
A Petri Net based Analysis of Deadlocks

for Active Objects and Futures⋆

Frank S. de Boer1, Mario Bravetti2, Immo Grabe1,
Matias Lee3, Martin Steffen4, and Gianluigi Zavattaro3

1 CWI, Amsterdam, The Netherlands
2 University of Bologna, Focus Team INRIA, Italy

3 University of Córdoba, Argentina
4 University of Oslo, Norway

Abstract. We give two different notions of deadlock for systems based
on active objects and futures. One is based on blocked objects and con-
forms with the classical definition of deadlock by Coffman, Jr. et al. The
other one is an extended notion of deadlock based on blocked processes
which is more general than the classical one. We introduce a technique to
prove deadlock freedom of systems of active objects. To check deadlock
freedom an abstract version of the program is translated into Petri nets.
Extended deadlocks, and then also classical deadlock, can be detected
via checking reachability of a distinct marking. Absence of deadlocks in
the Petri net constitutes deadlock freedom of the concrete system.

1 Introduction

The increasing importance of distributed systems demands flexible communi-
cation between distributed components. In programming languages like Erlang
[3] and Scala [12] asynchronous method calls by active objects have successfully
been introduced to better combine object-orientation with distributed program-
ming, with a looser coupling between a caller and a callee than in the tightly
synchronized (remote) method invocation model. In [5] so-called futures are used
to manage return values from asynchronous calls. Futures can be accessed by
means of either a get or a claim primitive: the first one blocks the object until
the return value is available, while the second one is not blocking as the con-
trol is released. The combination of blocking and non-blocking mechanisms to
access to futures may give rise to complex deadlock situations which require a
rigorous formal analysis. In this paper we give two different notions of deadlock
for systems based on active objects and futures. One is based on blocked objects
and conforms with the classical definition of deadlock by Coffman, Jr. et al. The
other one is an extended notion of deadlock based on blocked processes which is
more general than the classical one. We introduce a technique to prove deadlock
freedom of models of active objects by a translation of an abstraction of the

⋆ Part of this work has been supported by the EU-project FP7-231620 HATS (Highly
Adaptable and Trustworthy Software using Formal Methods).

http://www.cse.chalmers.se/research/hats/

2

model into Petri nets. Extended deadlocks, and then also classical deadlock, can
be detected via checking reachability of a distinct marking. Absence of deadlocks
in the Petri net constitutes deadlock freedom of the concrete system.

The formally defined language that we consider is Creol [14] (Concurrent Re-
flective Object-oriented Language). It is an object oriented modeling language
designed for specifying distributed systems. A Creol object provides a high-level
abstraction of a dedicated processor and thus encapsulates an execution thread.
Different objects communicate only by asynchronous method calls, i.e., similar
to message passing in Actor models [11]; however in Creol, the caller can poll
or wait for return values which are stored in future variables. An initial config-
uration is started by executing a run method (which is not associated to any
class). The active objects in the systems communicate by means of method calls.
When receiving a method call a new process is created to execute the method.
Methods can have processor release points which define interleaving points ex-
plicitly. When a process is executing, it is not interrupted until it finishes or
reaches a release point. Release points can be conditional: if the guard at a re-
lease point evaluates to true, the process keeps the control, otherwise, it releases
the processor and becomes disabled as long as the guard is not true. When-
ever the processor is free, an enabled process is nondeterministically selected for
execution, i.e., scheduling is left unspecified in Creol in favor of more abstract
modeling.

In order to define an appropriate notion of deadlock for Creol, we start by
considering the most popular definition of deadlock that goes back to an example
titled deadly embrace given by Dijkstra [6] and the formalization and general-
ization of this example given by Coffman Jr. et al.[7]. Their characterization
describes a deadlock as a situation in a program execution where different pro-
cesses block each other by denial of resources while at the same time requesting
resources. Such a deadlock can not be resolved by the program itself and keeps
the involved processes from making any progress.

A more general characterization by Holt [13] focuses on the processes and
not on the resources. According to Hold a process is deadlocked if it is blocked
forever. This characterization subsumes Coffman Jr.’s definition. A process wait-
ing for a resource is blocked if that resource is held by another process in the
circle it will be blocked forever. In addition to these deadlocks Holt’s definition
also covers deadlocks due to infinite waiting for message that do not arrive or
conditions, e.g. on the state of an object, that are never fulfilled.

We now explain our notions of deadlock by means of an example. Consider
two objects o1 and o2 belonging to classes c1 and c2, respectively, with c1 defining
methods m1 and m3 and c2 defining method m2. Such methods, plus the method
run, are defined as follows:

– run() ::= o1.m1()

– m1() ::= letx1 = o2.m2() in get@(x1, self); ret

– m2() ::= letx2 = o1.m3() in get@(x2, self); ret

– m3() ::= ret

3

The variables x1 and x2 are futures, accessed (in this case) with the blocking
get statement. This program clearly originates a deadlock because the execution
of m1 blocks the object o1 and the execution of m2 blocks the object o2. In
particular, the call to m3 cannot proceed because the object o1 is being blocked
by m1 waiting on its get. We call classical deadlocks these cases in which there
is a group of objects such that each object in the group is blocked by a get on
a future related to a call to another object in the group.

Consider now the case in which the method m2 is defined as follows:

– m2() ::= letx2 = o1.m3() in claim@(x2, self); ret

In this case, object o2 is not blocked because m2 releases the control by perform-
ing a claim instead of a get. Nevertheless, the process executing m2 will remain
blocked forever. We call extended deadlock this case of deadlock at the level of
processes.

After formalization of the notions of classical and extended deadlock, we
prove that the latter includes the former. Moreover, as our main technical con-
tribution, we show a way for proving extended deadlock freeness. The idea is to
consider an abstract semantics of Creol expressed in terms of Petri nets. In order
to reduce to Petri nets, we abstract away several details of Creol, in particular,
we represent futures as 4-ples composed of the invoking object, the invoking
method, the invoked object, and the invoked method. For instance, the above
future x1 is abstractly represented by o1.m1@o2.m2.

Due to this abstraction, in the abstract semantics a process could access
a wrong future simply because it has the same abstract name. Consider, for
instance, the following example:

– run() ::= o1.m1()
– m1() ::= letx1 = o2.m2(1) in

letx2 = o2.m2(2) in
get@(x2, self); claim@(x1, self); ret

– m2(x1) ::= if x1 = 1 then ret else letx2 = o1.m3() in claim@(x2, self); ret
– m3() ::= ret

Both the futures x1 and x2 will be represented by the same abstract name
o1.m1@o2.m2. For this reason, even if this program originates a deadlock when
get is performed on x2, according to the abstract semantics the system could
not deadlock. In fact, the return value of the first call could unblock the get as
the two futures have the same name in the abstract semantics. To overcome this
limitation, we add in the abstract semantics marked versions of the methods:
when a method m is invoked, the abstract semantics nondeterministically select
either the standard version of m or its marked version denoted with m?. Both
method versions have the same behavior, but the return value will be stored in
two futures with two distinct abstract names. For instance, in the example above,
if we consider that the first call to m2 actually activates the standard version
m2 while the second one activates the marked version m2?, there will be no
confusion between the two futures as their abstract names will be o1.m1@o2.m2

4

and o1.m1@o2.m2?, respectively. In this case, the system will deadlock also under
the abstract semantics.

The Petri net based abstract semantics allow us to obtain a decidable way for
proving extended deadlock freeness. In fact, reachability problems are decidable
in Petri nets, and we show how to reduce extended deadlock to a reachability
problem in the abstract Petri net semantics.

Outline. In Section 2 we report the definition of Creol. We present the two
notions of deadlock in Section 3. In Section 4 we present the translation into
Petri nets. In Section 5 we present the main result of the paper: if in the Petri
net associated to a program a particular marking cannot be reached then the
program is deadlock free, and we show that such reachability problem is decidable
for Petri nets. Section 6 concludes the paper. Proofs are reported in Appendix
for reviewer’s convenience.

2 A Calculus for Active Objects

In this section we present a calculus with active objects communicating via
futures, based on Creol. The calculus is a slight simplification of the object
calculus as given in e.g. [2], and can be seen as an active-object variant of the
concurrent object calculus from [10]. Specific to the variant of the language here
and the problem of deadlock detection are the following key ingredients of the
communication model:

Futures. Futures are a well-known mechanism to hold a “forthcoming” result,
calculated in a separate thread. In Creol, the communication model is based
on futures for the results of method calls which results in a communication
model based of asynchronously communicating active object. In this paper
we do not allow references to futures to be passed around, i.e. the futures in
this paper are not first-class constructs. This restriction is enforced (easily)
by the type system.

Obtaining the results and cooperating scheduling. Method calls are done
asynchronously and the caller obtains the result back when needed, querying
the future reference. The model here support two variants of that querying
operation: the non-blocking claim-statement, which allows reschedule of the
querying code in case the result of not yet there, and the blocking get-
statement, which insist on getting the result without a re-scheduling point.
In [2], we did not consider the latter as part of the user syntax.

Statically fixed number of objects In this paper we omit object creation to
facilitate the translation to Petri nets.

The type system and properties of the calculus, e.g. subject reduction and
absence of (certain) run-time errors, presented in [2] still apply. For brevity we
only present explanation for language constructs relevant to the development of
deadlocks. Missing details with respect to other language constructs, formaliza-
tions and proofs of the mentioned (and further) properties of the calculus can
be found in [2].

5

C ::= 0 | C ‖ C | n[(O)] | n[n, F, L] | n〈t〉 component

O ::= F,M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= v field
t ::= v | stop | letx:T = e in t thread
e ::= t | if e then e else e | n.l(~v) | v.l | v.l := v expr.

| claim@(n, n) | get@(n, n) | get@n

| suspend(n) | grab(n) | release(n)

v ::= x | n values
L ::= ⊥ | ⊤ lock status

Table 1. Abstract syntax

2.1 Syntax

The abstract syntax is given in Table 1, distinguishing between user syntax and
run-time syntax, the latter underlined. The user syntax contains the phrases in
which programs are written; the run-time syntax contains syntactic constituents
additionally needed to express the behavior of the executing program in the
operational semantics.

The basic syntactic category of names n, represents references to classes,
to objects, and to futures/thread identifiers. To facilitate reading, we write o
and its syntactic variants for names referring to objects, c for classes, and n for
threads/futures, resp. when being unspecific. Technically, the disambiguation
between the different roles of the names is done by the type system. x stands for
variables, i.e., local variables and formal parameters, but not instance variables.
Besides names and variables x, we assume standard data types (such as booleans,
integers, etc) and their values without showing them in the syntax of the core
calculus. They are unproblematic for the deadlock analysis, which, using data
abstraction, concentrates on the analysis of the communication behavior.

A configuration C is a collection of classes, objects, and (named) threads,
with 0 representing the empty configuration. The sub-entities of a configuration
are composed using the parallel-construct ‖ (which is commutative and associa-
tive, as usual). The entities executing in parallel are the named threads n〈t〉,
where t is the code being executed and n the name of the thread. Threads are
identified with futures, and their name is the reference under which the future
result value of t will be available. A class c[(O)] carries a name c and defines its
methods and fields in O. An object o[c, F, L] with identity o keeps a reference to
the class c it instantiates, stores the current value F of its fields, and maintains
a binary lock L. The symbols ⊤, resp., ⊥, indicate that the lock is taken, resp.,
free. The initial configuration consists of a number of classes, one initial thread,
and a number of objects (with their locks free); under our restriction that we do
not allow object instantiation, and we assume that their identities are known to

6

the initial thread. By convention, the intial thread is assumed to be the body of
a (unique) method named run.

Besides configurations, the grammar specifies the lower level syntactic con-
structs, in particular, methods, expressions, and (unnamed) threads, which are
basically sequences of expressions, written using the let-construct. The stop-
construct denotes termination, so the evaluation of a thread terminates by eval-
uating to a value or terminating with stop. In the example an later, we use ret
as variable to more explictly point to where the value is returned. A method
ς(s:T).λ(~x:~T).t provides the method body t abstracted over the ς-bound “self”
parameter s the formal parameters ~x —the ς-binder is borrowed from the well-
known object-calculus of Abadi and Cardelli [1]. Note that the methods are
stored in the classes but the fields are kept in the objects.

Methods are called asynchronously, i.e., executing o.l(~v) creates a new thread
to execute the method body with the formal parameters appropriately replaced
by the actual ones; the corresponding thread identity at the same time plays
the role of a future reference, used by the caller to obtain, upon need, the even-
tual result of the method. The further expressions claim, get, suspend, grab, and
release deal with communication and synchronization. As mentioned, objects
come equipped with binary locks which assures mutual exclusion. The oper-
ations for lock acquisition and release (grab and release) are run-time syntax
and inserted before and at the end of each method body code when invoking a
method. Besides that, lock-handling is involved also when futures are claimed,
using claim or get. The get(n)-operation is easier: it blocks if the result of fu-
ture n is not (yet) available, i.e., if the thread n is not of the form of n〈v〉. The
claim@(n, o) is a more “cooperative” version of get: if the value is not yet avail-
able, it releases the lock of the object it executes in to try again later, meanwhile
giving other threads the chance to execute in that object. For technical reasons
we included a variant get@(n, v) of the get-operation as part of the user syntax,
with an additional object argument. It is added to facilitate reasoning later for
deadlock detection and is operationally equivalent to the getn-version, i.e., the
v is used as annotation for reasoning only. We assume by convention, that stat-
ically, the user-syntax commands only refer to the self-parameter self , (i.e., the
ς-bound variable) in their object-argument, i.e., they are written claim@(x, self),
get@(x, self), and suspend(self). As usual we use sequential composition t1; t2
as syntactic sugar for letx:T = t1 in t2, when x does not occur free in t2. We
refer to [2] for further details on the language constructs, a type system for the
language and a comparison with the multi-threading model of Java.

2.2 Operational Semantics

Relevant reduction steps of the operational semantics are shown in Table 2,
distinguishing between confluent steps and other transitions

τ
−→. The -steps,

on the one hand, do not access the instance state of the objects. The
τ
−→-steps,

on the other hand, access the instance state, either by reading or by writing
it, and may thus lead to race conditions. When not differentiating between the
two kinds of transitions, then we replace both symbol by −→. An execution is

7

a sequence of configurations, C0, . . . , Cn such that Ci+1 is obtained from Ci by
applying a reduction step. We denote this execution by C0 −→ . . . −→ Cn.

We omit reduction rules dealing with the basic constructs like substitution,
sequential composition (let), conditionals, field access, and lock handling. These
rules are straightforward (cf. [2]). For deadlock detection later, most of these
constructs will be subject to data abstraction.

c[(F ′,M)] ‖ o[c, F, L] ‖ n1〈letx:T = o.l(~v) in t1〉
τ

−→
c[(F ′,M)] ‖ o[c, F, L] ‖ n1〈letx:T = n2 in t1〉

‖ n2〈letx:T2 = grab(o);M.l(o)(~v) in release(o);x〉

Futi

n1〈v〉 ‖ n2〈letx : T = claim@(n1, o) in t〉 n1〈v〉 ‖ n2〈letx : T = v in t〉 Claim
1
i

t2 6= v
Claim

2
i

n2〈t2〉 ‖ n1〈letx : T = claim@(n2, o) in t
′

1〉

n2〈t2〉 ‖ n1〈letx : T = release(o); get@n2 in grab(o); t
′

1〉

n1〈v〉 ‖ n2〈letx : T = get@(n1, o) in t〉 n1〈v〉 ‖ n2〈letx : T = v in t〉 Get
1
i

n1〈v〉 ‖ n2〈letx : T = get@n1 in t〉 n1〈v〉 ‖ n2〈letx : T = v in t〉 Get
2
i

n〈suspend(o); t〉 n〈release(o); grab(o); t〉 Suspend

Table 2. Operational semantics

Invoking a method (cf. rule Futi) creates a new future reference and a cor-
responding thread is added to the configuration. In the configuration after the
reduction step, the meta-mathematical notation M.l(o)(~v) stands for t[o/s][~v/~x],

when the method suite [M] equals [. . . , l = ς(s:T).λ(~x:~T).t, . . .]. Upon termina-
tion, the result is available via the claim- and the get-syntax (cf. the Claim-
and Get-rules), but not before the lock of the object is given back again using
release(o). If the thread is not yet terminated, in the case of claim statement, the
requesting thread suspends itself, thereby giving up the lock. The rule Suspend
releases the lock to allow for interleaving. To continue, the thread has to reac-
quire the lock.

The above reduction relations are used modulo structural congruence, which
captures the algebraic properties of especially parallel composition.

3 Deadlock

We give two different notions of deadlock in Creol. The first one follows [7]. In
this case not only processes are blocked but also the objects hosting them.

The second notion resembles the definition of deadlock by Holt [13]. Instead
of looking at blocked objects we look at blocked processes. A blocked process
does not necessarily block the object hosting it.

8

To facilitate the definition of deadlock we introduce two notions of the loca-
tion and state of a process. The notion of a waiting process links a process to
another process or to an object. In the first case, it is waiting to read a future
that the other process has to calculate. In the second case, the process is waiting
to obtain the lock of the object.

Definition 1 (Waiting Process). A process n1〈t〉 is waiting for:

1. n2 iff 〈t〉 is of the form 〈letx:T = claim@(n2, o) in t
′〉, 〈letx:T = get@(n2, o) in t

′〉,
or 〈letx:T = get@n2 in t

′〉;
2. o iff 〈t〉 is of the form 〈letx:T = grab(o) in t′〉

The notion of a blocking process links a process that is waiting for a future
while holding the lock of an object and the object.

Definition 2 (Blocking Process). A process n1〈t〉 blocks object o iff 〈t〉 is of
the form 〈letx : T = get@(n2, o) in t

′〉.

Note that a process needs to hold the object lock and execute a blocking
statement, i.e. get-statement, to block an object. Furthermore note that the
process can at most acquire one lock, i.e. the lock of its hosting object.

Our notion of a classical deadlock follows the definition of deadlock by Coff-
man Jr. et al.[7]. The resource of interest is the exclusive access to an object
represented by the object lock. In opposite to the multithreaded setting, e.g. like
in Java, where a thread can collect a number of these exclusive right, a process
in the active object setting can at most acquire the lock of the object hosting it.
But by calling a method on another object and requesting the result of that call
it requests access to that object indirectly. Or to be more precise a process can
derive the information, that the process created to handle its call and access to
the callee, by the availability of the result in terms of the future.

Definition 3 (Classical Deadlock). A configuration Θ is deadlocked iff there
exists a set of objects O such that, for all o ∈ O, o is blocked by a process n1

which is waiting for a process n2 which is waiting for o′ ∈ O.

Note that the definition of “waiting for” plays a crucial role here, because the
process is waiting, the process does not finish its computation. Being blocked by
a process, another process can only gain access to the object after the blocking
process has made progress. Since each process blocking an object in O is waiting
for another process blocking an object in O we have a classical deadlock situa-
tion. Note that a blocking process does not necessarily directly wait for another
blocking process but can also wait for a process which is waiting to get access
to an object in O. But this process can only proceed if the process blocking the
object proceeds.

The second notion resembles the definition of deadlock by Holt [13]. Instead
of looking at blocked objects we look at blocked processes. A process can be
blocked due to the execution of either a get–statement or a claim–statement. In
the first case the object is blocked via the active process, in the second case only

9

the process is blocked. Processes that are blocked on a claim–statement are not
part of a deadlock according to the first definition since they are not holding
any resources. Yet they can be part of a circular dependency that prevents them
from making any progress.

Definition 4 (Extended Deadlock). A configuration Θ is deadlocked iff
there exists a finite set of processes N such that, for all n1 ∈ N , n1 is wait-
ing for n2 ∈ N , or waiting for o which is blocked by n2 ∈ N .

We require the set of processes to be finite to separate deadlocks and livelocks.
This notion of deadlock is more general than the classical one.

Corollary 1. Every classical deadlock is an extended deadlock.

4 Translation into Petri nets

We translate Creol programs into Petri nets in such a way that extended dead-
locks in a Creol program can be detected by analyzing the reachability of a
given class of markings (that we will call extended deadlock markings) in the
corresponding Petri net.

We first recall the definition of Petri nets. A Petri net is a tuple 〈P, T, ~m0〉
such that P is a finite set of places, T is a finite set of transitions, and ~m0 is a
marking, i.e. a mapping from P to N that defines the initial number of tokens in
each place of the net. A transition t ∈ T is defined by a mapping •t (preset) from
P to N, and a mapping t• (postset). A configuration is a marking ~m. Transition
t is enabled at marking ~m iff •t(p) ≤ ~m(p) for each p ∈ P . Firing t at ~m leads to

a new marking ~m′ defined as ~m′(p) = ~m(p) −• t(p) + t•(p), for every p ∈ P . A
marking ~m is reachable from ~m0 if it is possible to produce it after firing finitely
many times transitions in T .

During this translation we apply abstraction with respect to the futures.
In Creol a fresh unique label is created for each method invocation instead
we use abstract labels for the futures only identifying a tuple of caller, calling
method, callee, and called method. The reason for this abstraction is to get a
Petri nets with finite places. Yet we still allow for an unbounded number of
method invocations, i.e. an unbounded number of processes.

In the Petri net, we will have two kinds of places: those representing a method
code to be executed by a given object, and those representing object locks. In
order to keep the Petri net finite, we assume that only boundedly many ob-
jects will be present in a Creol configuration (otherwise we will have to consider
unboundedly many places for the object locks). Moreover, in the places repre-
senting the method code to be executed, we abstract away from the data that
could influence such method (like, e.g., the object fields) otherwise we would
need infinitely many places.

Due to the abstraction with respect to the labels of futures, the abstract
Petri net semantics could have the following token confusion problem. Namely,
if there are two concurrent invocations between the same two methods of the

10

same two objects, in the Petri net it could happen that one caller could read the
reply generated by the method actually called by the other one. To avoid at least
the propagation of the token confusion problem, in the Petri net, as soon a caller
accesses to a return value in a future, such value is consumed. In this way, we
assign the future to a concrete caller and consuming the future prevents it from
being claimed by two different processes. To apply this technique in a sound way
we have to transform the program. Removing the future upon first claim implies
that it is not available for consecutive claims (in opposite to the concrete case).
On the other hand consecutive claims do not provide any new information with
respect to deadlock detection. Once a future has been claimed in the concrete
case all consecutive claims pass. We model this by removing consecutive claims
from the program.

But this approach only allows to avoid the token confusion for sequential
identical abstract processes. In the case of concurrent identical abstract processes
this is not enough. To address this problem each future creation can be marked
or not. The Petri net will be defined in such a way that token confusion will
not occur between a marked and non-marked call. The deadlock analysis will be
done only over the marked processes: if only the method calls directly involved
in the deadlock are marked, then there will be no token confusion between the
method executions which are involved in the deadlock and those which are not.

Internal choice is an obstacle with respect to this approach. In a sequence of
internal choices the kind of a claim (first or consecutive) depends on the choices
taken so far and can vary depending on them. To overcome this problem we
move all internal choices up front.

During the transformations we remove superfluous internal steps and du-
plicated choices from the program to reduce the size of the Petri net. For the
technical details of the transformations we refer the reader to Appendix B. We
now describe the Petri net construction more in details.

4.1 Places and Tokens

The resulting Petri net contains two kinds of places:

Locks. Places identifying the locks of the objects. Each object has its designated
lock place labeled by the unique name of the object. A token in such a place
represents the lock of the corresponding object being available. There is at
most one token in such a place.

Process. Places identifying a particular process in execution or the future as a
result of the execution of a process. These places are labeled with l〈t〉 where
l is an abstract label identifying the call and t is abstract method code to be
“executed”. A token in this place represents one instance of such a process
in execution or a future. In case of a future, the token is consumed if the
future is claimed.

11

o l〈t〉

(a) Places for objects and abstract
processes

start

l〈t1〉

l〈tn〉

(b) Transition from the initial place start:
ti’s are the abstract traces of the initial pro-
cess run

Fig. 1. Places and Initial transitions

4.2 Code Abstractions

In Appendix B.1 the code abstraction is defined in detail, here we give a quick
description. The syntactical transformation is composed by five functions:

Step one s1. It applies data abstraction.
Step two s2. It removes choices. If t is the code of a method, s2(s1(t)) is a set

of sequential code without branching. We will call these also “traces”, as
they represent possible (abstract) executions of the method.

Step three sF3 . It removes the redundant claims of a future, i.e. the claims that
are after the first one with respect to particular future. Notice that this func-
tion is applied over traces, then, it can be checked when a future is claimed.
It also replaces claim–statement by a sequence of release, get and grab state-
ments. We justify this decision below, when we define the transition associ-
ated to the claim–statement. The function also replaces suspend–statement
with a release and a grab. F is a set used to keep track of the already claimed
futures.

Step four s4. It marks at most one of the future claims in the trace, implicitly
guessing that it will be involved in a deadlock.

Step five s5. It applies the abstraction on the futures replacing them with the
tuple calling object, calling method, called object, and called method.

Functions sF3 , s4 and s5 are lifted to support set of traces. Then the code
transformation is defined as the composition of all the functions ST ::= s5 ◦
s4 ◦ s∅3 ◦ s2 ◦ s1 and it is applied to the method definitions. Suppose m is the
method code in a class definition, i.e. in the configuration there is a method
suite [M] equals to [. . . , l = ς(s:T).λ(~x:~T).m, . . .]. Then, ST(m) is a set of
traces where each trace represents a possible abstract execution of the method
l. A trace in ST(m) is a sequence of abstract statements of the following form:
letx:T = o.l, claim@(n, n′), get@(n, n′), get@n, suspend(n), release(n), grab(n),
stop, claim@(n?, n′), get@(n?, n′) and get@n?. Notice that the last three state-
ments include marked calls. Each trace will have at most one marked claim.

12

4.3 Transitions

The transitions of the Petri net are determined by the translation of the semantic
steps. For each object and each method a path for all pairs of caller and calling
method is created. We give the translation for the individual execution steps
according to the operational semantics in Section 2.2. In case the syntactical
transformation affects the operational step we briefly discuss the consequences
of the transformation.

Initial transitions. A Creol program is defined by an initial configuration C0

composed by a set of classes, a set of objects and an initial thread. We denote
the initial thread run. This one is the main process in the program, then it is
not called by another thread, does not belong to any object, nor class. The code
associated to this thread has to be also translated using ST. The election of the
trace for the main process is done by the initial transition depicted in Fig. 1(b),
to do this we have included an auxiliary place start. This place will be the initial
place of the Petri net.

Method Calls. We present the Petri net transitions for a method call in Fig.
2. A process place in the Petri net is labeled with a tuple o1.l1@o2.l2 where
o1 denotes the caller, l1 the calling method, o2 the callee, and l2 the called
method. We abbreviate parts of the label by c@o.l resp. o.l@c or the whole label
by l if details are not needed. Depending on whether the result of the call will
be assumed to be part of a deadlock the created process is marked (see Fig.
2(a), notice the symbol “?”) or is not (see Fig. 2(b)). The method body of the
called process t′ is in both cases of the form grab(o); to.l; release(o) where to.l is
an abstract trace execution of the method l of the object o according to the
definitions in the associated class. At this point, the abstract execution unifies
all the internal choices into one general internal choice that is resolved when the
method is called.

c@o′.l′〈let o.l?; t〉

o′.l′@o.l?〈t′〉

c@o′.l′〈t〉

(a) marked calls

c@o′.l′〈let o.l; t〉

o′.l′@o.l〈t′〉

c@o′.l′〈t〉

(b) call without marking

Fig. 2. Transitions for method calls.

13

Lock Handling. To execute the grab(o) statement the object lock of object o
must be available. When releasing the lock of an object o by release(o) a token
is added to the place representing the object lock. (Fig. 3)

o

l〈grab(o); t〉

l〈t〉

(a) grabbing the lock

o

l〈release(o); t〉

l〈t〉

(b) releasing the lock

Fig. 3. Transitions for lock handling.

Claiming Results. We present the Petri net transitions for claiming the result
of a method call in Fig. 4. The notations “o.l+” or “o.l∗” denote that o.l can
be marked or not: formally, + and ∗ are meta-variables that can be either the
empty string or ?. As was explained before, to avoid the token confusion of
sequential calls, the tokens are consumed. Notice that removing the result is not
problematic with respect to multiple claims of a value because subsequent claims
are removed in the syntactical transformation.

Rescheduling. In the Creol semantics there are two different kinds of reschedul-
ing. Unconditional rescheduling, using the keyword suspend(o), which is trans-
lated to release(o); grab(o) and covered by the transition rules for lock handling
(Fig. 3).

The translation of conditional rescheduling on the other hand deviates from
the operational semantics of the claim statement. In opposite to the concrete

c@o′.l′+〈get@o.l∗; t〉

c@o′.l′+〈t〉

o′.l′+@o.l∗〈〉

(a) non-blocking

c@o′.l′+〈get@(o.l∗, o); t〉

c@o′.l′+〈t〉

o′.l′+@o.l∗〈〉

(b) blocking

Fig. 4. Translation of a claim of a result.

14

case the object lock is always released upon reaching the claim statement. The
statement claim@(n, o) is translated to the sequence release(o); get@n; grab(o)
(by function s3). In the concrete case the lock is only released if the result, that
the process is waiting for, is not available. In case the result is available the
process continues its execution without rescheduling.

This deviation is justified by the syntactical transformation. In the concrete
case the rules for the operational semantics have to cover both the first claim of
a result and the subsequent claims. In case of a subsequent result the claim state-
ment has to be executed without rescheduling since the existence of the result
has been proven by the previous claim. In the abstract semantics, consecutive
claims have been removed, i.e. each claim in the abstract case is the first claim
of the result. This justifies the deviation from the operational semantics.

4.4 Petri net construction for Creol programs.

We complete the definition of the Petri net associated to an initial configuration.

Definition 5. Given an initial configuration

C0 = c0[(F0,M0)] ‖ . . . ‖ o0[co0 , F0, L0] ‖ . . . ‖ on[con , Fn, Ln] ‖ run〈t〉

the corresponding Petri net PC0
has one starting place start, the lock places

o0, . . . , on, and the places n〈t′〉 with:

1. n = run@run or n = run@oi.lj or n = oi′ .lj′@oi.lj with lj and lj′ methods of
the classes cj and cj′ , respectively. Same condition holds for abstract names
containing the marker ?;

2. if n = run@run then t′ is a suffix of one of the traces in ST(t);
3. if n = c@oi.lj then t′ is a suffix of one of the traces in ST(grab(oi);m[oi/self];

release(oi)), where m is the method definition of lj, namely, given the class

ci of oi and ci[(Fi,Mi)], we have [Mi] = [. . . , lj = ς(self :T0).λ(~x0:~T0).m, . . .].

The initial marking of PC0
has one token in the places start, o0, . . . , on. The

transitions are defined as already described in Section 4.3.

Notice that in item 3, statements grab(oi) and release(oi) are added because
processes have to acquire the lock before start running and and it has to be
released when the computation is complete. In addition, notice also that keyword
self is replaced by the appropiate object.

5 Deadlock Freedom

The Petri net translation of a program is an over-approximation of the behavior
of the program. Due to the over-approximation the Petri net might contain more
deadlocks than the concrete program. By proving the Petri net to be deadlock
free we prove the concrete program to be deadlock free.

15

We give a Petri net representation of the notion of extended deadlock in terms
of marking of the Petri net. These markings can be detected by reachability
analysis. By proving the absence of the deadlock markings in the Petri net we
prove deadlock freedom of the program.

When speaking about a Petri net, we implicitly assume that the Petri net
was derived from a program by the above mentioned translation. We only focus
in the extended deadlock because it subsumes the classical one (Corollary 1).

5.1 Extended Deadlock Marking

An extended deadlock in the Petri net can be characterized in terms of a marking.
This particular marking is just the mapping of Definition 4 to the Petri net
context more some extra conditions.

Definition 6 (Extended Deadlock Marking). A marking m in a Petri net
is an extended deadlock marking iff the set of places in the Petri net can be
divided in three disjoint sets P1, P2 and P3 such that

1. P1 is a set of places of the form o.l+@o′.l′∗〈get@(o′.l′?, o); t〉,
o.l+@o′.l′∗〈get@o′.l′?; t〉 or o.l+@o′.l′∗〈grab(o); t〉 such that
(a) if + = ? then there is p ∈ P1 in the form c@c′〈get@(o.l?, o′); t′〉 or

c@c′〈get@o.l?; t′〉;
(b) if ∗ = ? then there is p ∈ P1 in the form c@c′〈get@(o′.l′?, o′); t′〉 or

c@c′〈get@o′.l′?; t′〉;
(c) if t = grab(o); t′ then t′ does not contain a claim with a question mark

and there is p ∈ P1 with the form c@c′〈get@(o′.l′?, o); t′′〉.
All the places of P1 have at least one token in m.

2. P2 is a set of places c@c′〈t〉 such that one of the following holds
(a) c, c′ and t do not contain question marks;
(b) c′ and t do not contain question marks and if c = o.l? then there is

c′′@o.l?〈t′〉 ∈ P1.
All the places of P2 have zero or more tokens in m.

3. All the remaining places, composing the set P3, have zero tokens in m.

Conditions in item (1) are the condition defined in Definition 4 adapted
to the Petri net context. In addition extra conditions are added to ensure the
consistency between the marked calls and the marked abstract names. Conditions
in (2) refer to the places that can be used to represent an active process that
does do not belong to the deadlock and cannot produce the token confusion.
This is evident in condition (2a), because there are no marks. On the other
hand, condition (2b) is the abstract representation of a process that was called
by another process that belongs to the deadlock. Notice that this process cannot
create a token confusion because t has not a marked claim, then it could not
do a marked call. Condition (3) is imposed to avoid the token confusion in the
marked calls. Notice that P3 are the places with a question mark that do not
belong to P1 or P2. Not allowing tokens in these places guarantees that token
confusion is not possible.

16

Theorem 1 (Inclusion of Extended Deadlock). Given a Creol program, if
it has an extended deadlock which is reachable, then the corresponding Petri net
has a reachable extended deadlock marking which is reachable.

To prove Theorem 1 we define a mapping from both a configuration and the
Creol execution that reaches this configuration, to a set of markings in the Petri
net. We prove that the mapping is sound, i.e. if C is a configuration reached with
an execution α and it reaches configuration C ′ with a step of the operational
semantics, then all markings associated to C ′ are reachable from at least one
marking associated to C.

Finally, we apply this mapping to a Creol execution that reaches a deadlock
and we show that there is a marking in the set of reachable markings in the Petri
net that satisfies the conditions in Definition 6. The definition of the mapping
and the proofs are in the appendix.

Due to the connection between the extended deadlock in the Creol config-
uration and the extended deadlock marking in the Petri net, we can conclude
freedom of extended deadlock of the program from freedom of extended dead-
lock markings of the Petri net. We conclude by proving that freedom of extended
deadlock marking is decidable in Petri nets

As a final remark, we observe that the reachability of an extended deadlock
marking is decidable in a Petri net. This is a consequence of the decidability of
the target reachability problem for Petri nets [4]. The target reachability problem
consists in checking whether a marking is reachable which satisfies some given
lower bounds (possibly 0) and upper bounds (possibly 0 or ∞) associated to the
places.

6 Conclusion

In this paper we presented a technique based on Petri net translation and Petri
net reachability analysis to detect deadlock in systems made of asynchronously
communicating active objects where futures are used to handle return values
which can be retrieved via a lock detaining get primitive or a lock releasing
claim primitive. We showed soundness of our analysis with respect to extended
deadlocks (which encompass also blocked processes in addition to blocked objects
considered in the classical notion of deadlock), i.e. if the anayisis does not detect
any deadlock then we are guaranteed that the original system is deadlock free.

Concerning the other direction, we claim our technique to be complete apart
from false positives due to abstraction from data values, i.e. transformation
of “if” primitives into non-deterministic choices (which obviously leads to new
behavioural possibilities, hence deadlocks, with respect to the original system).

We now make some remark concerning related and future work.
We would like to mention the work in [8,9]. The authors deal with a similar

language but use a different technique to discover deadlock: an abstract global
system behaviour representation is statically devised from the program code in
the form of a transition system whose states are labeled with set of dependencies

17

(basically pairs of objects representing an invocation from an object to another
one). The system is, then, deadlock free if no circular dependency is found. With
respect to [8,9] our analysis is somehow more precise in that it is process based
(i.e. also detecting extended deadlocks) and not just object based. An example
of a false positive detected by the [8,9] approach, taken from [9] itself (and
translated to our language), follows.

Consider the program consisting of two objects o1 and o2 belonging to classes
c1 and c2, respectively, with c1 defining methods m1 and m3 and c2 defining
method m2. Such methods, plus the (static) initial method run are defined as
follows:

– run() ::= o1.m1()

– m1() ::= letx = o2.m2() in
claim@(x, self); ret

– m2() ::= letx = o1.m3() in
get@(x2, self); ret

– m3() ::= ret

This program would originate a deadlock if we had a get instead of a claim
in method m1. This because method m1 would call method m2, which in turn
would call m3 which would not be able to proceed because the lock on object
o1 would be kept by m1 waiting on the get. Differently from [8,9], our analysis
correctly detects that the system is deadlock free in that method m1 is waiting
on a claim instead of a get.

Concerning language expressivity, [8,9] additionally considers, with respect
to our language, a (finitely bound) “new” primitive for object creation and the
capability of accounting for (a finite set of) objects used as values (e.g. passed
as parameters or stored in fields) in the analysis. Concerning the former, only
objects within a finite set of object names can be created (if invokations to the
“new” primitive exceed the amount of available object names, as in the case of
recursive object creation, old objects are returned), thus such primitive can be
easily encoded in our approach by considering all the objects in the set of object
names to be present since the beginning (and then “activated”). Concerning
the latter, we can quite easily extend the language abstraction considered in
our analysis by considering objects, out of a finite set, passed to methods (by
considering object names as part of the method name). Dealing with objects
stored in fields would however require an extension of the encoding into the Petri
net, where a different place is considered for each possible object to be stored.
We plan to do such extensions and to prove our claim about completeness as a
future work.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer-Verlag, 1996.

18

2. E. Ábrahám, I. Grabe, A. Grüner, and M. Steffen. Behavioral interface description
of an object-oriented language with futures and promises. Journal of Logic and
Algebraic Programming, 78(7):491–518, 2009.

3. J. Armstrong. Erlang. Communications of ACM, 53(9):68–75, 2010.
4. N. Busi and G. Zavattaro. Deciding reachability problems in turing-complete

fragments of mobile ambients. Mathematical Structures in Computer Science,
19(6):1223–1263, 2009.

5. D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous and deterministic ob-
jects. SIGPLAN Not., 39(1):123–134, 2004.

6. E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Program-
ming Languages: NATO Advanced Study Institute, pages 43–112. Academic Press,
1968.

7. J. Edward G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. ACM
Computing Surveys, 3(2):67–78, 1971.

8. E. Giachino and C. Laneve. Analysis of deadlocks in object groups. In
FMOODS/FORTE, pages 168–182, 2011.

9. E. Giachino, C. Laneve, and T. Lascu. Deadlock and livelock analysis in concurrent
objects with futures. Technical report, University of Bologna, December 2011.
http://www.cs.unibo.it/∼laneve/publications.html.

10. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and
typing. In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98,
volume 16.3 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 1998.

11. S. F. S. Gul A. Agha, Ian A. Mason and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 1997.

12. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202–220, 2009.

13. R. C. Holt. Some deadlock properties of computer systems. ACM Computing
Surveys, 4(3):179–196, 1972.

14. E. B. Johnsen and O. Owe. An Asynchronous Communication Model for Dis-
tributed Concurrent Objects. Software and Systems Modeling, 2007.

A Proof of Corollary 1

Proof: Proof of Lemma 1 Let O be the set of objects involved in a classical
deadlock. We denote by B(O) the set of processes blocking an object in O
and by W (B(O)) the set of processes the processes in B(O) are waiting for.
N = B(O) ∪W (B(O)) is a finite set of processes.

By definition of classical deadlock and W (B(O)) each process n1 ∈ B(O) is
waiting for a process n2 ∈ W (B(O)). Thus each process n1 ∈ B(O) is waiting
for a process n2 ∈ N .

By definition of classical deadlock and W (B(O)) each process n1 ∈ W (B(O))
is pending at an object o ∈ O. If process n1 holds the lock of o, by definition of
classical deadlock, it blocks o. Thus n1 ∈ B(O).

If process n1 does not hold the look of o, by definition of classical deadlock,
there is a process n2 ∈ B(O) that blocks o. Thus n1 is pending at o which is
blocked by n2 ∈ N .

19

We conclude that N = B(O)∪W (B(O)) is a set of processes that constitutes
an extended deadlock for any O that constitutes a classical deadlock.

B Syntactical Transformation

We present the syntactical transformation. Given an (abstract) command b and
a set of (abstract) traces X, we define b;X = {b; b′ | b′ ∈ X}. Similar definition
holds for X; b.

B.1 From method code to traces

This transformation is the composition of five functions that we define below.

Data Abstraction. We remove most data from code methods and prepare to
introduce abstract labels for method invocations. Conditional (on data) branch-
ing is replaced by non-deterministic internal choice. For method invocations we
replace the concrete invocation by a non-deterministic branching amongst all
possible invocations, i.e. all objects of suitable type. By O(T (n)) we denote the
subset of objects of O that are of type T (n); T (n) denotes the types of the
thread n. We call this transformation step one and we denote it by s1. We use
ε to denote the empty command.

s1(v) ::= ε s1(x) ::= ε s1(stop; t) ::= stop

s1(letx:T = claim@(n, n′) in t) ::= claim@(n, n′); s1(t)

s1(letx:T = get@(n, n′) in t) ::= get@(n, n′); s1(t)

s1(letx:T = suspend(n) in t) ::= suspend(n); s1(t)

s1(letx:T = v.l := ς(s:n).λ().v in t) ::= s1(t)

s1(letx:T = v.l() in t) ::= s1(t)

s1(letx2:T2 = (letx1:T1 = e1 in e2) in t) ::= s1(letx1:T1 = e1 in(letx2:T2 = e2 in t))

s1(letx:T = if v = v then e1 else e2 in t) ::= Σi=1,2 s1(letx:T = ei in t)

s1(letx:T = n.l(~v) in t) ::= Σo∈O(T (n)) letx:T = o.l; s1(t)

Notice that the variables associated to futures calls are preserved.

Unification of Choice. Since all choices are internal we can anticipate them
and unify choices. Then, given the result of applying function s1 to a method
code, the unification step gives a set of traces. Each trace is a possible execution
of the program where all the choices are resolved. For each trace is clear whether
or not the result of a method call is claimed later. The unification step will be
the step two and it is denoted by s2

20

s2(ε) = {ε} s2(
∑

i∈I tti) =
⋃

i∈I s2(tti)

s2(t; tt) = {t; tt′|tt′ ∈ s2(tt)} with t = letx:T = o.l, claim@(n, n′),

suspend(n), get@(n, n′), stop

Transformation of Communication. Instead of using unique labels for in-
vocations we use abstract labels identifying a method invocation by the name
of the caller, the method calling, the callee, and the name of the called method.
A major consequence of this abstraction is that labels are no longer unique. In
fact, using abstract labels in the same fashion we use unique labels, the first fu-
ture (for a tuple caller, calling method, callee, called method) that is calculated
would be shared amongst all invocations (identified by the tuple).

We address this problem by a change in the semantics and the program. In-
stead of just reading the return value from the future, we consume the future.
By executing a get- or claim-operation a process claims that future. By removing
the future from the configuration we prevent other processes from successfully
claiming the same future. Being consumed the future is not available to con-
secutive requests by the same process. We address this problem by removing
consecutive request from the program. In addition this function translate the
claim and suspend statement as was explained in section 4. This is the third step,
denoted by sF3 , where F is the set of future that were consumed.

sF3 (s2(s1(t))) ::= {s3(t
′) : t′ ∈ s2(s1(t))}

sF3 (letx:T = o.l; t) ::= letx:T = o.l; s3(t)

sF3 (claim@(n1, n2); t) ::= release(n2); get@n1; grab(n2); s
F∪{n1}
3 (t) if n1 /∈ F

sF3 (claim@(n1, n2); t) ::= sF3 (t) if n1 ∈ F

sF3 (get@(n1, n2); t) ::= get@(n1, n2); s
F∪{n1}
3 (t) if n1 /∈ F

sF3 (get@(n1, n2); t) ::= sF3 (t) if n1 ∈ F

sF3 (suspend(n); t) ::= release(n); grab(n); sF3 (t)

sF3 (stop) ::= stop

Marking. The next step is marking the call to a future, we name this function
step four and we denote it by s4. Notice that if a future is not requested then it
does not make sense mark the call, therefore, only if value is claimed we mark
it. In addition, to avoid the token confusion between calls to the same method
from the same process we only mark a get statement at a time. Then each trace
generates a set of traces where the traces has at most a marked get and all get is
marked at least one. Last condition ensures that all get will be verified because
we have a particular trace to verify each point where a process can waiting for
a future. Function s4 also adds a trace without marking, this traces is added

21

to analyze the case where the process does not execute a get statement that
belongs to a deadlock.

s4(s
F
3 (s2(s1(t)))) = ∪t′∈sF

3
(s2(s1(t′)))s4(t

′)

s4(t) = {t} ∪ {tt′; tt2 | ∀tt1, tt2 : tt = tt1; get(n, o); tt2 : tt′ = m(tt1; get(n, o))}

∪ {tt′; tt2 | ∀tt1, tt2 : tt = tt1; claim(n, o); tt2 : tt′ = m(tt1; claim(n, o))}

where function m is defined by m(tt1; get(x, o))} = tt′1; get(x?, o) where tt′1 is
tt1 where the call letx : T = o.l is replaced by letx:T = o.l?. Similar definition
holds for m(tt1; claim(n, o)). Finally notice that this step can be done because
the variables associated to a future were preserved by previous syntactical trans-
formations. The next step will remove these variables.

Abstract Labels. The last step is to abstract the variables associated to the
future calls. They were preserved because they are necessary to define the func-
tion s4. The transformation replace these variables by the object and method
used to create the future. The last step of the syntactical transformation is the
step five and is denoted by s5.

s5(s4(s
F
3 (s2(s1(t))))) ::= {s5(t

′)|t′ ∈ s4(s
F
3 (s2(s1(t))))}

s5(t; t
′) ::=

let o.l(~o); s5(t[o.l(~o)/x]) if t = “ letx:T = o.l(~o)”

let o.l(~o)?; s5(t[o.l(~o)?/x]) if t = “ letx:T = o.l(~o)?”

t; s5(t
′) otherwise

where t[n′/n] is the result of replace n by n′ in t. If n is a variable only the
free variables are replaced, in this context the variable binding operator is let

statement.

C Proof of Theorem 1

The idea behind the proof is simple: suppose a Creol program with initial con-
figuration C0, we define a mapping from both an execution of this program in
the concrete world and the reached configuration to a marking in a the Petri net
PC0

; more precisely, the mapping returns a set of Petri net marking. Then we
apply this transformation to an execution that reachs a deadlock and we show
there is a reached marking satisfying the extended deadlock marking definition.

22

C.1 Mapping motivation.

Before define the mapping, we motivate it. Let α = C0 −→ . . . −→ Cn a trace in
the operational semantic with C0 and Cn satisfying the following form:

C0 =c0[(F0,M0)] ‖ . . . ‖ o0[co0 , F0, L0] ‖ . . . ‖ run〈t〉

Cn =c0[(F0,M0)] ‖ . . . ‖ o0[co0 , F0, L
′
0] ‖ . . . ‖ run〈t′〉 ‖ n0〈t0〉 ‖ n1〈t1〉 ‖ . . .

Because the classes are static and the creation of object is not allowed, we can
ensure that C0 and Cn have the same classes and objects. Notice that the states
of the lock in an object can change through the execution, then we cannot
guaranty the states of the locks are the same in both configurations. In addition,
through the execution, the code in thread run changes and new threads could
be created.

The classes do not give any information to define the mapping. The state of
L′
i defines if the object oi is locked (L′ = ⊤) or not (L′ = ⊥); in the last case,

as a consequence of how was created the associated Petri net, a token has to
be added to place oi. Finally, the mapping has to add, or not, a token for each
thread n〈t〉.

First we analyze which information is needed if the mapping has to add a
token, then when a token has not to be added. In the case that a token has to
be added for a thread n〈t〉 in Cn, we have to map the unique name n to its
abstraction. Recall that abstractions are created using the tuple of caller, calling
method, callee, and called method. We can obtain these information for n from
the execution α, more precisely at the step where the thread is created. In the
case of n = run, the mapping directly assigns to it the abstract name run@run.

Besides, the mapping has to translate the remaining code t. Unfortunately
we cannot apply straightforward the previous syntactical transformation in con-
sequence of the following facts:

1. t can contain run-time syntax and this syntax is not supported by ST.
2. t is a remaining code, then the following problems arise in the translation of

the user get and claim statements:

(a) Suppose 〈t〉 = 〈letx:T = get@(n′, o) in t′〉. If the translation is based
only in t then we cannot ensure if this is the first, or not, claim of the
future n′ w.r.t. the initial code in thread n and the current execution. If
it is not the first, this get has to be removed to be consistent with the
syntactical transformation ST. This information can be taken from α.
Similar reasoning holds for claim.

(b) Suppose 〈t〉 = 〈letx:T = get@(n′, o) in t′〉 and that the get is the first
claim of the future n′ w.r.t the original code and the current execution.
In this case the statement has to be preserved. To do the translation the
name n′ in get@(n′, o) has to be replaced by the object and the method
that were used in its creation. In the original transformation this is done
by function s5. One more time, this information cannot be obtained from
t but it can be obtained from α.

23

To resolve (1) we extend the functions s1, . . . , s5. to run-time syntax. To
resolve (2a) and (2b) we introduce some auxiliary functions that are based on
the execution α.

Before continue, a subtlety w.r.t. the item(2a). Notice this problem is not
present in the case of internal run-time get, this is because the running get is
added by the operational semantic when a claim is executed and the future is
not ready. This can happen only in the first claim of the value.

Similarly to ST, this new transformation will assign to t a set of traces, in
view of the value abstraction and that t can still have both conditional branching
and calling to functions

Now we explain when a thread n〈t〉 does not add a token. If t 6= v with v a
value, the thread has to add a token, because the thread is running. On the other
hand if t = v then we have to add a token in the associated place only if the
future was not consumed in the execution α. Again, this information is present
in α. This is in view of to be consistent with how the token are manipulated in
the Petri net construction.

C.2 Function extensions, auxiliary functions and the mapping from
the operational semantic to Petri net markings

We do not differentiate between function si and its extension, which function
is used will be clear from the context. The extension are straightforward, but if
some comment is needed, it will be added.

s1 extension.

s1(letx:T = grab(o);M.l.o(~v) in release(o);x) ::= grab(o); s1(M.l.o(~v)); release(o);

s1(letx:T = release(o); get@n in grab(o); t) ::= release(o); get@n; grab(o); s1(t)

s1(letx:T = get@n in grab(o); t) ::= get@n; grab(o); s1(t)

s1(letx:T = grab(o) in t) ::= grab(o); s1(t)

s1(letx:T = release(o) in t) ::= release(o); s1(t)

s2 extension.

s2(t; tt) = {t; tt′|tt′ ∈ s2(tt)} with t = grab(o), release(o), get@n

s3 extension.

sF3 (release(o); t) ::= release(o); sF3 (t)

sF3 (get@n; t) ::= get@n; s
F∪{n}
3 (t)

sF3 (grab(o); t) ::= grab(o); sF3 (t)

Notice that run-time get only appears in the first claim of a future if the
value is not ready, then we do not need to check if it is the first claim of the
future.

24

s4 extension. In this case we replace the definition of s4 by this one.

s4(t) = {tt′; tt2 | ∀tt1, tt2 : tt = tt1; get(n, o); tt2 : tt′ = m(tt1; get(n, o))}

∪ {tt′; tt2 | ∀tt1, tt2 : tt = tt1; claim(n, o); tt2 : tt′ = m(tt1; claim(n, o))}

∪ {tt′; tt2 | ∀tt1, tt2 : tt = tt1; get@n; tt2 : tt′ = m(tt1; get@n)} ∪ {t}

The new definition extends s4 to take in account the statement get@n, the
extension of m for tt1; get@n is straightforward.

s4 extension. This function does not need to be extended.

Object and method used to create a future. Function om takes a trace
of the operational semantic and creates a function from thread name to both
an object and a method in the object. We express this pair by o.l. The function
created informs which method l of which object was used to create a thread.

Definition 7. Function om defines a partial substitution based on a trace of the
operational semantic C0 −→ . . . −→ Cn using the following rules:

om(C0) = ∅

om(C0 −→ . . . −→ Cn −→ Cn+1) = om(C0 −→ . . . −→ Cn) ∪ {n2 → o.l}

if Cn = C ‖ n1〈letx:T = o.l(~v) in t1〉 and Cn+1 = C ‖ n1〈letx:T = n2 in t1〉 ‖
n2〈letx:T2 = grab(o);M.l(o)(~v) in release(o);x〉, otherwise

om(C0 −→ . . . −→ Cn −→ Cn+1) = om(C0 −→ . . . −→ Cn)

We use omα as a shortcut for om(α).

Consumed Futures. The following function, csm, takes a trace of the oper-
ational semantic and returns a function from thread names to boolean values.
This value is true iff the future was consumed at least one in the trace.

Definition 8. Function csm defines a predicate based on a trace of the opera-
tional semantic C0 −→ . . . −→ Cn using the following rules:

csm(C0) = {n → false : for all thread name n}

csm(C0 −→ . . . −→ Cn −→ Cn+1) = csm(C0 −→ . . . −→ Cn) \ {n → false} ∪ {n → true}

if (i) Cn = Cn ‖ n′〈letx:T = claim@(n, o) in t〉 or Cn = Cn ‖ n′〈letx:T = get@n〉
or Cn = Cn ‖ n′〈letx:T = get@(n, o)〉 and (ii) Cn+1 = Cn ‖ n′〈letx:T = v in t〉
otherwise:

csm(C0 −→ . . . −→ Cn −→ Cn+1) = csm(C0 −→ . . . −→ Cn)

We use csmα as a shortcut of csm(α).

25

Syntactical transformation extension. We define the extension of the syn-
tactical transformation, denoted by ST k. It has in account a trace in the op-
erational semantic α with length k. The super-index k, in this function and in
the internal functions, will refer to a particular trace, we will omit the trace to
simplified the notation because this one is clear from the context. In addition,
let Ck = {n : csmα(n) = true} be the set of futures consumed in the trace α.

Definition 9. ST k is an extended syntactical transformation based on α, a
trace of the operational semantic, if ST k = omk ◦ s5 ◦ s4 ◦ sk3 ◦ s2 ◦ s1 where

sk3 = sC
k

3 , omk = omα and si are the extended version of the functions.

The differences between ST and ST k are two, if we do not take in account
the extensions: first, the use of sk3 instead of s∅3, this is to avoid adding futures
that were consumed in the real world execution; second, the use of the function
om, that replaces the thread names by the object and the method used to create
them in the real world execution.

(Abstract) caller and callee. Function cc takes a trace of the operational
semantic and creates a function from thread name to a pair of thread names.
For a thread name n, the returned pair n′@n expresses that the caller of thread
n is n′.

Definition 10. Function cc defines a substitution based on a trace of the oper-
ational semantic αk = C0 −→ . . . −→ Ck using the following rules:

cc(C0) = {run → run@run}

cc(C0 −→ . . . −→ Ĉk −→ Ĉk+1) = cc(C0 −→ . . . −→ Ck) ∪ {n2 → n1@n2}

if Ck = C ‖ n1〈letx:T = o.l(~v) in t1〉 and Ck+1 = C ‖ n1〈letx:T = n2 in t1〉 ‖
n2〈letx:T2 = grab(o);M.l(o)(~v) in release(o);x〉, otherwise

cc(C0 −→ . . . −→ Ck −→ Ck+1) = cc(C0 −→ . . . −→ Ck)

We use cck as a shortcut of cc(αk)

The last function gives for a particular thread name, the same name and
the name of its caller. To complete the association with a place in the Petri net
we have to abstract these names. To do this, function om (Def. 7) has to be
used but it cannot be used directly. For example, let n〈t〉 be a thread such that
cc(n) = n′@n. It cannot be possible replace directly n by om(n) in n′@n because
it could be the case that it has to be replaced by om(n)?, i.e. the same object
and method with a mark. The same holds for n′.

The marks are added by function s4, based on its definition and in the Petri
net construction, we can ensure that om(n) has to be marked if in the abstract
trace selected for the thread, before the step five, has a claim of the future n
with a mark. In the example, cc(n) = n′@n, n will be replaced by om(n)? if
the trace selected for n′, previous applying om ◦ s5, has a marked claim of n.

26

Similar reasoning holds for n′. Then, if n′ 6= run and it was created by another
thread n′′, therefore one has to check if the trace selected for the thread n′′ has a
marked claim for n′ before applying om ◦ s5 to know if om(n′) has to be marked
or not. Notice thread run is never marked. We formalize this in the following
definition. We denote s4 ◦ s

k
3 ◦ s2 ◦ s1 by sk1,4.

Definition 11. Let α = C0 −→ · · · −→ Ck a trace in the operational semantic of
the component C. Let n0〈t0〉, n1〈t1〉 and n2〈t2〉 be threads in Ck. Let t

′
i ∈ s1,4(ti).

The function acck is defined by:

acck·,·(run) = run@run

acck·,t′
0

(n1) = run@omk(n1, t
′
0) where n0 = run, cck(n1) = n0@n1

acckt′
0
,t′

1

(n2) = omk(n1, t
′
0)@omk(n2, t

′
1) where cck(n1) = n0@n1, cc

k(n2) = n1@n2

where omk(n, t) is omk(n)? if t has a marked claim of n; otherwise omk(n, t) is
omk(n).

C.3 From the operational semantics to Petri nets markings.

After the definitions of the previous section, we are able to present a set of
making in the Petri net for a reached configuration in the real world. This is
done is four steps. In step (1) we fix a set of traces. The traces selection is done
before applying functions om and s5 in order to check which future claim are
marked. Based on these traces, we define the places to put a token for each
thread, these are the steps (2) and (3). Step (4) adds the tokens corresponding
to the locks.

Definition 12. Let C0 be an initial configuration and let α = C0 −→ . . . −→ Ck

be an execution in the operational semantic. Let PC0
be the Petri net associated

to C0.

1. for each thread n〈t〉 in Ck, fix a trace t′ ∈ sk1,4(t).
2. for each thread n〈t〉 in Ck, where t is not a variable, add a token in:

(a) acck·,·(n)〈om
k(s5(t

′
run

))〉 = run@run〈omk(s5(t
′
run

))〉 if n = run.

(b) acck·,t′
run

(n)〈omk(s5(t
′))〉 if cck(n) = run@n.

(c) acckt′
0
,t′

1

(n2)〈om
k(s5(t

′
2))〉 if cc

k(n1) = n0@n1 and cck(c2) = c1@c2.

3. for each thread n〈v〉 in Ck, with v a variable, if the value was not consumed
in α, add a token in:

(a) acck·,t′
run

(n)〈〉 if cck(n) = run@n.

(b) acckt′
0
,t′

1

(n2)〈〉 if cc
k(n1) = n0@n1 and cck(c2) = c1@c2.

4. for all object o[c, F, L] add a token in place o if L = ⊥

Finally, let M(α) the set of all possible markings constructed in this way.

27

The following lemma ensures that the mapping is sound. The proof is by
induction over the number of steps in the operational semantic. We take in
account the complete semantics (see [2]). We define M(α) = {start} if α is not
a valid trace of the operational semantic.

Lemma 1. Let C0 −→ · · · −→ Ck be an execution in the operational semantic of
the initial configuration C0. All marking in M(C0 −→ · · · −→ Ck) is reachable
from a marking in M(C0 −→ · · · −→ Ck−1).

Proof: We start with the case k = 0. By definition M(C0 −→ C−1) = {start}.
On the other hand, ST 0 = ST and we only have to apply the function to thread
run〈trun〉. By construction, for all t ∈ ST(trun) the place start reaches the place
run@run〈t〉.

To prove the inductive case we proceed by case analysis in the operational
semantics. Let αk+1 = C0 −→ · · ·Ck −→ Ck+1 and αk = C0 −→ · · · −→ Ck. The
following facts will be useful in some cases:

(f 1) The function sk+1
3 changes w.r.t. sk3 if in the step to reach the configuration

Ck+1 one future is consumed.

(f 2) The function omk+1 changes w.r.t. omk if in the step to reach the configu-
ration Ck+1 one future is created.

(f 3) Other transitions to reach a configuration Ck+1 do not produce change in
the functions, i.e. ST k+1 = ST k.

(f 4) The function acck+1 changes w.r.t. acck if in the step to reach the configu-
ration Ck+1 one future is created.

Red Rule Case. Let Ck = C ′
k ‖ n〈letx:T = v in t〉 and Ck+1 = C ′

k ‖ n〈t[v/x]〉,
i.e., the last transition is done using rule Red. We have to show all marking
associated to n〈t[v/x]〉 is reached for a marking associated n〈letx:T = v in t〉.

Notice that, by definition, s1(v) = s1(x) = ε then ST k′

(t) = ST k′

(t[v/x]) for
all k′ and variables or values v and x. Recall condition (f3), then:

ST k+1(n〈t[v/x]〉) = omk+1 s5 s4 s
k+1
3 s2 s1(n〈t〉)

= omk+1 s5 s4 s
k+1
3 s2 s1(n〈letx:T = v in t〉)

= omk s5 s4 s
k
3 s2 s1(n〈letx:T = v in t〉)

= ST k(n〈letx:T = v in t〉)

Notice C ′
k is shared between Ck and Ck+1. In addition, by (f4), acck+1 = acck,

therefore M(αk+1) = M(αk).

28

Cond Rule Case. Let Ck = C ′
k ‖ n〈letx:T = if v = v′ then e1 else e2 in t〉 and

Ck+1 = C ′
k ‖ n〈letx:T = e1 in t〉. Once again, taking in account (f3), we have:

ST k+1(letx:T = e1 in t)

= omk+1 s5 s4 s
k+1
3 s2 s1(letx:T = e1 in t)

⊆ omk+1 s5 s4 s
k+1
3 (s2 s1(letx:T = e1 in t) ∪ s2 s1(letx:T = e2 in t))

= omk s5 s4 s
k
3 s2 s1(letx:T = if v = v′ then e1 else e2 in t)

= ST k(letx:T = if v = v′ then e1 else e2 in t)

Again, C ′
k is shared between Ck and Ck+1, by (f4), acck+1 = acck, but now

M(αk+1) ⊆ M(αk). The symmetrical case is the same.

Fut Rule Case. Let Ck = C ′
k ‖ n1〈letx:T = o.l(~v) in t〉 and Ck+1 = C ′

k ‖
n1〈letx:T = n2 in t〉 ‖ n2〈letx:T = grab(o);M.l.o(~v) in release(o);x〉 where the
meta mathematical notation M.l.o(~v) stands for m[o/self][~v/~x] where the meth-

ods suits [M] equals [. . . , l = ς(self :T).λ(~x:~T).m, . . .], then:

ST k+1(letx:T = n2 in t) = omk+1 s5 s4 s
k+1
3 s2 s1(letx:T = n2 in t)

= omk+1 s5 s4 s
k+1
3 s2 s1(t[n2/x])

We proceed with thread n2. Let t2 be the code associated to n2, notice that
t2 has not thread names because t2 has not started to run. This implies that
omk+1 cannot replace any thread name in t2. Besides, by the same reason, use
s∅3 instead sk+1

3 in ST k+1 will not make any differences w.r.t. t2. Then

ST k+1(letx:T = grab(o);M.l.o(~v) in release(o);x)

= omk+1 s5 s4 s
k+1
3 s2 s1(letx:T = grab(o);M.l.o(~v) in release(o);x)

= s5 s4 s3 s2 s1(letx:T = grab(o);M.l.o(~v) in release(o);x)

= s5 s4 s3 s2(grab(o); s1(M.l.o(~v)); release(o);)

= (grab(o); s5 s4 s3s2 s1(M.l.o(~v)); release(o);)

= (grab(o);ST(m[o/self][~v/~x]); release(o);)

= grab(o);ST(m[o/self]); release(o))

On the other hand:

ST k(letx:T = o.l(~v) in t) = omk s5 s4 s
k
3 s2 s1(letx:T = o.l(~v) in t)

= omk s5 s4 (letx:T = o.l; sk3 s2 s1(t))

= omk s5 (letx:T = o.l?; T ∪ letx:T = o.l; T ′)

= (let o.l?; omk s5 (T [o.l?/x])) ∪ (let o.l; omk s5(T
′[o.l/x]))

where T contains the traces of sk3 s2 s1(t) such that the get or claim associated
to the call x:T = o.l(~o) is marked with ? and T ′ = sk3 s2 s1(t) \ T .

29

Now we prove that all marking from M(αk+1) is reachable from a marking
from M(αk). Let b′ a trace in sk+1

1,4 (t[n2/x]). Suppose that n2 appears in b′,
this implies that the future is requested. Notice that the variable n2 could be
followed by ? or not. Without lost of generality, suppose that it is. Now, take
b ∈ T [o.l?/x] such that b′[o.l/n2] = b. By omk, s5 definitions and the uniqueness
of the thread names:

ST k+1(letx:T = n2 in t) ∋ omk+1 s5(b
′) = s5 om

k+1(b′)

= s5 om
k(b′[o.l/n2])

= omk s5(b
′[o.l/n2])

On the other hand,

ST k(letx:T = o.l(~c) in t) ∋ let o.l?; omk s5(b)

Now we proceed with the thread name abstractions. Notice that n1 was
created before the step k then it holds acck(n1) = acck+1(n1) = c@o1.l1(~o1)

+ (we
are doing here an abuse of notation, for example, we are not taking in account the
case run@run). On the other hand, by definition, cc(n2) = n1@n2 then, because
the future is called in b′ and it is marked, we have acck+1

tn0
,b′(n2) = o1.l

+
1 @o.l?

where tn0
is the trace chosen for the n1’s caller in the right format.

Now, if we have a marking mk+1 ∈ M(αk+1), then mk+1 is composed
by a marking m′

k, the marking associated to C ′
k, more two tokens: one in

the state c@o1.l
+
1 〈om

k+1 s5(b
′)〉 and one in the location o1.l

+
1 @o.l?〈b′〉 for b′ ∈

ST k+1(letx:T = grab(o);M.l.o(~v) in release(o);x), it is easy to see that this one
is reachable from the marking mk of M(αk) such that mk is the marking m′

k

more one token in c@o1.l
+
1 〈let o.l?; om

k s5(b)〉 through a call transition.

The case where the future is not marked is similar.

Runtime Get Rule Case. Let Ck = C ′
k ‖ n1〈v〉 ‖ n2〈x:T = get@n1 in t〉 and

Ck+1 = C ′
k ‖ n1〈v〉 ‖ n2〈x:T = v in t〉. In this case we use the following notation

s
k∪{n1}
3 = s

Ck∪{n1}
3 . Before compute the transformation in the step k+1, notice

sk+1
3 = s

k∪{n1}
3 and that omk+1 = omk.

ST k+1(letx:T = v in t) = omk+1 s5 s4 s
k+1
3 s2 s1(letx:T = v in t)

= omk+1 s5 s4 s
k+1
3 s2 s1(t[v/x])

= omk+1 s5 s4 s
k+1
3 s2 s1(t)

= omk s5 s4 s
k∪{n1}
3 s2 s1(t)

30

On the other hand,

ST k(letx:T = get@n1 in t) = omk s5 s4 s
k
3 s2 s1(letx:T = get@n1 in t)

= omk s5 s4 s
k
3(letx:T = get@n1; s2 s1(t))

= omk s5 s4(letx:T = get@n1; s
k∪{n1}
3 s2 s1(t))

= omk s5 (letx:T = get@n1?; s
k∪{n1}
3 s2 s1(t)

∪ letx:T = get@n1; s4 s
k∪{n1}
3 s2 s1(t))

= (get(on1
.ln1

?); omk s5 s
k∪{n1}
3 s2 s1(t))

∪ get(on1
.ln1

); omk s5 s4 s
k∪{n1}
3 s2 s1(t))

Now we prove that all marking from M(αk+1) is reachable from a marking
from M(αk). Notice

ST k+1(letx:T = v in t) = omk s5 s4 s
k∪{n1}
3 s2 s1(t) ⊇ omk s5 s

k∪{n1}
3 s2 s1(t)

because removing s4 does not add the marking to the value claims. Then for
each b′ ∈ ST k+1(letx:T = v in t) there is (b; b′) ∈ ST k(letx:T = get@n1 in t).
with b = get(on1

.ln1
?) or b = get(on1

.ln1
).

Now, if we have a marking mk+1 ∈ M(αk+1), then mk+1 is composed by
a marking m′

k, the marking associated to C ′
k, plus a token in acck+1(n2)〈b

′〉 =

c@c′〈b′〉 for some b′ ∈ ST k+1(letx:T = v in t). Notice the thread n1 does not add
a token because the future was consumed in the last step of αk+1. This marking is
reached by the marking mk ∈ M(αk) such that mk is composed by the marking
m′

k plus a token in the place get(on1
.ln1

); b′ ∈ ST k(letx:T = get@n1 in t) and a
token in acc(n1)〈〉 = c′@on1

.ln1
〈〉 by a claim transition. In this case the n1 adds

a token because it was not consumed in α. 5

User Get Rule Case. Let Ck = C ′
k ‖ n1〈v〉 ‖ n2〈x:T = get@(n1, on2

) in t〉 and
Ck+1 = C ′

k ‖ n1〈v〉 ‖ n2〈x:T = v in t〉. We have two analyze two case, in the
first one it is the first claim of the future, in the second one, it is not. If it
is the first claim of the future, the proof proceeds as the case of the runtime
get case. On the other hand, if it not the first claim, notice that Ck ∋ n1 then
ST k(x:T = get@(n1, on2

) in t) = ST k+1(x:T = v in t), i.e. the get statement is
removed by function sk3 . In addition n1 does not add token in both Ck and Ck+1

because the future was consumed in αk, then M(αk) = M(αk+1).

Claim Rule Case. As in the get statement case, we have to analyze the case
where it is the first request of the value or not. In the second case, the proof
proceed as the user get case where it is not the first claim of the future.

Suppose then it is the first claim of the future, then

Ck =C ′
k ‖ n2〈t2〉 ‖ n1〈letx:T = claim@(n2, o) in t1〉

Ck+1 =C ′
k ‖ n2〈t2〉 ‖ n1〈letx:T = release(o); get@n2 in grab(o); t1〉

5 We omit the cases of function acc in the sake of simplicity.

31

where t2 is not a value. In the proof of this case we will use the following auxiliary
calculation. This calculation uses the fact that sk+1

3 = sk3 and how was defined

the extension of sF3 . Recall “s
F
3 (get@n; t) ::= get@n; s

F∪{n}
3 (t)” , i.e. for the

runtime get it does not check if n ∈ F .

sk3 s2 s1(letx:T = claim@(n2, o) in t1)

= sk3(claim@(n2, o); s2 s1(t1))

= release(o); get@n2; grab(o); s
k∪{n2}
3 s2 s1(t1)

= s
k∪{n2}
3 s2 (release(o); get@n2; grab(o); s1(t1))

= s
k∪{n2}
3 s2 s1(letx:T = release(o); get@n2 in grab(o); t1)

= sk3 s2 s1(letx:T = release(o); get@n2 in grab(o); t1)

= sk+1
3 s2 s1(letx:T = release(o); get@n2 in grab(o); t1)

Notice that omk+1 = omk, then omk+1 ◦ s5 ◦ s4 = omk ◦ s5 ◦ s4 and

ST k(letx:T = claim@(n2, o) in t1) = ST k+1(letx:T = release(o); get@n2 in grab(o); t1)

This implies M(αk+1) = M(αk) because the abstract names does not change
with the last transition.

We analyze the case where t2 is a value and it is the first claim of the future:

Ck =C ′
k ‖ n2〈v〉 ‖ n1〈letx:T = claim@(n2, o) in t1〉

Ck+1 =C ′
k ‖ n2〈v〉 ‖ n1〈letx:T = v in t1〉

We proceed with the thread code translation. Notice omk+1 = omk and

sk+1
3 = s

k∪{n2}
3 by (f2) and (f1) respectively.

ST k(letx:T = claim@(n2, o) in t1)

= release(o); get@on2
.ln2

?; grab(o); (omk , s5 s
k∪{n2}
3 s2 s1(t1))

∪ release(o); get@on2
.ln2

; grab(o); (omk , s5 s4 s
k∪{n2}
3 s2 s1(t1))

ST k(v) = {ε}

On the other hand

ST k+1(letx:T = v in t1) = ST k+1(t1[v/x]) = ST k+1(t1)

= omk+1 , s5 s4 s
k+1
3 s2 s1(t1)

= omk , s5 s4 s
k∪{n2}
3 s2 s1(t1)

ST k+1(v) = {ε}

Let mk+1 ∈ M(αk+1), then mk+1 is composed by a marking m′
k, the mark-

ing associated to C ′
k, plus a token in acck+1(n1)〈b〉 = c@c′〈b〉 for some b ∈

32

ST k+1(letx:T = v in t1) = omk s5 s4 s
k∪{n2}
3 s2 s1(t1). The thread n2 does not

add a token because the future was consumed in the last step of αk+1. This
marking is reached by the marking mk ∈ M(αk) such that mk is composed by
the marking m′

k plus a token in the place c@c′〈release(o); get@on2
.ln2

; grab(o); b〉
with acck(n1) = c@c′ and a token in acc(n2)〈〉 = c′@on2

.ln2
〈〉. The token has

to be added in the last location because the future was not consumed in αk.
The token in place c@c′〈release(o); get@on2

.ln2
; grab(o); b〉 executes the release

transition, this creates a token in the object on2
, then executes the claim tran-

sition, i.e. it consumes the future in c′@on2
.ln2

〈〉, finally the grab execution is
executed, consuming the token created with the first transition. In this way the
target marking is reached. One more time, we omit the cases of function acc in
the sake of simplicity.

Grab Rule Case. Let Ck = C ′
k ‖ o[c, F,⊥] ‖ n〈grab(o); t〉 and Ck+1 = C ′

k ‖

o[c, F,⊤] ‖ n〈t〉. Recall ST k+1 = ST k by condition (f3), then

ST k(grab(o); t) = grab(o);ST k(t)

ST k+1(t) = ST k(t)

In addition acck+1 = acck and for all marking mk ∈ M(αk), mk has a token in
place o. Therefore, to show that all marking mk+1 ∈ M(αk+1) is reachable from
a marking mk ∈ M(αk) is straightforward through a grab transition.

The Other Cases. The Let Rule and Suspend Rule are straightforward by the
operational semantics definition, facts (3) and (4), and s1 and sF3 definitions re-
spectively. The Stop, Flookup and Fupdate Rules are similar to Red Rule. Finally
Release Rule is similar to the Grab Rule case.

C.4 The Proof.

Here the proof of Theorem 1

Proof: If the configuration reachs an extended deadlock, then there is a trace
in the operational semantic C0 −→ · · · −→ Cn such that configuration Cn has a set
of processes P = {n1, . . . , nN} such that all ni ∈ P satisfies one of the following
conditions.

1. (ni〈x:T = get@(nj , oi) in t〉) or ni〈letx:T = get@nj in t〉) and nj ∈ P
2. ni〈letx:T = grab(o) in t〉 and there is nj ∈ P s.t. nj〈letx:T = get@(n′

j , o) in t
′〉.

Condition (1) is the rewriting of “ni is waiting for nj” and condition (2) for-
malizes “ni is waiting for object o that is blocked by another process in the
deadlock”. Now we only have to apply the syntactical transformation to the
configuration Cn. For all processes in P that executes a get statement, regard-
less it is runtime or user get, this is the first time that the value is requested

33

because the processes stop, this implies the values are not calculated. Let P c

the processes in Cn that are not in P . (c0) For all process in p ∈ P c such that
p〈t〉, take a trace t̂ ∈ sk1,4(t) (recall this is the notation for s4 s

k
3 s2 s1(t)) such

that t̂ has not the mark “?”. This trace exist by s4 definition. For the process in
ni ∈ P , we select a trace in the following way:

(c1) If ni〈letx:T = get@(nj , oi) in t〉 select a trace get@(nj , oi)?; t̂ ∈ sk1,4(letx:T =
get@(nj , oi) in t).

(c2) If ni〈letx:T = get@nj in t〉 select a trace get@nj?; t̂ ∈ sk1,4(letx:T = get@nj in t).

(c3) if ni〈letx : T = grab(o) in t〉 select a trace t̂ ∈ sk1,4(letx : T = grab(o) in t)

such that t̂ has not the “?”.

Using these traces we calculate the abstraction of the thread names. Applying
the last steps of the syntactical transformation (omk and s5) to the partial
abstrated trace we finish the marking construction.

Define the set P1, P2, P3 of Def. 6 in the following way: P1 are the places
where a token is added by a process in P ; P2 are the places where a token
is added by a process in P c; finally P3 are the rest of places. The election of
traces in (c1) and (c2) and the definition of extended deadlock ensure that the
conditions in the item 1 of the Def. 6 are satisfied.

Now we prove that the condition in item 3 of the Def. 6 is satisfied. With
this, the proof is done as a consequence of P3 definition (P3 are the places that
are not in P1 ∪ P2) and the fact that item 2 requests zero or more token in P2

(there is not restriction about the number of tokens).
Let o.l+@o′.l′++〈t〉 ∈ P3 such that o.l+@o′.l′++〈t〉 has at least a token. We

have two case to analyze ++ = ? or; ++ 6= ? and t has a question mark. If
++ = ? then the token (or the tokens) of this place, by construction, has to
be related with a thread that was called by another thread that belongs to
P by conditions c0-c3. This implies that o.l+@o′.l′++〈t〉 ∈ P1 and we get a
contradictions. On the other hand, the case ++ 6= ? and t with a question mark
is not possible because we only mark the traces that are associated to a thread
in the deadlock, one more time, this is ensured by conditions (c0-c3).

	A Petri Net based Analysis of Deadlocks for Active Objects and Futures
	Frank S. de Boer, Mario Bravetti, Immo Grabe, Matias Lee, Martin Steffen, and Gianluigi Zavattaro

