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Abstract

We present a static, compositional analysis based on a
type and effect system to estimate an upper bound for
the resource consumption for nested and multi-threaded
transactional programs. This work extends our previous
type system for Transactional Featherweight Java to al-
low more liberal use of transactions in the semantics. The
new types are also more expressive and structurally sim-
pler using a linear representation instead of a tree repre-
sentation for capturing static approximation of resource
consumption. We prove soundness of our analysis.

1 Introduction

Software Transactional Memory [12] has been intro-
duced as an alternative to locked-based synchronization
for shared memory concurrency. It has become the focus
of intensive theoretical research and for practical applica-
tions.

One of the recent transactional models supports ad-
vanced features such as nested and multi-threaded trans-
actions is described in [10]. In this model, a transaction
is nested if it contains a number of transactions, and the
child transactions must commit before their parent. Fur-
thermore, a transaction is multi-threaded when threads

are allowed to run inside the transaction and in parallel
with the parent thread executing that transaction, as well.
The threads spawned inside a transaction will inherit the
open transactions and thus the memory usage of its parent
thread. When the parent thread commits a transaction, all
the child threads must join the commit of their parent. We
call the commits of the child threads and their parent joint
commits. Due to this form of synchronization, the parallel
threads inside a transaction do not run independently.

In a typical implementation, each thread has its own lo-
cal copy of memory called log per transaction to record
memory accesses during its execution. In particular a
child thread will also store a copy of its parent’s log so that
the child thread can be executed independently with its
parents until commit time. At commit time when all child
threads and their parents join via a commit, their own logs
and the copies are consulted to check for conflicts and po-
tentially perform a roll-back. A major complication for
the static analysis is that the memory locations are im-
plicitly copied into the local logs, the resources used by a
transactional program are difficult to estimate.

We develop a type system to statically estimate the
memory resource consumption in terms of the maximum
number of logs that co-exist at the same time. This work
extends our previous work [14] by removing a restriction
on the semantics of the language which does not allow
new transactions opened inside spawned threads after a
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joint commit of their parent. Moreover the type system
here is a simplification of the previous one, using a linear
numeric representation instead of tree representation
as in the previous work. More concretely, the type
judgements now are based on what we call sequences
of tagged numbers reflecting the resource consumption
of the transactional behaviour. Below we informally
describe the calculation of memory resource a transac-
tional program could consume at runtime. Consider the
following pseudo-code of a program containing nested
and multi-threaded transactions:

The program is illustrated in Figure 1. The starting
transaction command onacid and ending transaction
command commit are denoted by [ and ], resp. The
spawn command creates a new thread running in parallel
with the parent thread. The new thread makes a copy
of local variables of the parent thread into its local
environment. In our example, when spawning e1 the
main thread has opened two transactions so thread 1
executes e1 inside these two transactions and must do
two commits to close them. That is the reason why after
e1, thread 1 needs to execute two commit commands.
Figure 1(b) illustrates that the parallel threads must
commit a transaction at the same time. The right-hand
edges of the boxes mark these synchronizations.

Suppose e1 opens and closes one transaction, e2 two, e3

three and e4 four. The maximum resource consumption
occurs after spawning e2. At that time, e1 contributes 3
transactions (2 from the main thread, and 1 of its self), e2

contributes 6 transactions (3 from the main thread, and 3
of its self), the main thread contributes 3 transaction. And
the total will be 2 + 6 + 3 = 11 transactions.

As mentioned above parallel threads are not completely
independent. They join with their parents via a commit
which is an implicit synchronization point. The diffi-
culty for the analysis is that it must capture those implicit
synchronization points at compile time. Furthermore the
analysis needs to contain enough information in order to

(a)

(b)

Figure 1: Nested, multi-threaded transactions and join
synchronization

analyze the resource consumption compositionally.
The rest of the paper is structured as follows. In the

rest of Section 1, we discuss some related work. Sec-
tion 2 introduces syntax and operational semantics of the
calculus. Section 3 presents a type system for estimating
the resource consumption using a linear numeric repre-
sentation. The soundness of the analysis is sketched in
Section 4. We conclude in Section 5.

Related work

Estimating resource usage has been studied in various set-
tings. [9] introduces a strict, first order functional lan-
guage with a type system such that well-typed programs
run within the space specified by the programmer. The
paper [13] uses inference system to describe a memory
management for programs that perform dynamic memory
allocation and de-allocation. Hofmann and Jost [7] use
a linear type system to compute linear bounds on heap
space for a first-order functional language. For impera-
tive and object-oriented languages Wei-Ngan Chin et al.
[5] verifies memory usages for object-oriented programs.
Programmers have to annotate the memory usage and size
relations for methods as well as explicit de-allocation.
In [8], Hofmann and Jost use a type system to calcu-
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late the heap space bound as a function of input for an
object oriented language. They successfully treat inheri-
tance, downcast, update and aliasing. In [4] the authors
present an algorithm to statically compute upper bounds
of the amount of memory consumption of a method as a
non-linear function of method’s parameters. The bounds
are not precise. Their work is not type-based and the lan-
guage does not include explicit de-allocation. Braberman
et al. [2] calculate non-linear symbolic approximation of
memory bounds for Java programs involving both data
structures and loops. However the bounds are not easily
precise due to various factors. [6] present a similar ap-
proach.

The authors in [3] study the use of logical methods
to infer precise memory consumption of Java bytecode
programs with resource annotation by pre- and post-
conditions. In [1], Albert et al. compute the heap con-
sumption of a program as a function of its data size.
[11] proposes a fast algorithm to statically find the upper
bounds of heap memory for a class of JavaCard programs.

Our analysis not only takes care of multi-threading —
many of the cited works are restricted to sequential lan-
guages — but also of the complex and implicit synchro-
nization (by joint commits) structure entailed by the trans-
actional model.

2 Transactional Featherweight Java

Transactional Featherweight Java (TFJ) is an object cal-
culus featuring threads and imperative constructs needed
to model transactions, supporting a quite expressive trans-
actional concurrency model.

P ::= 0 |P ‖ P | p(e) processes
L ::= class C{~f ; ~M} class definition
M ::= m(~x){e; } methods
v ::= r | x |null values
e ::= v | v.f | v.f := v | if v then e else e

expressions| let x = e in e | v.m(~v)
|new C() | spawn e | onacid | commit

Table 1: TFJ syntax

2.1 Syntax
The syntax of TFJ is shown in Table 1. We use P for
process terms, e for expressions. p(e) is a thread with
identifier p and expression e being executed; the thread
label p is distinct for every thread. Sets of processes can
be empty 0 or consists of a number of processes p(e) run-
ning in parallel, where parallel composition is written as
‖.

The metavariable L ranges over class definitions
class C{~f ; ~M}, where C is the name of the class, ~f
presents the list of fields, ~M captures the list of meth-
ods. Inheritance is not supported in this language. A
method definition M ::= m(~x){e; } consists of the name
m of the method, the list of parameters ~x, the method
body e which is a expression. Moreover, v stands for val-
ues which can be object references r, variables x or null.
Values are expressions that can no longer be evaluated.
Finally, an expression can be either a value v, a field ac-
cess v.f , a field update v.f := v, a conditional structure
if vtheneelsee, a sequential composition specified by let-
construct let x = e in e, a method call v.m(~v), an object
construction newC(), a thread creation spawne, a trans-
action start command onacid or a transaction close com-
mand commit. The expression spawn e creates a new
thread to evaluate e. The execution of e takes place inside
the same nesting of transactions as the thread executing
spawn e, i.e spawn e will cause the current environment
being copied into the new thread. For readability, we write
e1; e2 to indicate sequencing of expressions e1 and e2.

2.2 Semantics
The semantics of TFJ is given by two-levels of operational
rules; the local and the global semantics is shown in Ta-
ble 2 and 3, respectively. The local semantics deals with
the evaluation of one single thread and reduces configu-
rations of the form E, e, where e is an expression and E
is a local environment..

Definition 1 (Local environment). A local environmentE
is a finite sequence of the form l1:log1, . . . , lk:logk, i.e.,
of pairs of transaction labels li and the corresponding log
logi. We write |E| for denoting the number of pairs l:log,
which is called the size of E.

The sequences of transaction names and logs are used
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E, let x = v in e→ E, e|x=v R-RED

E, let x2 = (let x1 = e1 in e) in e
′ → E, let x1 = e1 in (let x2 = e in e′) R-LET

E, let x = (if true then e1 else e2) in e→ E, let x = e1 in e R-COND1

E, let x = (if false then e1 else e2) in e→ E, let x = e2 in e R-COND2

read(E,r)=E′,C(~u) fields(C)=~f
E,let x=r.fi in e→E′,let x=ui in e

R-LOOKUP

read(E,r)=E′,C(~r) write(r→C(~r)↓r
′
i ,E′)=E′′

E,let x=r.fi:=r′ in e→E′′,let x=r′ in e
R-UPD

read(E,r)=E′,C(~r) mbody(C,m)=(~x,e)
E,let x=r.m(~r) in e′→E′,let x=e|~x=~r,this=r in e′ R-CALL

Table 2: Local semantics

to represent the nesting structure. The transactions later
in the sequence are executed inside the former transac-
tions. This means that the left-most transaction refers to
the inner-most transaction, the most recently started one.
Consequently, committing terminates transactions from
right to left and also removes the corresponding bindings
in the local environment. The number |E| thus specifies
the nesting depth of the thread, i.e., the number of transac-
tions which have been started but not yet committed. |E|
in our analysis is the current amount of allocated memory
for the thread. A logi just keeps track of changes to the
local memory of a tread wrt. transaction li. The local level
only concerns the current thread and consists of rules for
the commands for reading, writing, method calls and for
creating new objects.

At the global level, the reduction is of the form: Γ, P ⇒
Γ′, P ′ or Γ, P ⇒ error , where Γ is the global environ-
ment and P is a process.

Definition 2 (Global environment). A global environ-
ment Γ is a finite map, written as p1:E1, . . . pk:Ek, from
threads names pi to local environments Ei.

In general, each process contains a number of threads
running in parallel. Each thread executes an expression
whose the evaluation is described by the local rules. For
each thread p, we need the corresponding local environ-

ment E. Thus, Γ is a set of bindings of the form p:E
where the order of the bindings does not play a role be-
cause the threads run in parallel. The global steps make
use of a number of functions accessing and changing the
global environment:

Definition 3. The properties of the abstract functions are
specified as follows:

1. The function reflect propagates the changes
from a local environment to a global envi-
ronment: if reflect(pi, E′i,Γ) = Γ′ and
Γ = p1:E1, . . . , pi:Ei, . . . , pk:Ek, then
Γ′ = p1:E1, . . . , pi:E′i, . . . , pk:Ek with |Ei| = |E′i|.

2. The function spawn(p, p′,Γ) creates a new thread
p′ from a parent thread p: Assume Γ = p:E,Γ′′ and
p′:E′ /∈ Γ and spawn(p, p′,Γ) = Γ′, then Γ′ =
p:E, p′:E′,Γ′′ and |E| = |E′|.

3. The function start(l, pi,Γ) opens a new transac-
tion l in thread pi: if start(l, pi,Γ) = Γ′ for
Γ = p1:E1, . . . , pi:Ei, . . . , pk:Ek and for a fresh l,
then Γ′ = p:E1, . . . , pi:E′i, . . . , pk:Ek, with |E′i| =
|Ei|+ 1.

4. The function intranse(Γ, l) returns a set of threads
currently have the same transaction l: Assume Γ =
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Γ′′, p:E s.t. E = E′, l:log and intranse(Γ, l) = ~p,
then

(a) p ∈ ~p and

(b) for all pi ∈ ~p we have Γ =
. . . , pi:(E′i, l:logi), . . ..

(c) for all threads p′ with p′ /∈ ~p and where Γ =
. . . , p′:(E′, l′:log′), . . ., we have l′ 6= l.

5. The function commit closes a transaction. Note that
the effect of one transaction may be copied into many
threads due to spawn function, so when this transac-
tion closes, all the threads containing it must syn-
chronize via a joint commit: if commit(~p, ~E,Γ) =
Γ′ for Γ = . . . , pi : Ei, . . . , pj : Ej , . . . and for
~p = intranse(Γ, l), pi /∈ ~p, pj ∈ ~p then Γ′ =
. . . , pi : E′i, . . . , pj : E′j , . . . with |E′i| = |Ei| and
|E′j | = |Ej | − 1.

The five reduction rules of the global semantics are
given in Table 3.

3 Type system
The purpose of our type system is to determine an up-
per bound on the resource consumption of a TFJ program
in terms of the maximum number of transactions running
at any given moment. The type of a term is a sequence
of tagged numbers, which is an abstract representation
of the term’s transactional behaviour, i.e., capturing the
effects of starting new transactions, of committing local
transactions, and of committing transactions jointly with
other threads. An important property of the type system
is compositionality, so that the analysis scales for larger
programs.

3.1 Sequence of tagged numbers
To represent local transactional behaviour of a term, we
use the set of four tags or signs {+,−,#,¬} to ab-
stractly represent, respectively, the opening, closing, (lo-
cal) maximum and joint commit behaviour of the term.
These tags are paired with a natural number. So our
sequences of tagged numbers are sequences over N =
{+n,−n,#n,¬ n} where n is a natural number.

Definition 4. S = s1s2s3 . . . sk is a sequence of tagged
numbers iff si ∈ N for all i ∈ {1, . . . , k}.

The empty sequence is denoted by ∅. We use |S|
to denote the length of S, i.e., k. sign(si) gives the
sign of si, i.e., sign(si) ∈ {+,−,#,¬} and |si| de-
notes the natural value of si without its sign. We write
sign(S) for the sequence of signs of S: sign(s1 . . . sk) =
sign(s1) . . . sign(sk). We also write sign(s) ∈ sign(S)
when the sign of s appears in sign(S) and sign(S1) =
sign(S2) if the two sequences of signs are identical. We
let s, t, .. range over elements of sequences and m,n, l
range over natural numbers.

The set of all tagged sequences can be classified into
groups that represent the same behaviour in terms of local
transactions. We use the most compact sequence in each
group as the canonical element for that group:

Definition 5. A sequence S is canonical iff sign(S) does
not contain ‘++’, ‘−−’, ‘##’, ‘+−’, ‘+¬’, ‘+#¬’ or
‘+#−’ as subsequences, and furthermore |s| > 0 for all
s ∈ S.

For example +5+9 is not canonical but +5#9 and ¬4¬6
are. Similarly, +m−n or +m¬n and +m#l−n or +m#l¬n
are not allowed in a canonical sequence.

The intuition here is that if a sequence contains the
above sign patterns, we can simplified/shorten it without
changing the interpretation of the sequence wrt. the re-
source consumption. The last two patterns can be com-
bined to reflect the maximum number of local transac-
tions. A sequence can be reduced to a canonical one by
the following rewriting rules:

1. s ⇓ ∅ if |s| = 0.
The zero-valued components do not affect the be-
haviour of a term.

2. ss′ ⇓ sign(s)(|s|+ |s′|) if sign(ss′) = ++ or −−.
+1 represents the opening of 1 transaction. When
many + components are consecutive, we can shorten
them to get the total number of transactions will be
opened consecutively. Analogously for −1 which
represents the closing of 1 transaction.
For example #5−3−4#6 ⇓# 5−7#6, or #5+3+4#6 ⇓#

5+7#6.
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E,e→E′,e′ reflect(p,E′,Γ)=Γ′

Γ,P‖p(e)⇒Γ′,P‖p(e′) G-PLAIN

p′ fresh spawn(p,p′,Γ)=Γ′

Γ,P‖p(let x=spawn e1 in e2)⇒Γ′,P‖p(let x=null in e2)‖p′(e1)
G-SPAWN

l fresh start(l,p,Γ)=Γ′

Γ,P‖p(let x=onacid in e)⇒Γ′,P‖p(let x=null in e)
G-TRANS

Γ=...,p:E E=...,l:log intranse(Γ,l)=~p=p1...pk commit(~p, ~E,Γ)=Γ′ ∀i∈{1,...,k}
Γ,...‖pi(let x=commit in ei)‖...⇒Γ′,...‖pi(let x=null in ei)‖...

G-COMM

Γ=Γ′′,p:E E=∅
Γ,P‖p(let x=commit in e)⇒error

G-COMM-ERROR

Table 3: Global semantics

3. #m#n ⇓#max(m,n).
As said, the # components represent the local maxi-
mum number of transactions. That is the reason why
when shortening a sequence, we choose the larger
one from two consecutive # components. In other
words, we can simplify the meaning of #m to ex-
press the number of nested transactions (which is in
fact only true partially because of concurrent threads
with joint commits). That means these m transac-
tions can be opened concurrently at a moment when
the local resource consumption will be maximized.
The #m#n pattern shows that the m nested transac-
tions and the n ones are sequential. They affect in-
dependently the local maximum resource allocation.
So, when shortening them, we choose the one with
the larger value.

4. +m#x−n ⇓+ (m− µ)#(x+ µ)−(n− µ) where µ =
min(m,n)

This rule takes care of increasing the number of
nested transactions when we have more opening-
closing pairs surrounding the current nested transac-
tions.

For example:

• +5#3−2 ⇓ +(5− 2)#(3 + 2)−(2− 2)
⇓+ 3#5−0

5. +m#x¬n ⇓+ (m− 1)#(x+ n)

The ¬ components capture the number of threads
inside the latest opened transaction. Each spawned
thread makes a copy of this transaction into its own
local environment. The transaction thus when clos-
ing will contribute as much as its number of threads
to the local maximal behaviour.

For example:

• +2#4¬2 ⇓+ 1#6

Two sequences are equivalent if they are their canonical
sequences coincide:

Definition 6. Two sequences of tagged numbers S1 and
S2 are equivalent, written S1

∼= S2, iff they both can be
reduced to the same canonical sequence.

To represent the transactional behaviour, we need a
few structures and corresponding ‘reduction’ operators.
The first operator ⊕ is used calculate the sum of two se-
quences representing resource behaviour of two threads
having joint commits in the global semantics, such as
spawn(e1; commit); e2; commit; e3; where the ei’s are
closed wrt. transactions.

Definition 7. Given two sequences S1 = s1 . . . sk and
S2 = t1 . . . tk such that sign(S1) = sign(S2), the ⊕ op-
eration is defined as follows: S1 ⊕ S2 = u1 . . . uk where
ui = sign(si)(|si|+ |ti|).
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As illustrated by Figure 1(b) we need to identify the
joint commit points and take the total of the peak re-
sources for each joint commit segment. Note that in
spawn(e1; commit); e2; commit; e3; we need to type
e = e1; commit first and if a joint commit is needed then
the type S1 of e will contain at least one s with sign − or
¬. But e can be sequence with e2, then with commit; e3;
so S2 may not contain any s with sign − or ¬, because
the joint commit may appear later.

Definition 8. Let S1 = s1 . . . sk1 and S2 = t1 . . . tk2 be
two canonical sequences. Suppose that h1, h2 are the
smallest indices such that sign(sh1), sign(th2) ∈ {−,¬}
and they are 0 if such elements do not exist. Let σ =
sign(sh1th2), n1 = |sh1 | and n2 = |th2 |. The merging
operation, notation S1 ⊗ S2, is defined recursively as fol-
lows:

S1⊗S2 =


S1 ⊕ S2 if Si = #n for i = {1, 2}
S¬(1 + n2)(

−(n1 − 1)S′1 ⊗ S′2) if σ = −¬
S¬(n1 + 1)(S′1 ⊗−(n2 − 1)S′2) if σ = ¬−
S¬2(−(n1 − 1)S′1 ⊗−(n2 − 1)S′2) if σ = −−
S¬(|si|+ |tj |)(S′1 ⊗ S′2) otherwise

where s′ = si−1 if i > 1 and s′ = #0 otherwise, and
similarly, t′ = tj−1 if j > 1 and t′ = #0 otherwise,
S = s′ ⊕ t′ and S′1 = si+1 . . . sn and S′2 = tj+1 . . . tm.

With this definition, we can see that ¬ components ex-
press the number of joint commits for the latest opened
transaction, i.e the number of threads in this transaction;
and each thread in one transaction will increase the re-
source consumption by one. sh1and th2 determine the
first joint commits of two sequences.

The merging operation is compositional on the right.

Definition 9. (S1 ⊗ S2) S3 = S1 ⊗ (S2 S3).

For conditionals if v then e1 else e2 we need a simpler
merge operation but require that the external transactional
behaviour of e1 and e2 is the same – their local ones will
be their maximum.

Definition 10. Let S1 = s1 . . . sn and S2 = t1 . . . tm
be two canonical sequences and suppose that si ∈ S1,
tj ∈ S2 are the first elements (from the left) such that

sign(si) = sign(tj) ∈ {+,−,¬}. The max operation,
notation S1 � S2, is defined recursively as follows:

S1 � S2 =


#x if (S1 =#x ∧ S2 = ∅)
∨(S1 = ∅ ∧ S2 =#x)

#max(m,n)si(S′1 � S′2) otherwise

where m = |si−1| if i > 1 and m = 0 otherwise, and
similarly, n = |tj−1| if j > 1 and n = 0 otherwise, and
S′1 = si+1 . . . sn and S′2 = tj+1 . . . tm.

For example, S1 = −2¬3#4 and S2 = #2−2#4¬3#5 we
have S1 � S2 = #2−2#4¬3#5.

If a program has some threads running in parallel inde-
pendently, i.e., without joining commits, we need a to be
able to express the type of such program: parallel nota-
tion, denoted ‖.

Definition 11. If S1 = #m and S2 = #n then S1 ‖ S2 =
#(m+ n)

In our approach, each term in the local-level semantics
has as type a sequence of tagged numbers. The size of
the heap (represented as the + component) concatenated
with this type tells us about the maximum resource con-
sumption during the execution of that term. We define
a function, which calculates the maximum resource con-
sumption given a tagged sequence as input.

Definition 12. Given a sequence of tagged numbers S, the
function total(S) is defined by the following steps:

1. Change S to a new sequence s1 . . . sn such that ∀i ∈
{2, . . . , n} if sign(si) = # then sign(si−1) = +
and ∀j ∈ {1; . . . ;n − 1} if sign(sj) = + then
sign(sj+1) = #.

2. total(S) = max(|si|+ |si+1|) ∀i ∈ {1, . . . , n− 1}
and sign(si) = +.

For example, let S =+ 2#4+1#4+3#0, then total(S) =
max(2 + 4, 1 + 4, 3 + 0) = 6. Also the equivalent se-
quence S′ =+ 2#4+1#4+3 (i.e., S ∼= S′) has the same
total(S′) = 6.

3.2 Local level
On the local level, the typing judgements are of the form:

E ` e : T (1)
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where T expresses the type of expression e; E is the lo-
cal environment. T here captures the information about
resource consumption of e in terms of maximum number
of concurrent transactions at any given moment.

Definition 13. T = S | T ⊗ T | T � T | T ρ | T ‖ T

S here is a sequence of tagged numbers. TT concate-
nates two types. The ⊗, � operations, ‖ notation have the
meanings the same as ones in sequence of tagged num-
bers. When T satisfy the conditions of these operations,
notation; we can apply the corresponding definition to cal-
culate the final type, otherwise, we keep the expressions
un-calculated. The term with type T ρ is executed in a
thread which is parallel with the thread spawning it.

The local derivation rules for expressions by our
type system in shown in Table 4. The rule T-ONACID

and T-ONACID are used to type expressions onacid and
commit, respectively. T-LET1, T-LET2 take care of sequen-
tial composition of e1 and e2. The difference between
these two rules is that e1 in the latter case is of type T ρ1 ,
i.e., t e1 is of the form spawn(e′) (T-SPAWN). Conditionals
if v then e1 else e2 are given the type T1 � T2, where
T1 is type of e1, T2 of e2. T-CALL rule tells us that if the
a method is executed in environment E, and the returned
type is T , then the function call will have type T . The
returned type of a method is the type of the expression in
its body. The final three rules express that a expression
of value, field access or field update will have #0 as type.
Such expressions do not affect the resource consumption.

Definition 14 (Idempotence). Let T be a type of any ex-
pression, then (T ρ)ρ = T ρ.

This definition means that ρ only makes sense when
spawn(e) is followed by an other expression (T-LET2 rule).
When spawn(e) stands alone, e.g spawn(spawn(e)), the
first ρ can be ignored.

3.3 Global level
The global level of TFJ’s semantics captures the parallel
of composition of threads. We give the derivation rules for
a process in table 5. The T-PAR-rule takes care of type of
a program composed from two program parts P1 and P2

running in parallel independently. They are independent
because they initially run in their own global environment

E ` e:T
p:E ` p(e):T T-THREAD Γ1 ` P1:T1 Γ2 ` P2:T2

Γ1,Γ2 ` P1‖P2:T1‖T2
T-PAR

Table 5: Type system (global level)

Γ1 and Γ2 and do not synchronize with each other via
joint commits. In the case of spawn(e), a new thread is
created and which may synchronize with the parent thread
via joint commits (cf. rule T-SPAWN).
Now, well-typed programs are defined as follows:

Definition 15. A program is well-typed if its type contains
only one # component.

As mentioned, the type of an expression or thread is a
sequence of tagged numbers, and the # component tells
us about the upper bound in resource consumption of that
process. Applying the rules to our example from Section
1, we can compute the for that program as follows:
Γ ` P : T
T =+ 1+1[+1−1−1−1⊗+1(+1+1−1−1−1−1−1
⊗−1+1+1+1−1−1−1−1+1+1+1+1−1−1−1−1−1)]
=+ 2[#1−2⊗+1(#2−3⊗−1#3−1#4−1)]
=+ 2(#1−2⊗+1#2¬2#3¬2#4¬2)
1 =+ 2(#1−2⊗#4#3¬2#4¬2)
=+ 2(#1−2⊗#4¬2#4¬2)
=+ 2#5¬3#4¬3
=+ 1#8#4¬3
=+ 1#8¬3
=# 11
The program is well-typed and maximum resource con-
sumption is 11 in terms of number of concurrent transac-
tions.

4 Correctness
This section establishes the soundness of the effect of
our type system, i.e, that the static estimation over-
approximates the actual potential resource consumption
of a program. We start by defining the actual resource
consumption of a program:

Definition 16 (Resource consumption). The weight of a
local environment E, written |E| is defined as its length,
i.e., the number of its l:log bindings. The weight of a
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E ` onacid:+1 T-ONACID
|E|>0

E ` commit:−1 T-COMMIT

E ` e1:T1 E ` e2:T2
E ` let x=e1in e2:T1T2

T-LET1
E ` e1:Tρ1 E ` e2:T2

E ` let x=e1in e2:T1⊗T2
T-LET2

E ` e1:T1 E ` e2:T2
E ` if v then e1 else e2:T1�T2

T-COND E ` e:T
E ` spawn e:Tρ T-SPAWN

mtype(C,m):E→T
E ` v.m(~v):T T-CALL

E ` v:#0
T-Val

E ` v.f :#0
T-ACCESS

E ` v.f :=v′:#0
T-UPDATE

Table 4: Type system (local level)

global environment Γ, written |Γ| is defined as the sum
of weights of its local environments.

Given a term e with type S executed in local environ-
ment E (in the local semantics, all terms will have types
as canonical sequences of tagged numbers without opera-
tions or notations). |E|means the current resource alloca-
tion, i.e the number of current local opening transactions.
We define the function total(E, e) to estimate the max-
imum resource consumption of the program during the
execution of e:

Definition 17. If E ` e : S then the maximum resource
consumption during executing e is estimated by the fol-
lowing equations:

total(E, e) = total(+|E|S) (2)

+|E|S is a sequence of tagged numbers concatenated
from +|E| and S. |E| is the number of opening transac-
tions, and emight contain either further commits to close
these transactions or other commands which affect the lo-
cal resource allocation. So, +|E|S represents the further
resource consumption of e.

Because a new thread will copy the current local vari-
ables into its own local environment, two local environ-
ments may contain some common transactions.

Definition 18. The function common(E1, E2) returns
the number of common transactions in E1 and E2.

We also define the function for estimating maximum
resource consumption during executing a program:

Definition 19. Given a program P = p1(e1) ‖
. . . ‖ pn(en). The global environment is Γ =
p1:E1, . . . , pn:En. The maximum resource consumption
during executing this program total(Γ, P ) is computed
as follows:

1. The result is computed from the set of sequences:
T = {+|Ei|Si where i = {1, . . . , n}} in which
Ei ` ei : Si.

2. ∀i, j ∈ {1, . . . , n}, i 6= j, if common(Ei, Ej) > 0,
then remove +|Ei|Si and +|Ej |Sj from T , also add
(+|Ei|Si)⊕ (+|Ej |Sj) into T .
After this step, suppose T = {T1, . . . , Tm}.

3. total(Γ, P ) =
m∑
i=1

total(Ti).

The purpose of step 2 is to take care of parallel threads
with joining commits.

The following lemmas are needed for proving the cor-
rectness of our analysis.

Lemma 1 (Subject reduction (local)). If E ` e : S and
E, e → E′, e′ then E′ ` e′ : S′ and total(E, e) ≥
total(E′, e′).

Lemma 2 (Subject reduction (global)). If Γ ` P : T and
Γ, P → Γ′, P ′ then Γ′ ` P ′ : T ′ and total(Γ, P ) ≥
total(Γ′, P ′).

9



5 Conclusion
We develop and investigate a type system for statically
estimating the resource upper bound for a transactional
model supporting nested and multi-threaded transactions
with join synchronization. The system statically approx-
imates the maximum number of concurrent transactions
opening in a program. This work extends our previous
work by removing a restriction on child threads where in
the previous work we did not allow opening a new trans-
action inside spawned threads after their parent thread has
committed. The representation of type judgements is also
simplified by using a linear numeric representation in-
stead of a tree representation; the calculation is therefore
simpler while we still guarantee that our analysis is com-
positional.
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