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Abstract. We present an effect-based static analysis to calculate upper bounds on multi-
threaded and nested transactions as measure for the resource consumption in an execution
model supporting implicit join synchronization. The analysis is compositional and takes into
account implicit join synchronizations that arise when more than one thread jointly commit
a transaction. Central for a compositional and precise analysis is to capture as part of the
effects a tree-representation of the future resource consumption and synchronization points
(which we call joining commit trees). The analysis is formalized for a concurrent variant
of Featherweight Java extended by transactional constructs. We show the soundness of the
analysis.

1 Introduction

Software Transactional Memory (STM) [13,3] has recently been introduced to concurrent pro-
gramming languages as an alternative for lock-based synchronization, enabling an optimistic
form of synchronization for shared memory. Nested and multi-threaded transactions are advanced
features of recent transactional models. Multi-threaded transactions means that inside one trans-
action there can be more than one thread running in parallel. Nesting of transactions means that
a parent transaction may contain one or more child transactions which must commit before their
parent. Additionally, if a transaction commits, all threads spawned inside must join via a commit.
To achieve isolation, each transaction operates via reads and writes on its own local copy of the
memory, called log. It is used to record these operations to allow validation or potentially roll-
backs at commit time. The logs are a critical factor of memory resource consumption of STM.
As each transaction operates on its own log of the variables it accesses, a crucial factor in the
memory consumption is the number of thread-local transactional memories (i.e., logs) that may
co-exist at the same time in parallel threads. Note that the number of logs neither corresponds to
the number of transactions running in parallel (as transactions can contain more than one thread)
nor to the number of parallel threads, because of the nesting of transactions. A main complication
is that parallel threads do not run independently; instead, executing a commit in a transaction may
lead to a form of implicit join synchronization with other threads inside the same transaction.

In this paper, we develop a type and effect system for statically approximating the resource
consumption in terms of the maximum number of logs of a program. It can be more generally
understood as a compositional static analysis of a concurrency model with implicit join synchro-
nization. For the concrete formulation of the analysis, we use a variant of Featherweight Java
extended with transactional constructs known as Transactional Featherweight Java (TFJ) [9]. The
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language features non-lexical starting and ending a transaction, concurrency, choice and sequenc-
ing. The analysis is compositional, i.e., syntax-directed. The analysis is multi-threaded in that,
due to synchronization, it does not analyze each thread in isolation, but needs to take their in-
teraction into account. This complicates the effect system considerably, as the synchronization
is implicit in the use of commit-statements and connected to the nestedness of the transactions.
To our knowledge, the issue of statically and compositionally estimating the memory resource
consumption in such a setting has not been addressed.

The rest of the paper is structured as follows. Section 2 starts by illustrating the execution
model and sketching the technical challenges in the design of the effect system. Section 3 intro-
duces the syntax and operational semantics. Section 4 presents an effect system for estimating the
resource consumption. The soundness of the analysis is sketched in Section 5. We conclude in
Section 6 with related and future work.

2 Compositional analysis of implicit join synchronization

We start by sketching the concurrency model with nested and multi-threaded transactions. The
consequences for a compositional analysis of the memory resource consumption are presented
informally and by way of examples.

Example 1 (Joining commits). Consider the following (contrived) code snippet.

1 o n a c i d ; / / t h r e a d 0 ( main t h r e a d )
2 o n a c i d ;
3 spawn ( e1 ; commit ; commit ) ; / / t h r e a d 1
4 o n a c i d ;
5 spawn ( e2 ; commit ; commit ; commit ) ; / / t h r e a d 2
6 commit ;
7 e3
8 commit ;
9 e4 ;

The main expression of thread 0 spawns two new threads 1 and 2. The onacid-statement
expresses the start of a transaction and commit the end. Hence, thread 1 starts its execution at a
nesting depth of 2 and thread 2 at depth 3. See also Fig. 1a, where the values of n represent the
nesting depth of open transactions at different points in the main thread. We often write in the
illustrations and examples [ and ] for starting resp. committing a transaction. Note that e.g. thread
1 is executing inside the first two transactions started by its parent thread and that it uses two
commits (after e1) to close those transactions. Important is that parent and child thread(s) commit
an enclosing transaction at the same time, i.e., in a form of join synchronization. We call an occur-
rence of a commit-statement which synchronizes in that way a joining commit. Fig. 1b makes the
nesting of transactions more explicit and the right-hand edge of the corresponding boxes marks
the joining commits. E.g., e2 and e3 cannot execute in parallel since e2 is sequentialized by a
joining commit before e3 starts. ut

Our goal is a compositional, static worst-case estimation of memory resource consumption
for the sketched execution model. To achieve isolation, an important transactional property, each
thread operates on a local copy of the needed memory which is written back to global mem-
ory when and if the corresponding transaction commits; that thread-local and transactional-local
memory is called log. We measure the resource consumption at a given point by the number of
logs co-existing at the same time. This ignores that different logs have different memory needs
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Fig. 1: Nested, multi-threaded transactions and join synchronization

(e.g., accessing more variables transactionally). Abstracting away from this difference, we con-
centrate on the synchronization and nesting structure underlying the concurrency model. A more
fine-grained estimation of resource consumption per log is an orthogonal issue and the corre-
sponding refinement can be incorporated. The refinement would be based on a conservative es-
timation of the memory consumption per individual transaction, which in turn depends on the
resource consumption per variable used in the transaction and potentially, dependent on the trans-
actional model, how many times variables are accessed.

Example 2 (Resource consumption). In Example 1, assume that e1 opens and closes three nested
transactions (i.e., is of the form [ . . . [ . . . [ . . . ] . . . ] . . . ] . . .), e2 four, e3 five, and e4 six. The resource
consumption after spawning e2’s thread is at most 15 = 5+ 3+ 7 (at the left vertical line): the
main thread executes inside three transactions, thread 1 inside five (3 from e1 plus 2 “inherited”
from the parent), and thread 2 inside 7. At the point when thread 0 executes e3, i.e., after its first
commit, the worst case is 14 = 5+ 7+ 2. Note that e2 cannot run in parallel with e3 whereas
e1 can: the commit before e3 synchronizes with the commit after e2 which sequentializes their
execution. Thus e1 still contributes 5, e2 contributes only 2, and the main thread of e3 contributes
7 (i.e, 5 from e3 and 2 from the enclosing transactions). ut

To be scalable, the analysis should be compositional. In principle, the resource consumption of a
sequential composition e1;e2 is approximated by the maximum of consumption of its constituent
parts. For e1 and e2 running (independently) in parallel, the consumption of e1 ‖ e2 is approxi-
mated by the sum of the respective contributions. The challenges in our setting are:

Multi-threaded analysis: due to joining commits, threads running in parallel do not necessarily
run independently and a sequential composition spawn e1;e2 does not sequentialize e1 and e2.
They may synchronize, which introduces sequentialization, and to be precise, the analysis must
be aware of which program parts can run in parallel and which cannot. Assuming independent
parallelism would allow us to analyze each thread in isolation. Such a single-threaded analysis
would still yield a sound over-approximation, but would be too imprecise.

Implicit synchronization: Compositional analysis is rendered intricate as the synchronization is
not explicitly represented syntactically. In particular, there is no clean syntactic separation be-
tween sequential and parallel composition. E.g., writing (e1 ‖ e2);e3 would make the sequential
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separation of e1 ‖ e2 from e3 explicit and would make a compositional analysis straightforward.
Here instead, the sequentialization constraints are entailed by joining commits and it’s not ex-
plicitly represented with which other threads, if any, a particular commit should synchronize.

Thus, the model has neither independent parallelism nor full sequentialization, but synchroniza-
tion is affected by the nesting structure of the multi-threaded transactions.

Example 3. Let us split the code of Example 1 after the first spawn to analyze the two parts, say el
and er independently. Writing m for the effect that over-approximates the memory consumption,
a rule for sequential composition could resemble the following:

` el :: m1 ` er :: m2 m = f (m1,m2)

` el ;er :: m

In the schematic rule, ` e :: m is read as “expression e has effect m as interface specification”. For
compositionality, the “interface” information captured in the effects must be rich enough such that
m can be calculated from m1 and m2. Especially, the upper bound of the overall resource con-
sumption, i.e., the value we are ultimately interested in, is in itself non-compositional. Consider
Fig. 2, which corresponds to Fig. 1a except that we separated the contributions of el and er (by the
surrounding boxes). As the execution of el partly occurs before er and partly in parallel, m1 must
distinguish the sequential and the parallel contribution of e1, i.e., the contribution of the spawned
thread. Moreover, the parallel part of m1 is partly synchronized with er by joining commits, and
thus the effects must contain information about the corresponding synchronization points. Ulti-
mately, the judgments of the effect system use a six-tuple of information that allows a compo-
sitional analysis of sequential and parallel composition (plus the other language constructs). A
central part of the effect system to achieve compositional analysis is a tree-representation of the
future resource consumption and joining commits, which we call jc-trees. ut

3 A transactional calculus

Next we present the syntax and semantics of TFJ. We have chosen this calculus as the vehicle for
our investigation, as it supports a quite expressive transactional concurrency model, and secondly,
it allows us to present the formal semantical analysis in a concise manner. Note, however, that the

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

el

er

;

Fig. 2: Compositional analysis (sequential composition el ;er)
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P ::= 0 | P ‖ P | p〈e〉 processes/threads
L ::= class C{~f :~T ;K; ~M} class definitions
K ::= C(~f : ~T ){this.~f := ~f} constructors
M ::= m(~x:~T ){e} : T methods
e ::= v | v. f | v. f := v |if v then e else e
| let x:T = e in e | v.m(~v) expressions
| new C(~v) | spawn e | onacid | commit

v ::= r | x | null values

Table 1: Abstract syntax

core of our analysis, i.e., a compositional analysis of concurrent threads with join-synchronization
does not depend on the concrete choice of language. TFJ as presented here is, with some adap-
tations, taken from [9]. The main adaptations, as in [10], are: we added standard constructs such
as sequential composition (in the form of the let-construct) and conditionals. Besides that, we
did not use evaluation-context based rules for the operational semantics, which simplifies the
analysis. The underlying type system (without the effects) is standard and omitted here.

3.1 Syntax

Table 1 shows the abstract syntax of TFJ. A program consists of a number of processes/threads
p〈e〉 running in parallel, where p is the thread’s identifier and e the expression being executed.
The empty process is written 0. The syntactic category L captures class definitions. In absence of
inheritance, a class class C{~f :~T ;K; ~M} consists of a name C, a list of fields ~f with corresponding
type declarations ~T (assuming that all fi’s are different), a constructor K, and a list ~M of method
definitions. A constructor C(~f :~T ){this.~f := ~f} of the corresponding class C initializes the fields
of instances of that class, these fields are mentioned as the formal parameters of the constructor.
We assume that each class has exactly one constructor, i.e., we do not allow constructor over-
loading. Similarly, we assume that all methods defined in a class have a different name; likewise
for fields. A method definition m(~x:~T ){e} : T consists of the name m of the method, the formal
parameters~x with their types ~T , the method body e, and finally the return type T of the method. In
the syntax, v stands for values, i.e., expressions that can no longer be evaluated. In the core calcu-
lus, we implicitly assume standard values like booleans, integers, . . . ; besides those, values can be
object references r, variables x or null. The expressions v. f and v1. f := v2 represent field access
and field update respectively. Method calls are written v.m(~v) and object instantiation is new C(~v).
The next two expressions deal with the basic, sequential control structures: conditionals and se-
quential composition (represented by the let-construct). The language is multi-threaded: spawn e
starts a new thread of activity which evaluates e in parallel with the spawning thread. Specific
for TFJ are the two dual constructs onacid and commit. The expression onacid starts a new
transaction and executing commit successfully terminates a transaction. For a thread spawned
inside a transaction, we impose the following restriction: after a joining commit with its parent,
the child thread is not allowed to start another transaction. This restriction is imposed to simplify
the analysis later and is not a real restriction in practice as one can transform programs easily to
adhere to that convention (at the expense of spawning further threads).
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3.2 Semantics

The operational semantics of TFJ is given in two different levels: a local and a global one. The
local semantics of Table 2 deals with the evaluation of one expression/thread and reducing con-
figurations E ` e. Local transitions are thus of the form E ` e−→ E ′ ` e′, where e is one expression
and E a local environment. Note that in the chosen presentation, the expression starts uniformly
with a let and the redex is always the left expression of the let construct. Locally, the relevant
commands only concern the current thread and consist of reading, writing, invoking a method,
and creating new objects.

Definition 1 (Local environment). A local environment E of type LEnv is a finite sequence of
the form l1:ρ1, . . . , lk:ρk, i.e., of pairs of transaction labels li and a corresponding log ρi. We write
|E| for the size of the local environment, i.e., the number of pairs l:ρ in the local environment.

Transactions are identified by labels l, and as transactions can be nested, a thread can execute
“inside” a number of transactions. So, the E in the above definition is ordered, where e.g. lk to
the right refers to the inner-most transaction, i.e., the one most recently started and committing
removes bindings from right to left. For a thread with local environment E, the number |E| rep-
resents the nesting depth of the thread, i.e., how many transactions the thread has started but not
yet committed. The corresponding logs ρi can be thought of as “local copies” of the heap. The
log ρi, a sequence of mappings from references to values, is used to keep track of changes by a
thread in transaction li.

The first four rules deal straightforwardly with the basic, sequential control flow. Unlike the
first four rules, the remaining ones do access the heap. Thus, the local environment E is consulted
to look up object references and then changed in the step. The access and update of E is given
abstractly by corresponding access functions read, write, and extend (which look-up a reference,
update a reference, resp. allocate a new reference on the heap). Note that also the read-function
actually changes the environment from E to E ′ in the step. The reason is that in a transaction-
based implementation, read-access to a variable may be logged, i.e., remembered appropriately,
to be able to detect conflicts and to do a roll-back if necessary. The premises assume that the class
table is given implicitly where fields(C) looks up fields of class C and mbody(C,m) looks up the
method m of class C. Otherwise, the rules for field look-up, field update, method calls, and object
instantiation are standard.

The rules of the global semantics are given in Table 3. The semantics works on configura-
tions of the form Γ ` P, where P is a program and Γ is a global environment. Besides that, we
need a special configuration error representing an error state. Basically, a program P consists
of a number of threads evaluated in parallel (cf. Table 1), where each thread corresponds to one
expression, whose evaluation is described by the local rules. Now describing the behavior of a
number of (labeled) threads or processes p〈e〉, we need one E for each thread p. This means, Γ

is a “sequence” (or rather a set) of p:E bindings where p is the name of a thread and E is its
corresponding local environment.

Definition 2 (Global enviroment). A global environment Γ of type GEnv is a finite mapping,
written as p1:E1, . . . , pk:Ek, from threads names pi to local environments Ei (the order of bindings
plays no role, and each thread name can occur at most once).

So global steps are of the form:

Γ ` P =⇒ Γ
′ ` P′ or Γ ` P =⇒ error . (1)
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E `let x : T = v in e−→ E ` e[v/x] R-RED

E `let x2 : T2 = (let x1 : T1 = e1 in e) in e′ −→ E `let x1 : T1 = e1 in (let x2 : T2 = e in e′) R-LET

E `let x : T = (if true then e1 else e2) in e−→ E `let x : T = e1 in e R-COND1

E `let x : T = (if false then e1 else e2) in e−→ E `let x : T = e2 in e R-COND2

read(E,r) = E ′,C(~u) fields(C) = ~f
R-LOOKUP

E `let x:T = r. fi in e−→ E ′ `let x:T = ui in e

read(E,r) = E ′,C(~r) fields(C) = ~f
write(r 7→ (C(~r)[ fi 7→r′]),E ′) = E ′′

R-UPD

E `let x:T = r. fi := r′ in e−→ E ′′ `let x:T = r′ in e

read(E,r) = E ′,C(~u) mbody(C,m) = (~x,e)
R-CALL

E `let x:T = r.m(~r) in e′ −→ E ′ `let x : T = e[~r/~x][r/this] in e′

r fresh E ′ = extend(r 7→C(~u),E)
R-NEW

E `let x:T =newC(~u) in e−→ E ′ `let x = r in e

Table 2: Semantics (local)

Also the global steps make use of a number of functions accessing and changing the (this time
global) environment. As before, some semantical functions are left abstract. However, their ab-
stract properties relevant for proving soundness of our analysis are given later in Definition 3 after
discussing the global rules. Note further, that two specific implementations of those functions (an
optimistic and a pessimistic) have been given in [9]. As the functions’ concrete details are ir-
relevant for our static analysis, we refer the interested reader to [9] for possible concretizations
of the semantics. Rule G-PLAIN simply lifts a local step to the global level, using the reflect-
operation, which roughly makes local updates of a thread globally visible; the premise Γ ` p:E
means p:E ∈ Γ . Rule G-SPAWN deals with starting a thread. The next three rules treat the two
central commands of the calculus, those dealing with the transactions. The first one G-TRANS
covers onacid, which starts a transaction. The start function creates a new label l in the local en-
vironment E of thread p. The two rules G-COMM and G-COMM-ERROR formalize the successful
commit resp. an erronous use of the commit-statement outside any transaction. In G-COMM, l is
the label of the transaction to be committed and the function intranse(Γ , l) finds the identities
p1, . . . , pk of all concurrent threads in the transaction l and which all join in the commit. In the
erroneous case of G-COMM-ERROR, the local environment E is empty; i.e., the thread executes
a commit outside of any transaction, which constitutes an error.

Definition 3. The properties of the abstract functions are specified as follows:

1. The function reflect satisfies the following condition: if reflect(p,E,Γ ) = Γ ′ and Γ = p1:E1,
. . . , pk:Ek, then Γ ′ = p1:E ′1, . . . , pk:E ′k with |Ei|= |E ′i | (for all i).

2. The function spawn satisfies the following condition: Assume Γ = p:E,Γ ′′ and p′ /∈ Γ and
spawn(p, p′,Γ ) = Γ ′, then Γ ′ = Γ , p′:E ′ s.t. |E|= |E ′|.

3. The function start satisfies the following condition: if start(l, pi,Γ ) = Γ ′ for Γ = p1:E1, . . . ,
pi:Ei, . . . , pk:Ek and for a fresh l, then Γ ′ = p1:E1, . . . , pi:E ′i , . . . , pk:Ek, with |E ′i |= |Ei|+1.

4. The function intranse satisfies the following condition: Assume Γ = Γ ′′, p:E s.t. E = E ′, l:ρ
and intranse(Γ , l) = ~p, then
(a) p ∈ ~p and
(b) for all pi ∈ ~p we have Γ = . . . , pi : (E ′i , l:ρi), . . ..
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Γ ` p : E E ` e−→ E ′ ` e′ reflect(p,E ′,Γ ) = Γ ′

G-PLAIN

Γ ` P ‖ p〈e〉=⇒ Γ
′ ` P ‖ p〈e′〉

p′ fresh spawn(p, p′,Γ ) = Γ ′

G-SPAWN

Γ ` P ‖ p〈let x : T = spawn e1 in e2〉=⇒ Γ
′ ` P ‖ p〈let x : T = null in e2〉 ‖ p′〈e1〉

l fresh start(l, p,Γ ) = Γ ′

G-TRANS

Γ ` P ‖ p〈let x : T = onacid in e〉=⇒ Γ
′ ` P ‖ p〈let x : T = null in e〉

Γ = Γ ′′, p:E E = E ′, l:ρ intranse(Γ , l) = ~p = p1 . . . pk

commit(~p,~E,Γ ) = Γ ′ p1:E1, p2:E2, . . . pk :Ek ∈ Γ ~E = E1,E2, . . . ,Ek
G-COMM

Γ ` P ‖ . . . ‖ pi〈let x : Ti = commit in ei〉 ‖ . . .=⇒ Γ
′ ` P ‖ . . . ‖ pi〈let x : Ti = null in ei〉 ‖ . . .

Γ = Γ ′′, p:E E = /0
G-COMM-ERROR

Γ ` P ‖ p〈let x : T = commit in e〉=⇒ error

Table 3: Semantics (global)

(c) for all threads p′ with p′ /∈ ~p and Γ = . . . , p′:(E ′, l′:ρ ′), . . ., we have l′ 6= l.
5. The function commit satisfies the following condition: if commit(~p,~E,Γ ) = Γ ′ for Γ = Γ ′′,

p:(E, l:ρ) and for a ~p= intranse(Γ , l) then Γ ′= . . . , p j:E ′j, . . . , pi:E ′i , . . . where pi ∈~p, p j /∈~p,
p j:E j ∈ Γ , with |E ′j|= |E j| and |E ′i |= |Ei|−1.

4 Effect system

Next we present our analysis as an effect system. The underlying types T include names C of
classes, basic types B (natural numbers, booleans, etc.) and Void. The underlying type system
for judgments of the form Γ ` e : T (“under type assumptions Γ , expression e has type T ”) is
standard and therefore omitted here.

Thread-local effects, sequential composition, and joining commits On the local level, the
judgments of the effect part are of the following form:

n1 ` e :: n2,h, l,~t,S , (2)

where n1, n2, h, and l are natural numbers with the following interpretation. n1 and n2 are the pre-
and post-condition for the expression e, capturing the current nesting depth: starting at a nesting
depth of n1, the depth is n2 after termination of e. We call the numbers n1 resp. n2 the current
balance of the thread before and after execution. Starting from the pre-condition n1, the numbers
h and l approximate the maximum resp., the minimum value of the balance during the execution
of e. Executing e, however, may spawn new child threads and the remaining elements ~t and
S take their contribution into account. Roughly speaking, the information S is needed to achieve
compositionality wrt. sequential composition and~t for compositionality wrt. parallel composition.

The S-part represents the resources of threads being spawned in e, more precisely their re-
source consumption after e. S is needed when considering e in a sequential composition with a
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trailing expression. E.g., in the sequential composition of Figure 2, the S of the left expression
corresponds to the part of the left box which overlaps with the trailing expression on the right.
Depending on the nesting depth at the point of being spawned, a thread may or may not be syn-
chronized by a joining commit in the trailing expression. E.g., splitting the program of Figure
1a after the second spawn and before the first commit, this commit affects only the thread of
e2 but not the one of e1. To distinguish the two situations, S must contain, for each thread, the
thread’s nesting depth at the point it is spawned. Thus, S is of the form {(p1,c1),(p2,c2), . . .},
i.e., a multi-set of pairs of natural numbers. For all spawned threads, S keeps its maximal contri-
bution to the resource consumption at the point after e, i.e., (pi,ci) represents that the thread i can
have maximally a resource need of pi + ci, where pi represents the contribution of the spawning
thread (“parent”), i.e., the nesting depth at the point when the thread is being spawned, and ci
the additional contribution of the child threads themselves. In contrast,~t is needed for composi-
tionality wrt. parallel composition. The~t is a sequence of non-negative numbers, representing the
maximal, overall (“total”) resource consumption during the execution of e, including the contri-
bution of all threads (the current and the spawned ones) separated by joining commits of the main
thread. We call~t a joining-commit sequence, or jc-sequence for short. In Example 3, the right-
hand expression [spawn (e2]]])]e3]e4 has one joining commit, i.e., the jc-sequence is of length 2.
Assuming that the execution of the expression starts at nesting depth 2 (as is the case at the end
of the left-hand expression) the jc-sequence is~t = 10,7 (where 10 = ((4+3)+3)∨ ((5+2)+2)
and 7 = 6+1). For uniformity, we use ∨ resp. ∧ not only for the least upper bound resp. greatest
lower bound in general, but also for the maximum, resp. the minimum of natural numbers.

The rules for expressions are shown in Table 4. The rules for variables, the null reference,
for field look-up and field update, and for object instantiation are omitted (cf. [11]), as they nei-
ther affect the balance nor is any other thread involved. Note that not “counting” the resource
consumption of these operations reflects the decision, as stated earlier, that we simply use the
number of logs running in parallel as measure for memory consumption. The committing in rule
T-COMMIT similarly keeps the maximal value constant. Considered in isolation, the commit is a
joining commit, and hence~t has two elements, where the resource consumption is decreased by
one after the commit.

The treatment of sequential composition is more complicated, for the reasons explained in
Section 2. In particular, calculating the jc-sequence ~u and the parallel weight S for the composed
expression from the corresponding information in the premises is intricate. The following two
definitions formalize the necessary calculations:

Definition 4 (Parallel weight). Let S be a multi-set of the form {(p1,c1), . . . ,(pk,ck)} where the
pi, ci, and l are natural numbers. The overall parallel weight of S is defined as |S|= ∑i(pi + ci).
Furthermore we define the following functions:

par(S, l) = {(p,c) ∈ S | p≤ l} seq(S, l) = {(p,c) ∈ S | p > l} .
bScl = {(l,0),(l,0), . . .} S ↓l = par(S, l)∪bseq(S, l)cl

(3)

where for bScl , the number of tuples in S equals the number of (l,0) in bScl .

To determine S in T-LET, the spawned weight S1 of e1 is split into two halves:

1. The part par(S1, l2) of S1 unaffected by a commit in e2 and thus able to run in parallel with e2.
2. The part seq(S1, l2) of S1 affected by a commit in e2 via a join synchronization.
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The parallel weight S1 of e1 is a multi-set of pairs (pi,ci), one pair for each spawned thread,
where the first element pi of the pair represents the balance of the parent thread at the time of
the spawning, i.e., the nesting depth inherited from the parent thread. Whether the contribution
(pi,ci) of a thread spawned in e1 counts as being composed in parallel or affected by a join
synchronization with e2 depends on whether e2 does a commit which closes a transaction con-
taining the thread of (pi,ci). The par(S1, l2) consists of the half of S1 unaffected by any join
synchronization. Even if seq(S1, l2) in contrast synchronizes via joining commits in e2, it still
contributes to the resource consumption after e2, because transactions may be nested, and after
the joining synchronization, the rest of a spawned thread still consumes resources corresponding
to the not-yet-committed parent transactions. The operation bseq(S1, l2)cl2 calculates that remain-
ing contribution. So bS1cl2 contains the consumption after e1 of threads spawned during e1. In
the conclusion of T-LET, that estimation is added to e2’s own contribution S2 by multi-set union,
resulting in S1 ↓l2 ∪ S2 overall. The correctness of the calculation in T-LET depends on the re-
striction that once a spawned thread commits a transaction inherited from its parent thread, it
will not open another transaction. Note, however, that corresponds to the standard semantics of
the explicit join-construct, e.g., in Java, letting the caller wait for the termination of the thread it
intends to “join”.

Definition 5 (Sequential composition of jc-sequences). Let ~s = s0, . . . ,sk,~t = t0, . . . , tm, and
m≥ p≥ 0. Then~s⊕p~t is defined as:~s⊕p~t = s0, . . . ,(sk∨ t0 . . .∨ tp), tp+1, . . . , tm. Given a parallel
weight S and a n ≥ m ≥ 0, then 5n is defined as S 5n~t = t ′0, t

′
1, . . . , t

′
m where t ′0 = t0 + |S|, t ′1 =

t1 + |bScn−1|, . . . , t ′m = tm + |bScn−m|.

The compositional calculation of the jc-sequence ~u (cf. Definition 5) takes care of two phe-
nomena: Firstly, the parallel weight S1 at the end of e1 may increase the resource consumption
of the jc-sequence~t. This is formalized by the 5 operation of Definition 5. Secondly, joining
commits of e2 may no longer be joining commits of the composed expression let x = e1 in e2.
For instance, in Example 3, the (only) joining commit of er (the one separating e3 from e4)
is no longer a joining commit of el ;er, as it cannot synchronize with anything outside the com-
posed expression. The calculation of the composed jc-sequence from the constituent ones as~s⊕p~t
“merges” an appropriate number of elements from~t (using ∨) depending on how many joining
commits disappear in the composition. This number p is given by n2− l1. See also the illustra-
tion in Fig. 3, where the respective joining commits are indicated by the vertical, dotted lines. So
in rule T-LET, the overall ~u is given as ~s⊕p (S1 5n2

~t). The calculation of the remaining effects
in T-LET is straightforward: given the balance n1 as pre-condition, the post-condition n2 of e1

l1

n1

s0 s1 s2 s3

(a)~s of e1

n2

t0 t1 t2 t3

(b)~t of e2

n1 n2

s0 s1 s2 s3 ∨ t0 ∨ t1 ∨ t2
p = n2− l1 = 2

t3

(c)~s⊕p~t of e1;e2

Fig. 3: Sequential composition of jc-sequences (cf. Definition 5)
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T-ONACID

n ` onacid:: n+1,n+1,n, [n+1], /0

n≥ 1
T-COMMIT

n ` commit:: n−1,n,n−1, [n;n−1], /0

n1 ` e1 :: n2,h1, l1,~s,S1 n2 ` e2 :: n3,h2, l2,~t,S2

h = h1 ∨h2 l = l1 ∧ l2 p = n2− l1 S = S1 ↓l2 ∪S2 ~u =~s⊕p (S1 5n2
~t)

T-LET

n1 `let x:T = e1 in e2 :: n3,h, l,~u,S

n ` e1 :: n′,h1, l1,~s,S1 n ` e2 :: n′,h2, l2,~t,S2
T-COND

n ` if v then e1 else e2 :: n′,h1 ∨h2, l1 ∧ l2,~s∨~t,S1 tS2

n1 ` e :: 0,h,0,~s,S
T-SPAWN

n1 ` spawn e :: n1,n1,n1, [n1 + s0],S∪{(n1,h−n1)}

mtype(C,m) :: n′1→ n′2,h, l,~t,S n′1 ≤ n1 n = n1−n′1
T-CALL

n1 ` v.m(~v) :: n′2 +n,h+n, l +n,~t +n,S+n

Table 4: Effect system

serves as pre-condition for the subsequent e2, whose post-balance n3 gives the corresponding fi-
nal post-balance. The values h and l are calculated by the least upper bound, resp., the greatest
lower bound of the corresponding numbers of e1 and e2. The treatment of h, l, and of the current
balance is simple because the syntax of sequential composition reflects and separates the contri-
butions of e1 and e2. The treatment of conditionals in rule T-COND is comparatively simple, after
having defined an appropriate order on the jc-sequences and the parallel weights.

Definition 6 (Order). The order relation on jc-sequences (of equal length) ~s ≤~t is defined
pointwise and we write ~s∨~t for the corresponding least upper bound. For parallel weights,
the order S1 v S2 is defined as follows. For pairs of natural numbers and in abuse of nota-
tion, (p1,c1) v (p2,c2) iff p1 = p2 and c1 ≤ c2. Then for S1 = {(p1,c1), . . . ,(pk,ck)} and S2 =
{(p′1,c

′
1), . . . ,(p′k,c

′
k),(p′k+1,c

′
k+1), . . .}, S1 v S2 if (pi,ci) v (p′i,c

′
i), for all 1 ≤ i ≤ k. We write

S1tS2 for the corresponding least upper bound of S1 and S2 wrt. v.

When spawning a new thread e (cf. rule T-SPAWN), the pre-condition n1 remains unchanged, as
the effect of e as determined by the premise does not concern the current, i.e., spawning thread.
Likewise, the maximal and minimal value are simply n1, as well. The jc-sequence of total resource
consumption takes into account the contribution s0 of the spawned thread before its first joining
commit plus the resource consumption n1 of the current thread. Finally, the parallel weight S of
the spawned expression is increased by the maximal value h of e’s thread, where that contribution
is split into the “inherited” part n1 and the rest h− n1. The effect of a method call v.m(~v) (cf.
T-CALL) is given by the interface information of method m in class C appropriately increased by
the difference n of the balance n1 at the call-site and the specified pre-condition n′1; the interface
information for the method is looked up using mtype in the given class table (the function is
standard and its definition is omitted here). The appropriate adapation of the interface information
concerning~t and S is defined as follows:

Definition 7 (Shift). Given a natural number n, the addition ~t + n on a jc-sequence ~t is de-
fined point-wise. For parallel weights S = {(p1,c1), . . . ,(pk,ck)}, S + n is defined as {(p1 +
n,c1), . . . ,(pk +n,ck)}.
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Global effects, parallel composition, and joining commit trees The rest of the section is con-
cerned with formalizing the resource analysis on the global level, in essence, capturing the parallel
composition of threads (cf. Table 5 below). The key is again to find an appropriate representation
of the resource effects which is compositional wrt. parallel composition. At the local level, one
key was to capture the synchronization point of a thread in what we called jc-sequences. Now that
more than one thread is involved, that data-structure is generalized to jc-trees which are basically
finitely branching, finite trees where the nodes are labeled by a transaction label and an integer.
With t as jc-tree, the judgments at the global level are of the following form: Γ ` P :: t.

Definition 8 (Jc-tree). Joining commit trees (or jc-trees for short) are defined as tree of type
JCtree = Node of Nat×Lab× (List ofJCtree), with typical element t. We write~t for lists of jc-
trees. We write also [] for the empty list, and Node(n, l,~t) for a jc-tree whose root carries the
natural number n as weight and l as label, and with children~t.

Definition 9 (Weight). The weight of a jc-tree is given inductively as |Node(n, l,~t)| = n∨
∑
|~t|
i=1(|ti|). The initial weight of a join tree t, written |t|1, is the weight of its leaves.

Definition 10 (Parallel merge). We define the following two functions ⊗1 of type JCtree×
JCForest→ JCForest and ⊗2 of type JCForest2 → JCForest by mutual induction. In abuse of
notation, we will write ⊗ for both in the following.

t⊗1 [] = [t]
Node(n1, l, f1)⊗1 (Node(n2, l, f2) :: f ) = Node(n1 +n2, l, f1⊗2 f2) :: f

Node(n1, l1, f1)⊗1 (Node(n2, l2, f2) :: f ) = Node(n2, l2, f2) :: (Node(n1, l1, f1)⊗1 f ) l1 6= l2

[]⊗2 f = f
t :: f1⊗2 f2 = f1⊗2 (t⊗1 f2)

Remember from Definition 1, that local environments are of the form l1:ρ1, . . . , lk:ρk. In the
semantics, the transaction labelled lk is the inner-most one.

Definition 11 (Lifting). The function lift of type LEnv×Nat+→ JCtree is given inductively as:

lift([], [n]) = Node(n,⊥, [])
lift((l:ρ :: E),~s :: n) = Node(n, l, [lift(E,~s)]) .

Note that the function is undefined if |E| 6= |~s|−1. It is an invariant of the semantics, that |E| =
|~s|−1, and hence the function is well-defined for all reachable configurations. Defining the weight
(and in abuse of notation) of a jc-sequence~s as the maximum of their elements, we obviously have
|~s|= |lift(E,~s)|.

|E| ` e :: n,h, l,~s,S t = lift(E,~s)
T-THREAD

p:E ` p〈e〉 :: t

Γ1 ` P1 : t1 Γ2 ` P2 : t2
T-PAR

Γ1,Γ2 ` P1 ‖ P2 : t1⊗2 t2

Table 5: Effect system
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5 Correctness

This section establishes the soundness of the analysis, i.e., that the static estimation over-approximates
the actual potential resource consumption for all reachable configurations. We start by defining
the actual resource consumption of a program:

Definition 12 (Resource consumption). The weight of a local environment E, written |E| is
defined as its length, i.e., the number of its l:ρ-bindings. The weight of a global environment Γ ,
written |Γ | is defined as the sum of weights of its local environments.

The following lemmas establish a number of facts about the operations used in the calculation
of resource consumption needed later. The proofs, omitted here for lack of space, can be found
in the technical report [11]. The next two lemmas show that the way the resource consumption is
calculated in the let-rule is associative, which is a crucial ingredient in subject reduction.

Lemma 1 (Associativity of parallel weight). Let S1,S2 be parallel weights and l be a non-
negative natural number. Define the function f as f (S1, l,S2)= S1 ↓l∪S2. Then f ( f (S1, l2,S2), l3,S3)
= f (S1, l2∧ l3, f (S2, l3,S3)).

Lemma 2 (Associativity of ⊕ and 5). Let l1 = n1−|s|+1, l2 = n2−|~t|+1, p1 = n2− l1, and
p2 = n3− l2. Then~s⊕p1 (S1 5n2 (~t⊕p2 (S2 5n3~u))) = (~s⊕p1 (S1 5n2

~t))⊕p2 ((S2∪S1 ↓l2)5n3~u).

The order on trees is defined “point-wise” in that the smaller tree must be a sub-tree (respect-
ing the labelling) of the larger one and furthermore each node of the smaller tree with weight w1
is represented by the corresponding node with a weight w2 ≥ w1.

Definition 13 (Order on trees). We define the binary relation ≤ on jc trees inductively as fol-
lows: Node(n, l,~s)≤Node(m, l,~t) if n≤m and for each tree si in~s, there exists a t j in~t such that
si ≤ t j. (Note that the labels l in a jc tree are unique.)

Lemma 3 (Lifting of ordering). If~s≤~t (as comparison between jc-sequences), then lift(E,~s)≤
lift(E,~t) (as comparison between jc trees).

Lemma 4 (Lifting and commit). lift(E, l:ρ,n ::~u)≥ lift(E,~u).

Lemma 5 (Monotonicity). If t1 ≤ t ′1 and t2 ≤ t ′2, then (t1⊗ t2)≤ (t ′1⊗ t ′2).

Next we prove preservation of well-typedness under reduction, i.e., subject reduction, split into
two parts, preservation under local resp. global reduction steps.

Lemma 6 (Subject reduction (local)). If n1 ` e1 :: n2,h1, l1,~s,S1 and E1 ` e1 −→ E2 ` e2, then
n1 ` e2 :: n2,h2, l2,~t,S2 s.t. h2 ≤ h1, l2 ≥ l1,~t ≤~s, and S2 v S1.

Lemma 7 (Subject reduction). If Γ `P :: t and Γ `P=⇒Γ ′ `P′ then Γ ′ `P′ :: t ′ where t ′≤ t.

The next lemma states a basic correctness property of our analysis, namely that for well-typed
configurations, the actual resource consumption |Γ | is over-approximated via the result |t| of the
analysis. We prove a slightly stronger statement namely that the actual resource consumption is
approximated by the initial weight |t|1.

Lemma 8. If Γ ` P :: t, then |Γ | ≤ |t|1.

The final result as corollary of subject reduction and the previous lemma: the statically calcu-
lated result is an over-approximation for all reachable configurations:

Theorem 1 (Correctness). Given an initial configuration Γ0 ` p0〈e0〉 and Γ0 ` p0〈e0〉 :: t (with
Γ0 as empty global context). If Γ0 ` p0〈e0〉=⇒∗ Γ ` P, then |Γ | ≤ |t|.
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6 Conclusion

We have formalized a static, compositional effect-based analysis to estimate the resource bounds
for a transactional model with nested and multi-threaded transactions. The analysis focuses on
transactional memory systems where thread-local copies of memory resources (logs) caused by
nested and multi-threaded transactions is our main concern. As usual, the challenge in achieving
a sound static analysis lies in obtaining the following three goals at the same time: 1) composi-
tionality, 2) precision, and 3) soundness. Without compositionality, the analysis is guaranteed not
to scale for large programs, therefore not usable in practice. Without precision, compositionality
and soundness can trivially be achieved by overly abstracting all details and ultimately rejecting
all programs as potentially erroneous. Of course without soundness, it is pointless to formally
analyze programs. Achieving all three goals in a satisfactory manner requires human ingenuity.
In our setting the effect system can, in a compositional way, statically approximate the maxi-
mum number of logs that co-exist at run-time. This allows to infer the memory consumption of
the transactional constructs in the program. To achieve a higher degree of precision in the ap-
proximation, it is important to take the underlying concurrency model and its synchronization
into account. The main challenge is that the execution model has neither independent parallelism
nor full sequentialization. To our knowledge, this is the first static analysis taking care of mem-
ory resource consumption for such a concurrency model. Abstracting away from the specifics of
memory consumption and the concrete concurrent calculus, the effect system presented here can
be seen as a careful, compositional account of a parallel model based on join-synchronization. It
is promising to use our compositional techniques as explored here also to achieve different pro-
gram analyses in a similar manner for programs based on fork/join parallelism. We expect that
adapting our techniques to a model with explicit join synchronization, as e.g., in Java, leads to a
simplification, as the synchronization is syntactically represented in the program code.

Related work Estimating memory, or more generally, resource usage has been studied, in various
other settings. To specify upper bounds for the memory usage of dynamic, recursive data types,
the notion of sized types have been introduced in [8]. Their system, a type and effect system as
well, certifies a time limit for functional (and single-threaded) programs, relying on annotations
by the programmer specifying time limits for each individual function. Hofmann and Jost [6] use
a linear type system to compute linear bounds on heap space for a first-order functional language.
One significant contribution of this work is the inference mechanism through linear program-
ming techniques. Extensions from linear to polynomial resource bounds are presented in [5] and
[4]. [15] deals with a first-order, call-by-value, garbage-collected functional language. Their ap-
proach is based on program analysis and model checking and not type-based. For imperative and
object-oriented languages Wei-Ngan Chin et al. [2] treat explicit memory management in a core
object-oriented language. Programmers have to annotate the memory usage and size relations for
methods as well as explicit de-allocation. In [7], Hofmann and Jost combine amortized analysis,
linear programming and functional programming to calculate the heap space bound as a func-
tion of input for an object oriented language. In [1] the authors present an algorithm to statically
compute memory consumption of a method as a non-linear function of the method’s parame-
ters. The bounds are not precise. The main difference of our work in comparison to the above
related ones is in that we are dealing not only with a multi-threaded analysis —many of the cited
works are restricted to sequential languages— but also the complex and implicit synchronization
structure entailed by the transactional model. The work in [14], as here, provides resource estima-
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tions in a concurrent (component-based) setting. The concurrency model in that work, however,
is considerably simpler, as sequential and parallel composition are explicit constructs in the inves-
tigated calculus. Simpler is also the treatment in [16], which presents an analysis which is which
does not treat parallel composition in a compositional manner, i.e., the compositional treatment
is single-threaded. As a consequence, in that work, the effects do not capture the tree-like join-
synchronization as here, at the expense of compositionality for parallel composition.

Current and future work We formalized the calculus and the type system in the Coq theorem
prover (and using the OTT semantical framework [12]) and are currently working on a formaliza-
tion of the correctness proof with the longer-term goal to use Coq’s program extraction to obtain
a formally correct implementation of the effect type system. Besides that, we plan to refine the
effect system by deriving more detailed information about the logs (e.g. memory cells per log, or
number of variables per log and so on) to infer memory consumption more precisely (which is
an orthogonal problem, as mentioned). Furthermore, a challenging step is to automatically infer
interface information concerning the resource consumption for method declarations.
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