖ p〈∆ ′1 −→ ∆ ′2;C2〉

where ∆ ′1 = ∆1⊕ρ . Furthermore C1 |= C2 and σ2 |= θ∆ ′1 and σ2 |= Φ , and further-
more ∆ ′2 ≤ ∆2.

3. σ1 ` P ‖ p〈t1〉
p〈ρ.unlock〉−−−−−−→ σ2 ` P ‖ p〈t2〉, then Γ `a P ‖ p〈t2〉 :: Φ ‖ p〈∆ ′1 −→ ∆ ′2;C2〉

where ∆ ′1 = ∆1	ρ . Furthermore C1 |= C2 and σ2 |= θ∆ ′1 and σ2 |= Φ , and further-
more ∆ ′2 ≤ ∆2.

Proof. Basically a consequence of the corresponding subject reduction Lemma 3 plus
soundness and completeness: We are given Γ `a P ‖ p〈t1〉 :: Φ ‖ p〈∆1→ ∆2;C1〉, which
implies by soundness from Lemma 4 that also Γ `s P ‖ p〈t1〉 :: Φ ‖ p〈∆1→ ∆2;C1〉.

In part 1, the corresponding part of Lemma 3 gives for the configuration after the
step

Γ `s P ‖ p〈t2〉 :: Φ ‖ p〈∆1 −→ ∆2;C1〉 (5)

and furthermore σ2 |= θ∆1 and σ2 |= Φ , as required. Furthermore, derivability of (5)
implies with completeness from Lemma 5 that Γ `a P ‖ p〈t2〉 :: Φ ‖ p〈∆ ′1 −→ ∆ ′2;C2〉,
where C1 |= C2 and ∆ ′2 ≤ ∆2, which discharges two further claims and concludes part 1.
Parts 2 and 3 work analogously. ut

As an immediate consequence, all configurations reachable from a well-typed ini-
tial configuration are well-typed itself. In particular, for all those reachable configura-
tions, the corresponding pre-condition (together with the constraints) is a sound over-
approximation of the actual lock counters in the heap.

Corollary 1 (Soundness of the approximation).

1. If Γ ` t : T̂ :: ∆1 −→ ∆2;C and t −→∗ t ′, then Γ ` t ′ : T̂ :: ∆1 −→ ∆2;C.
2. Let σ0 ` p〈t0〉 be an initial configuration. Assume further Γ ` p〈t0〉 :: p〈∆0→∆2;C〉

and θ |= C and where ∆0 is the empty context. If σ0 ` p〈t0〉 −→∗σ ` P, then Γ ` P ::
Φ , where Φ = p1〈∆1→ ∆ ′1;C1〉 ‖ . . . ‖ pk〈∆k→ ∆ ′k;Ck〉 and where where σ |= θ∆i
(for all i).

Proof. By induction of the number of steps using Lemma 6. Since initially, all locks in
σ0 are free, σ0 |= θ∆0 for all C and all θ |= C. ut
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5 Race variables for deadlock detection

Next we use the information inferred by the type system in the previous section to
locate control points in a program which potentially give raise to a deadlock. Those
points are instrumented appropriately with assignment to additional shared variables,
intended to flag a race. In this way, deadlock detection is reduced to the problem of
race detection. To be able to do so, we slightly need to extend our calculus. The current
formulation does not have shared variables, as irrelevant for the analysis of the program,
which concentrates on the locks. In the following we assume that we have appropriate
syntax for accessing shared variables; we use z,z′,z1, . . . to denote shared variables, to
distinguish them from the let-bound thread-local variables x and their syntactic variants.
For simplicity, we assume that statically and globally given, i.e., we do not introduce
syntax to declare them. Together with the lock references, their values are stored in σ .
To reason about changes to those shared variables, we introduce steps of the form

p〈!z〉−−→
and

p〈?z〉−−→, representing write resp. read access of process p to z. Alternatives to using a
statically given set of shared variables, for instance using dynamically created pointers
to the heaps are equally straightforward to introduce syntactically and semantically,
without changing the overall story.

5.1 Deadlocks and races

We start by formally defining the notion of deadlock used here, which is fairly standard
(see also [22]): a program is deadlocked, if a number of processes are cyclically waiting
for each other’s locks.

Definition 2 (Waiting for a lock). Given a configuration σ ` P, a process p waits for
a lock l in σ ` P, written as waits(σ ` P, p, l), if (1) it is not the case that σ ` P

p〈l.lock〉−−−−→,

and furthermore (2) there exists σ ′ s.t. σ ′ ` P
p〈l.lock〉−−−−→ σ ′′ ` P′. In a situation without (1),

we say that in configuration σ ` P, process p tries for lock l (written tries(σ ` P, p, l)).

Definition 3 (Deadlock). A configuration σ ` P is deadlocked if σ(li) = pi(ni) and
furthermore waits(σ ` P, pi, li+k1) (where k ≥ 2 and for all 0 ≤ i ≤ k− 1). The +k is
meant as addition modulo k. A configuration σ ` P contains a deadlock, if, starting
from σ ` P, a deadlocked configuration is reachable; otherwise it is deadlock free.

Thus, a process can only be deadlocked, i.e., being part of a deadlocked configura-
tion, if p holds at least one lock already, and is waiting for another one. With re-entrant
locks, these two locks must be different. Independent from whether it leads to a dead-
lock or not, we call such a situation —holding a lock and attempting to acquire another
one— a second lock point. More concretely, given a configuration, where we abbreviate
the situation where process p holds lock l1 and tries l2 by slp(σ ` P)l1→l2

p . The abstrac-
tion in the analysis uses program points π to represent concrete locks, and the goal thus
is to detect in an approximate manner cycles using those abstractions π . As stated, a
concrete deadlock involves a cycle of processes and locks. We call an abstract cycle
∆C a sequence of pairs ~p:~π with the interpretation that pi is holding πi and wants πi+1
(modulo the length of the cycle). Next we fix the definition for being a second lock
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point. At run-time a process is at a second lock point simply if it holds a lock and tries
to acquire a another, different one.

Definition 4 (Second lock point (runtime)). A local configuration σ ` p〈t〉 is at a
second point (holding l1 and attempting l2, when specific), written slp(σ ` p〈t〉)l1→l2 ,
if σ(l1) = p(n) and tries(σ ` p〈t〉, l2). Analogously for abstract locks and heaps over
those: slp(σ ` p〈t〉)π1→π2 , if σ(π1) = p(n) and tries(σ ` p〈t〉,π2). Given an abstract
cycle ∆C a local configuration is at a second lock point of ∆C, if slp(σ ` p〈t〉)π1→π2

where, as specified by ∆C, p holds π1 and wants π2. Analogously we write for global
configurations e.g., slp(σ ` P)π1→π2

p , where p is the identity of a thread in P.

Ultimately, the purpose of the static analysis is to derive (an over-approximation of
the) second lock points as a basis to instrument with race variables. The type system
works thread-locally, i.e., it derives potential second lock points per thread. Given a
static thread, i.e., an expression t without run-time syntax, second lock points are con-
trol points where the static analysis derives the danger of attempting a second lock. A
control-point in a thread t corresponds to the occurrence of a sub-expression; we write
t[t ′] to denote the occurrence of t ′ in t. As usual, occurrences are assumed to be unique.

Definition 5 (Second lock point (static)). Given a static thread t0[t], a process iden-
tifier p and ∆0 ` t0 : ∆ , where ∆0 = •. The occurrence of t in t0 is a static slp if:

1. t = let x:L{...,π,...} = v. lock in t ′.
2. ∆1 ` t :: ∆2, for some ∆1 and ∆2, occurs in a sub-derivation of ∆0 ` t0 :: ∆ .
3. there exists π ′ ∈ ∆1 s.t. ∆C ` p has π ′, and ∆C ` p wants π .

Assume further σ0 ` p〈t0〉 −→∗ σ ` p〈t〉. We say σ ` p〈t〉 is at a static second lock
point if t occurs as static second lock point in t0.

Lemma 7 (Static overapproximation of slp’s). Given ∆C and σ ` P be a reachable
configuration where P = P′ ‖ p〈t〉 and where furthermore the initial state of p is p〈t0〉.
If σ ` p〈t〉 is at a dynamic slp (wrt. ∆C), then t is a static slp (wrt. ∆C).

Proof. A direct consequence of soundness of the type system (cf. Corollary 1). ut

Next we define the notion of race. A race manifests itself, if at least two processes
in a configuration attempt to access a shared variables at the same time, where at least
one access is a write-access.

Definition 6 (Race). A configuration σ ` P has a (manifest) race, if σ ` P
p1〈!x〉−−−→, and

σ ` P
p2〈!x〉−−−→ or σ ` P

p2〈?x〉−−−→, for two different p1 and p2. A configuration σ ` P has a
race if a configuration is reachable where a race manifests itself. A program has a race,
if its initial configuration has a race; it is race-free else.

Race variables will be added to a program to assure that, if there is a deadlock,
also a race occurs. More concretely, being based on the result of the static analysis,
appropriate race variables are introduced for each static second lock points, namely
immediately preceding them. Since static lock points over-approximate the dynamic
ones and since being at a dynamic slp is a necessary condition for being involved in a
deadlock, that assures that no deadlock remains undetected when checking for races. In
that way, that the additional variables “protect” the second lock points.
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Definition 7 (Protection). A property ϕ is protected by a variable z starting from
configuration σ ` p〈t〉, if σ ` p〈t〉 −→∗ a−→ σ ′ ` p〈t ′〉 and ϕ(p〈t ′〉) implies that a =!z.
We say, ϕ is protected by z, if it is protected by z starting from an arbitrary configuration.

Protection, as just defined, refers to a property and the execution of a single thread.
For race checking, it must be assured that the local properties are protected by the
same, i.e., shared variable are necessarily and commonly reached. That this is the case
is formulated in the following lemma:

Lemma 8 (Lifting). Assume two processes p1〈t1〉 and p2〈t2〉 and two thread-local
properties ϕ1 and ϕ2 (for p1 and p2, respectively). If ϕ1 is protected by x for p1〈t1〉
and ϕ2 for p2〈t2〉 by the same variable, and a configuration σ ` P with P = p1〈t1〉 ‖
p2〈t2〉 ‖ P′′ is reachable from σ ′ ` P′ such that ϕ1∧ϕ2 holds, then σ ′ ` P′ has a race.

Proof. Straightforward. ut

5.2 Instrumentation

Next we specify how to transform the program by adding race variables. The idea is
simple: each static second lock point, as determined statically by the type system, is in-
strumented by an appropriate race variable, adding it in front of the second lock point.
In general, to try to detect different potential deadlocks at the same time, different race
variables may be added simultaneously (at different points in the program). The follow-
ing definition defines where to add a race variable representing one particular cycle of
locks ∆C. Since the instrumentation is determined by the static type system, one may
combine the derivation of the corresponding lock information by the rules of Table 8
such that the result of the derivation not only derives type and effect information, but
transforms the program at the same time, with judgments of the form Γ `p t B t ′ : T̂ :: ϕ ,
where t is transformed to t ′ in process p. Note that we assume that a solution to the con-
straint set has been determined and applied to the type and the effects. Since the only
control points in need of instrumentation are where a lock is taken, the transforma-
tion for all syntactic constructs is trivial, leaving the expression unchanged, except for
v.lock-expressions, where the additional assignment is added if the condition for static
slp is satisfied (cf. equation (8) from Definition 5).

Definition 8 (Transformation). Given an abstract cycle ∆C. For a process p from that
cycle, the control points instrumented by a !z are defined as follows:

Γ `p v : Lr :: ∆1 −→ ∆1 ∆
′ = ∆1⊕ r π ∈ r π

′ ∈ ∆1 ∆C ` p wants π ∆C ` p has π
′

Γ `p v. lock : Lr :: ∆1 −→ ∆2 Γ ,x:Lr `p t B t ′ : T :: ∆2→ ∆3

Γ `p let x:T = v. lock in t B let x:T = (!z;v. lock) in t ′ : T :: ∆1 −→ ∆3

By construction, the added race variable protects the corresponding static slp, and
thus, ultimately the corresponding dynamic slp’s, as the static ones over-approximate
the dynamic ones.
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Lemma 9 (Race variables protect slp’s). Given a cycle ∆C and a corresponding trans-
formed program. Then all static second lock points in the program are protected by the
race variable (starting from the initial configuration).

Proof. By construction, the transformation syntactically adds the race variable imme-
diately in front of static second lock points. ut

The next lemma shows that there is a race “right in front of” a deadlocked configu-
ration for a transformed program.

Lemma 10. Given an abstract cycle ∆C, and let P0 be a transformed program accord-
ing to Definition 8. If the initial configuration σ0 ` P0 has a deadlock wrt. ∆C, then
σ0 ` P0 has a race.

Proof. By the definition of deadlock (cf. Definition 3), some deadlocked configuration
σ ′ ` P′ is reachable from the initial configuration:

σ0 ` P0 −→∗ σ
′ ` P′ where P′ = . . . pi〈t ′i〉 ‖ . . . ‖ p j〈t ′j〉 ‖ . . . , (6)

where by assumption, the processes pi and the locks they are holding, resp. on which
they are blocked are given by ∆C, i.e., σ(li)= pi(ni) and waits(σ ′ `P′, pi, li+k1). Clearly,
each participating process σ ′ ` pi〈t ′i〉 is at a dynamic slp (cf. Definition 4). Since those
are over-approximated by their static analogues (cf. Lemma 7), the occurrence of t ′i in
t0
i resp. of t ′j in t0

j is a static slp. By Lemma 9, all static slp (wrt. the given cycle) are
protected, starting from the initial configuration, by the corresponding race variable.
This together with the fact that σ ′ ` pi〈t ′i〉 is reachable from σ0 ` pi〈t0

i 〉 implies that the
static slp in each process pi is protected by the same variable x. Hence, by Lemma 8,
σ0 ` P0 has a race between pi and p j. ut

The previous lemma showed that the race variables are added at the “right places”
to detect deadlocks. Note, however, that the property of the lemma was formulated for
the transformed program while, of course, we intend to detect deadlocks in the original
program. So to use the result of Lemma 10 on the original program, we need to con-
vince ourselves that the transformation does not change (in a relevant way) the behavior
of the program, in particular that it neither introduces nor removes deadlocks. Since the
instrumentation only adds variables which do not influence the behavior, this preserva-
tion behavior is obvious. The following lemma shows that transforming programs by
instrumenting race variables preserves behavior.

Lemma 11 (Transformation preserves behavior). P is deadlock-free iff PT is deadlock-
free, for arbitrary programs.

Proof. Straightforward. ut

Next, we show with the absence of data race in a transformed program that the
corresponding original one is deadlock-free:

Lemma 12 (Data races and deadlocks). P is deadlock-free if PT is race-free, for ar-
bitrary programs.
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Proof. A direct consequence of Lemma 10 and Lemma 11. ut

In the next section, where we additionally add new locks to enhance the precision
of the analysis, it becomes slightly more complex to establish that connection between
the original and the transformed program.

6 Gate locks

Next we refine the transformation to improve its precision. By definition, races are
inherently binary, whereas deadlocks in general are not, i.e., there may be more than
two processes participating in a cyclic wait. In a transformed program, all the processes
involved in a specific abstract cycle ∆C share a common race variable. While sound,
this would lead to unnecessarily many false alarms, because already if two processes
as part of a cycle of length n > 2 reach simultaneously their race-variable-instrumented
control-points, a race occurs, even if the cycle may never be closed by the remaining
processes. In the following, we add not only race variables, but also additional locks,
assuring that parts of a cycle do not already lead to a race; we call these locks gate
locks. Adding new locks, however, needs to be done carefully so as not to change the
behaviour of the program, in particular, not to break Lemma 11.

We first define another (conceptual) use of locks, denoted short-lived locks. A pro-
cess which is holding a short-lived lock has to first release it before trying any other
lock. It is obvious to see that transforming a program by adding short-lived locks does
not lead to more deadlocks. A deadlock involving a short-lived lock g and any other
lock l means that there exists two processes where one is holding l and tries to take g,
while the other one is holding g and tries l. Since no locking step is allowed while one
is holding a short-lived lock without first releasing it, such a deadlock does not exist.

A gate lock is a short-lived lock which is specially used to protect the access to race
variables in a program. Since gate locks are short-lived locks, no new deadlocks will
be introduced. Similar to the transformation in Definition 8, we still instrument with
race variables at the static second lock points, but also wrap the access with locking/un-
locking of the corresponding gate lock (there is one gate lock per ∆C). However, we
pick one of the processes in ∆C which only accesses the race variable without the gate
lock held. This transformation ensures that the picked process and exactly one of the
other processes involved in a deadlock cycle may reach the static second lock points
at the same time, and thus a race occurs. That is, only the race between the process
which could close the deadlock cycle and any one of the other processes involved in the
deadlock will be triggered.

Observe that depending on the chosen process, the race checker may or may not
report a race—due to the soundness of our approach, we are obviously interested in
the best result, which is “no race detected”. Therefore, we suggest to run the analysis
with all processes to find the optimal result. Note that checks for different cycles and
with different “special” processes for the gate lock-based instrumentation can easily be
run in parallel or distributed. It is also possible to instrument a single program for the
detection of multiple cycles: even though a lock statement can be a second lock point
for multiple abstract locks, the transformations for each of them do not interfere with
each other, and can be analysed in a single race checker-run.
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Theorem 1. Given a program P, PT is a transformed program of P instrumenting with
race variables and gate locks, P is deadlock-free if PT is race-free.

7 Conclusion

We presented an approach to statically analyse multi-threaded programs by reducing
the problem of deadlock checking to data race checking. The type and effect system
statically over-approximates program points, where deadlocks may manifest themselves
and instruments programs with additional variables to signal a race. Additional locks
are added to avoid too many spurious false alarms. We show soundness of the approach,
i.e., the program is deadlock free, if the corresponding transformed program is race free.

Numerous approaches have been investigated and implemented over the years to
analyse concurrent and multi-threaded programs (cf. e.g. [23] for a survey of various
static analyses). Not surprisingly, in particular approaches to prevent races [2] and/or
deadlocks [8] have been extensively studied for various languages and based on dif-
ferent techniques. (Type-based) analyses for race detection include [11] [10] [1] [12]
[13][14] [5] [4][24] [17] to name a few. Partly based on similar techniques, likewise
prevention of deadlocks [26] [18]. Static detection of potential deadlocks is a recur-
ring topic: traditionally, a lock-analysis is carried out to discover whether the locks can
be ordered, such that subsequent locks can only be acquired following that order [3].
Then, a deadlock is immediately ruled out as this construction precludes any “deadly
embrace”. The lock order may be specified by the user, or inferred [6].

In general, races are prevented not just by protecting shared data via locks; a good
strategy is to avoid also shared data in the first place. The biggest challenge for static
analysis, especially when insisting on soundness of the analysis, is to achieve better
approximations as far as the danger of shared, concurrent access is concerned. Indeed,
the difference between an overly approximate analysis and one that is usable in practice
lies not so much in obtaining more refined conditions for races as such, but to get a
grip on the imprecision caused by aliasing, and the same applies to static deadlock
prevention.

Future work Our analysis summarises the potential locations of function arguments
based on all call-sites, which is the reason for some of the (expected) imprecision. In
earlier work, we investigated inference and polymorphism [21], but how presence of a
static slp can be ascertained in such a polymorphic setting needs further investigation.

A natural extension of our work would be an implementation of our type and effect
system to transform concurrent programs written in e.g. in C and Java. Complications in
those languages like aliasing would need to be taken into account, although we expect
that results from a may-alias analysis could directly be consumed by our analysis.

For practical application, our restriction on fixed number of processes will not fit
every program. We presume that our approach will work best on code found e.g. in the
realm of embedded system, where generally a more resource-aware programming style
means that threads and other resources are statically allocated.
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