Deadlock Checking by Data Race Detection

Ka | Violet Pun, Martin Steffen, Volker Stolz

PMA Group, University of Oslo, Norway

The 24t Nordic Workshop for Programming Theory - NWPT '12
Bergen, Norway

315t October, 2012

http://www.uio.no

Overview

Goal
Find potential deadlocks in programs statically by detecting
data race
@ Data race
e Simultaneous access to shared data with at least one
write access
o Shared data: mutable, unprotected
@ Deadlock

e Multiple processes wait for shared resources in a cycle
o E.g. critical region
e Protected by locks

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 2 /14

Overview

General approach:
@ Reduce the problem of deadlock checking to race checking

@ Instrument programs with appropriate shared variable accesses,
called race variables

@ Programs with deadlocks
— data race in the transformed one

Assume the original programs are race free

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 3/14

Concurrent Calculus

K. Pun, M. Steffen, V. Stolz

Higher-order

Functional language

Dynamic thread creation
Dynamic lock creation

Non-lexically scoped locks

stop| v |letx:T =eint

t | vv |if etheneelsee |
spawn t |new L | v.lock | v.unlock
x | I |foax:T.t | fun F:T.x:T.t

Deadlock Checking by Data Race Detection

4/ 14

Type and effect system

Captures static program points where deadlocks can actually
manifest themselves with a type and effect system

Uses program points 7, to characterize locks according to
their origin

Uses constraints to derive the smallest possible types
e In terms of the originating locations

Tracks relative change to the lock count

Analyzes each thread locally

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 5/ 14

Type and Effect System

Judgements:
FFe: Ty C

Types and effects are described by:

T =B |L| TE T types

r o= o | {m} | rUr lock/label sets

p = A=A effects/pre- and post specification
A = e | Agmn abstract state
C:=0|902r,C constraints

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection

6/ 14

Type and Effect System

o fresh
T-NEWL
[tnewr L: L% A — A;p D {n}
FTte:T:e— Ay C
T-SpAwN

[Fspawn e : Thread:: A; — Ayg; C

NEv:Le: A — Ag; C Ay =A1Po

T-Lock
Ik v.lock: L2:: A — Ay; C

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection

Second lock point

e Second lock point (slp)

e A static over-approximation of program points where
deadlocks can actually manifest themselves

e p holds m; and tries to take 75

e A direct consequence of deadlocks

@ The type and effect system works thread-locally

@ Derives potential slp per thread wrt. a given cycle A¢

@ Abstract cycle A¢
e A sequence of pairs p; : 71;...pp: Ty
e Interpreted as process p; has m; and wants 5

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 8 /14

Second lock point

Given o |-, tg : A, t is a static second lock point if:

Deadlock Checking by Data Race Detection

K. Pun, M. Steffen, V. Stolz

DA

9/14

Second lock point

Second lock point

Given o |-, tg : A, t is a static second lock point if:

Q t=let x: LI} = v. 1lock in ¢t

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection

9/14

Second lock point

Second lock point
Given o |-, tg : A, t is a static second lock point if:
Q@ t=1let x: L™} =y lock in t'.

@ A;Fpt: Ay, for some Ar and Ay, occurs in a
sub-derivation of e - tg :: A.

AN~ AN~

N

3
A=Ay

to

o —A

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection

9/14

Second lock point

Second lock point
Given o |-, tg : A, t is a static second lock point if:
Q@ t=1let x: L™} = v lock in t'.

@ A;Fpt: Ay, for some Ar and Ay, occurs in a
sub-derivation of e - tg :: A.

AN~ AN~

N

t
Ay —Dy

to

o —A

@ there exists 7’ s.t.

'€ A, AcFphas7', and ActF pwantst

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection

9/14

Second lock point

Second lock point
Given o |-, tg : A, t is a static second lock point if:
Q@ t=1let x: L™} = v lock in t'.

@ A;kpt: Ay, for some Ar and Ay, occurs in a
sub-derivation of e - tg :: A.

AN~ AN~

N

t
Ay —Dy

to

o —A

@ there exists 7’ s.t.

'€ A, AcFphas7', and ActF pwantst

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection

9/14

Transformation

For three dining philosophers:
e Ac is given as

Po :
p1:
p2:

To- lock

1. lock

O¢—O0¢—0

K. Pun, M. Steffen, V. Stolz

o
1
2

Deadlock Checking by Data Race Detection

. lock

. lock

O¢—O0¢——0

10 / 14

Transformation

For three dining philosophers:
e Ac is given as

Po : To
p1 71
p2 T2
Po p1 P2
o] o] o]
. lock 1. lock . lock
lz lz lz
1. lock 7. lock . lock

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 10 / 14

Gate locks

@ Reduce deadlock checking to race checking

o Races are binary, whereas deadlocks in general are not
e To compensate, add locks appropriately

o Gate locks
e Short-lived locks
@ No locking-step before a short-lived lock is released
e Variable access between locking and unlocking steps
e One variable is guarded by one gate lock
o Does not lead to more deadlocks

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 11 /14

Gate locks

For three dining philosophers:
e Ac is given as

Po : To
p1 71
p2 T2
Po p1 P2
o] o] o]
. lock 1. lock . lock
lz lz lz
1. lock 7. lock . lock

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 12 /14

Gate locks

For three dining philosophers:
e Ac is given as

Po : To
p1 71
p2 T2
Po p1 P2
. lock 1. lock . lock
< g. lock >
lz lz lz
< g.unlock ’
1. lock 7. lock . lock

Gate lock for py?

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 12 /14

Analyzers

@ Goblint

e Does not check deadlocks

e JFP (Java Path Finder)

@ Chord

o Checks deadlock of length 2

o Recognizes locks held using synchronized

C Java
synchronized | explicit locks
Goblint | JPF Chord JPF | Chord
Datarace yes yes yes yes yes
Deadlock 2 N/A yes yes yes | N/A
Deadlock 3 N/A yes N/A yes | N/A

K. Pun, M. Steffen, V. Stolz

Deadlock Checking by Data Race Detection

13/ 14

Summary

@ Formal description of the type and effect system
@ Transformation guarantees each slp is protected by the same
variable

@ Prove soundness of the approach
o Programs with (potential) deadlocks
= data race in the transformed one
o Race free in the transformed program
—> deadlock free in the original one

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 14 / 14

	Introduction
	Type and Effect System
	Second Lock Point

