Deadlock Checking by Data Race Detection

Ka I Violet Pun, Martin Steffen, Volker Stolz

PMA Group, University of Oslo, Norway

The 24^{th} Nordic Workshop for Programming Theory - NWPT '12 Bergen, Norway

31st October, 2012

Overview

Goal

Find *potential* deadlocks in programs *statically* by detecting data race

- Data race
 - Simultaneous access to shared data with at least one write access
 - Shared data: mutable, unprotected
- Deadlock
 - Multiple processes wait for shared resources in a cycle
 - E.g. critical region
 - Protected by locks

Overview

General approach:

- Reduce the problem of deadlock checking to race checking
- Instrument programs with appropriate shared variable accesses, called race variables
- Programs with deadlocks
 - ⇒ data race in the transformed one

Assume the original programs are race free

Concurrent Calculus

- Functional language
- Higher-order
- Dynamic thread creation
- Dynamic lock creation
- Non-lexically scoped locks

```
\begin{array}{llll} t & ::= & \operatorname{stop} \mid v \mid \operatorname{let} x : T = e \operatorname{in} t \\ e & ::= & t \mid v v \mid \operatorname{if} e \operatorname{then} e \operatorname{else} e \mid \\ & & \operatorname{spawn} t \mid \operatorname{new} L \mid v . \operatorname{lock} \mid v . \operatorname{unlock} \\ v & ::= & x \mid I \mid \operatorname{fn} x : T . t \mid \operatorname{fun} f : T . x : T . t \end{array}
```

Type and effect system

- Captures *static program points* where deadlocks can actually manifest themselves with a *type and effect system*
- Uses *program points* π , to characterize locks according to their origin
- Uses constraints to derive the smallest possible types
 - In terms of the originating locations
- Tracks relative change to the lock count
- Analyzes each thread locally

Type and Effect System

Judgements:

$$\Gamma \vdash e : T :: \varphi; C$$

Types and effects are described by:

```
\begin{array}{lll} T & ::= & B & \mid \mathbf{L}^r \mid & T \xrightarrow{\varphi} T & \text{types} \\ r & ::= & \varrho & \mid & \{\pi\} & \mid & r \cup r & \text{lock/label sets} \\ \varphi & ::= & \Delta \xrightarrow{} \Delta & \text{effects/pre- and post specification} \\ \Delta & ::= & \bullet & \mid & \Delta, \varrho : n & \text{abstract state} \\ C & ::= & \emptyset & \mid & \varrho & \supset r, C & \text{constraints} \end{array}
```

Type and Effect System

$$\frac{\varrho \; \mathit{fresh}}{\Gamma \vdash_{\mathsf{New}_{\pi}} \; \mathtt{L} : \mathtt{L}^{\varrho} :: \Delta \to \Delta; \, \varrho \supseteq \{\pi\}} \; \mathsf{T}\text{-}\mathsf{NewL}$$

$$\frac{\Gamma \vdash_{\mathsf{e}} : \hat{T} :: \bullet \to \Delta_{2}; \, C}{\Gamma \vdash_{\mathsf{spawn}} \; e : \mathsf{Thread} :: \Delta_{1} \to \Delta_{1}; \, C} \; \mathsf{T}\text{-}\mathsf{SPAWN}$$

$$\frac{\Gamma \vdash_{\mathsf{v}} : \mathtt{L}^{\varrho} :: \Delta_{1} \to \Delta_{1}; \, C}{\Gamma \vdash_{\mathsf{v}} : \mathsf{lock} : \mathtt{L}^{\varrho} :: \Delta_{1} \to \Delta_{2}; \, C} \; \mathsf{T}\text{-}\mathsf{Lock}$$

- Second lock point (slp)
 - A static over-approximation of program points where deadlocks can actually manifest themselves
 - p holds π_1 and tries to take π_2
 - A direct consequence of deadlocks
- The type and effect system works thread-locally
- ullet Derives potential slp per thread wrt. a given cycle Δ_C
- Abstract cycle Δ_C
 - A sequence of pairs $p_1 : \pi_1; \dots p_n : \pi_n$
 - Interpreted as process p_1 has π_1 and wants π_2

Second lock point

Given $\bullet \vdash_p t_0 : \Delta$, t is a static second lock point if:

- ① $t = \text{let } x : L^{\{...,\pi,...\}} = v . \text{ lock in } t'.$
- ② $\Delta_1 \vdash_p t :: \Delta_2$, for some Δ_1 and Δ_2 , occurs in a sub-derivation of $\bullet \vdash t_0 :: \Delta$.

 \odot there exists π' s.t.

 $\pi' \in \Delta_1$, $\Delta_C \vdash p$ has π' , and $\Delta_C \vdash p$ wants π

Second lock point

Given $\bullet \vdash_p t_0 : \Delta$, t is a static second lock point if:

- **1** $t = \text{let } x: L^{\{...,\pi,...\}} = v. \text{ lock in } t'.$
- ② $\Delta_1 \vdash_p t :: \Delta_2$, for some Δ_1 and Δ_2 , occurs in a sub-derivation of $\bullet \vdash t_0 :: \Delta$.

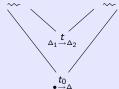
 \odot there exists π' s.t.

 $\pi' \in \Delta_1$, $\Delta_C \vdash p$ has π' , and $\Delta_C \vdash p$ wants τ

Second lock point

Given $\bullet \vdash_p t_0 : \Delta$, t is a static second lock point if:

- **1** $t = \text{let } x: L^{\{...,\pi,...\}} = v. \text{ lock in } t'.$
- ② $\Delta_1 \vdash_p t :: \Delta_2$, for some Δ_1 and Δ_2 , occurs in a sub-derivation of $\bullet \vdash t_0 :: \Delta$.



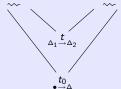
 \odot there exists π' s.t.

 $\pi' \in \Delta_1$, $\Delta_C \vdash p$ has π' , and $\Delta_C \vdash p$ wants π

Second lock point

Given $\bullet \vdash_p t_0 : \Delta$, t is a static second lock point if:

- **1** $t = \text{let } x: L^{\{...,\pi,...\}} = v. \text{ lock in } t'.$
- ② $\Delta_1 \vdash_p t :: \Delta_2$, for some Δ_1 and Δ_2 , occurs in a sub-derivation of $\bullet \vdash t_0 :: \Delta$.



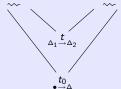
 \odot there exists π' s.t.

$$\pi' \in \Delta_1$$
, $\Delta_C \vdash p$ has π' , and $\Delta_C \vdash p$ wants π

Second lock point

Given $\bullet \vdash_p t_0 : \Delta$, t is a static second lock point if:

- **1** $t = \text{let } x: L^{\{...,\pi,...\}} = v. \text{ lock in } t'.$
- ② $\Delta_1 \vdash_p t :: \Delta_2$, for some Δ_1 and Δ_2 , occurs in a sub-derivation of $\bullet \vdash t_0 :: \Delta$.



 \odot there exists π' s.t.

$$\pi' \in \Delta_1$$
, $\Delta_C \vdash p$ has π' , and $\Delta_C \vdash p$ wants π

Transformation

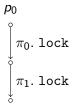
For three dining philosophers:

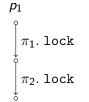
• Δ_C is given as

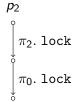
 p_0 : π_0

 $p_1 : \pi_1$

 $p_2 : \pi_2$







Transformation

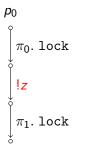
For three dining philosophers:

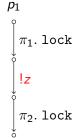
• Δ_C is given as

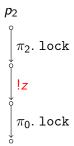
 $p_0:\pi_0$

 $p_1 : \pi_1$

 $p_2 : \pi_2$







Gate locks

- Reduce deadlock checking to race checking
 - Races are binary, whereas deadlocks in general are not
 - To compensate, add locks appropriately
- Gate locks
 - Short-lived locks
 - No locking-step before a short-lived lock is released
 - Variable access between locking and unlocking steps
 - One variable is guarded by one gate lock
 - Does not lead to more deadlocks

Gate locks

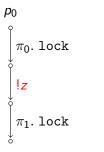
For three dining philosophers:

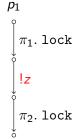
• Δ_C is given as

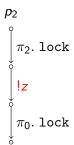
 $p_0 : \pi_0$

 $p_1 : \pi_1$

 $p_2 : \pi_2$





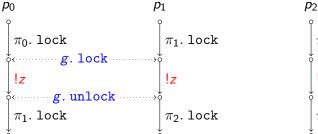


Gate locks

For three dining philosophers:

• Δ_C is given as

 $p_0 : \pi_0$ $p_1 : \pi_1$ $p_2 : \pi_2$



$$\left| \begin{array}{c} \pi_2 \\ \pi_2 \end{array} \right|$$
 lock $\left| \begin{array}{c} I_Z \\ \pi_0 \end{array} \right|$ lock

Gate lock for p_2 ?

Analyzers

- Goblint
 - Does not check deadlocks
- JFP (Java Path Finder)
- Chord
 - Checks deadlock of length 2
 - Recognizes locks held using synchronized

	C	Java			
		synchronized		explicit locks	
	Goblint	JPF	Chord	JPF	Chord
Datarace	yes	yes	yes	yes	yes
Deadlock 2	N/A	yes	yes	yes	N/A
Deadlock 3	N/A	yes	N/A	yes	N/A

Summary

- Formal description of the type and effect system
- Transformation guarantees each slp is protected by the same variable
- Prove soundness of the approach
 - Programs with (potential) deadlocks
 - \implies data race in the transformed one
 - Race free in the transformed program
 - \implies deadlock free in the original one