
Deadlock Checking by Data Race Detection

Ka I Violet Pun, Martin Steffen, Volker Stolz

PMA Group, University of Oslo, Norway

The 24th Nordic Workshop for Programming Theory - NWPT ’12
Bergen, Norway

31st October, 2012

http://www.uio.no

Overview

Goal

Find potential deadlocks in programs statically by detecting
data race

Data race

Simultaneous access to shared data with at least one
write access
Shared data: mutable, unprotected

Deadlock

Multiple processes wait for shared resources in a cycle
E.g. critical region
Protected by locks

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 2 / 14

Overview

General approach:

Reduce the problem of deadlock checking to race checking

Instrument programs with appropriate shared variable accesses,
called race variables

Programs with deadlocks
=⇒ data race in the transformed one

Assume the original programs are race free

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 3 / 14

Concurrent Calculus

Functional language

Higher-order

Dynamic thread creation

Dynamic lock creation

Non-lexically scoped locks

t ::= stop | v | let x :T = e in t
e ::= t | v v | if e then e else e |

spawn t | new L | v . lock | v . unlock
v ::= x | l | fn x :T .t | fun f :T .x :T .t

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 4 / 14

Type and effect system

Captures static program points where deadlocks can actually
manifest themselves with a type and effect system

Uses program points π, to characterize locks according to
their origin

Uses constraints to derive the smallest possible types

In terms of the originating locations

Tracks relative change to the lock count

Analyzes each thread locally

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 5 / 14

Type and Effect System

Judgements:
Γ ` e : T :: ϕ; C

Types and effects are described by:

T ::= B | Lr | T
ϕ−→ T types

r ::= % | {π} | r ∪ r lock/label sets
ϕ ::= ∆→ ∆ effects/pre- and post specification
∆ ::= • | ∆, %:n abstract state
C ::= ∅ | % ⊇ r ,C constraints

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 6 / 14

Type and Effect System

% fresh
T-NewL

Γ `newπ L : L%:: ∆→ ∆; % ⊇ {π}

Γ ` e : T̂ :: • → ∆2; C
T-Spawn

Γ `spawn e : Thread:: ∆1 → ∆1; C

Γ ` v : L%:: ∆1 → ∆1; C ∆2 = ∆1 ⊕ %
T-Lock

Γ ` v . lock: L%:: ∆1 → ∆2; C

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 7 / 14

Second lock point

Second lock point (slp)

A static over-approximation of program points where
deadlocks can actually manifest themselves
p holds π1 and tries to take π2

A direct consequence of deadlocks

The type and effect system works thread-locally

Derives potential slp per thread wrt. a given cycle ∆C

Abstract cycle ∆C

A sequence of pairs p1 : π1; . . . pn : πn

Interpreted as process p1 has π1 and wants π2

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 8 / 14

Second lock point

Second lock point

Given • `p t0 : ∆, t is a static second lock point if:

1 t = let x : L{...,π,...} = v . lock in t ′.

2 ∆1 `p t :: ∆2, for some ∆1 and ∆2, occurs in a
sub-derivation of • ` t0 :: ∆.

t
∆1→∆2

t0
•→∆

3 there exists π′ s.t.

π′ ∈ ∆1, ∆C ` p has π′, and ∆C ` p wants π

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 9 / 14

Second lock point

Second lock point

Given • `p t0 : ∆, t is a static second lock point if:

1 t = let x : L{...,π,...} = v . lock in t ′.

2 ∆1 `p t :: ∆2, for some ∆1 and ∆2, occurs in a
sub-derivation of • ` t0 :: ∆.

t
∆1→∆2

t0
•→∆

3 there exists π′ s.t.

π′ ∈ ∆1, ∆C ` p has π′, and ∆C ` p wants π

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 9 / 14

Second lock point

Second lock point

Given • `p t0 : ∆, t is a static second lock point if:

1 t = let x : L{...,π,...} = v . lock in t ′.

2 ∆1 `p t :: ∆2, for some ∆1 and ∆2, occurs in a
sub-derivation of • ` t0 :: ∆.

t
∆1→∆2

t0
•→∆

3 there exists π′ s.t.

π′ ∈ ∆1, ∆C ` p has π′, and ∆C ` p wants π

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 9 / 14

Second lock point

Second lock point

Given • `p t0 : ∆, t is a static second lock point if:

1 t = let x : L{...,π,...} = v . lock in t ′.

2 ∆1 `p t :: ∆2, for some ∆1 and ∆2, occurs in a
sub-derivation of • ` t0 :: ∆.

t
∆1→∆2

t0
•→∆

3 there exists π′ s.t.

π′ ∈ ∆1, ∆C ` p has π′, and ∆C ` p wants π

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 9 / 14

Second lock point

Second lock point

Given • `p t0 : ∆, t is a static second lock point if:

1 t = let x : L{...,π,...} = v . lock in t ′.

2 ∆1 `p t :: ∆2, for some ∆1 and ∆2, occurs in a
sub-derivation of • ` t0 :: ∆.

t
∆1→∆2

t0
•→∆

3 there exists π′ s.t.

π′ ∈ ∆1, ∆C ` p has π′, and ∆C ` p wants π

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 9 / 14

Transformation

For three dining philosophers:

∆C is given as

p0 : π0

p1 : π1

p2 : π2

p0 p1 p2

π0. lock

π1. lock

π1. lock

π2. lock

π2. lock

π0. lock

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 10 / 14

Transformation

For three dining philosophers:

∆C is given as

p0 : π0

p1 : π1

p2 : π2

p0 p1 p2

π0. lock

!z

π1. lock

π1. lock

!z

π2. lock

π2. lock

!z

π0. lock

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 10 / 14

Gate locks

Reduce deadlock checking to race checking

Races are binary, whereas deadlocks in general are not
To compensate, add locks appropriately

Gate locks
Short-lived locks

No locking-step before a short-lived lock is released

Variable access between locking and unlocking steps
One variable is guarded by one gate lock
Does not lead to more deadlocks

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 11 / 14

Gate locks

For three dining philosophers:

∆C is given as

p0 : π0

p1 : π1

p2 : π2

p0 p1 p2

π0. lock

!z

π1. lock

π1. lock

!z

π2. lock

π2. lock

!z

π0. lock

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 12 / 14

Gate locks

For three dining philosophers:

∆C is given as

p0 : π0

p1 : π1

p2 : π2

p0 p1 p2

g . lock

g . unlock

π0. lock

!z

π1. lock

π1. lock

!z

π2. lock

π2. lock

!z

π0. lock

Gate lock for p2?

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 12 / 14

Analyzers

Goblint
Does not check deadlocks

JFP (Java Path Finder)

Chord
Checks deadlock of length 2
Recognizes locks held using synchronized

C Java
synchronized explicit locks

Goblint JPF Chord JPF Chord
Datarace yes yes yes yes yes

Deadlock 2 N/A yes yes yes N/A
Deadlock 3 N/A yes N/A yes N/A

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 13 / 14

Summary

Formal description of the type and effect system

Transformation guarantees each slp is protected by the same
variable

Prove soundness of the approach

Programs with (potential) deadlocks
=⇒ data race in the transformed one

Race free in the transformed program
=⇒ deadlock free in the original one

K. Pun, M. Steffen, V. Stolz Deadlock Checking by Data Race Detection 14 / 14

	Introduction
	Type and Effect System
	Second Lock Point

