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Abstract
Deadlocks are a common problem in programs with lock-based concurrency and
are hard to avoid or even to detect. One way for deadlock prevention is to statically
analyse the program code to spot sources of potential deadlocks.

We reduce the problem of deadlock checking to race checking, another promi-
nent concurrency-related error for which good (static) checking tools exist. The
transformation uses a type and effect-based static analysis, which analyses the
data flow in connection with lock handling to find out control-points which are
potentially part of a deadlock. These control-points are instrumented appropri-
ately with additional shared variables, i.e., race variables injected for the purpose
of the race analysis. To avoid overly many false positives for deadlock cycles of
length longer than two, the instrumentation is refined by adding “gate locks”. The
type and effect system, and the transformation are formally given. We prove our
analysis sound using a simple, concurrent calculus with re-entrant locks.

Keywords: deadlock detection, race detection, type and effect system,
concurrency, formal method

1. Introduction

Concurrent programs are notoriously hard to get right and at least two fac-
tors contribute to this fact: Correctness properties of a parallel program are often
global in nature, i.e., result from the correct interplay and cooperation of mul-
tiple processes. Hence also violations are non-local, i.e., they cannot typically
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be attributed to a single line of code. Secondly, the non-deterministic nature of
concurrent executions makes concurrency-related errors hard to detect and to re-
produce. Since typically the number of different interleavings is astronomical or
infinite, testing will in general not exhaustively cover all behavior and errors may
remain undetected until the software is in use.

Arguably the two most important and most investigated classes of concurrency
errors are data races [11] and deadlocks [19]. A data race is the simultaneous, un-
protected access to mutable shared data with at least one write access. A deadlock
occurs when a number of processes are unable to proceed, when waiting cyclically
for each other’s non-shareable resources without releasing one’s own [16]. Dead-
locks and races constitute equally pernicious, but complementary hazards: locks
offer protection against races by ensuring mutually exclusive access, but may lead
to deadlocks, especially using fine-grained locking, or are at least detrimental to
the performance of the program by decreasing the degree of parallelism. Despite
that, both share some commonalities, too: a race, respectively a deadlock, man-
ifests itself in the execution of a concurrent program, when two processes (for a
race) resp. two or more processes (for a deadlock) reach respective control-points
that when reached simultaneously, constitute an unfortunate interaction: in case
of a race, a read-write or write-write conflict on a shared variable, in case of a
deadlock, running jointly into a cyclic wait.

In this paper, we define a static analysis for multi-threaded programs which al-
lows reducing the problem of deadlock checking to race condition checking. Our
target language has explicit locks, i.e. we address non-block structured locking,
and we can certify programs as safe which cannot be certified by approaches that
use a static lock order (see Section 7 on related work).

The analysis consists of two phases. The first phase statically calculates infor-
mation about lock usages per thread. Since deadlocks are a global phenomenon,
i.e., involving more than one thread, the derived information is used in the second
phase to instrument the program with additional variables to signal a race at con-
trol points that potentially are involved in a deadlock. The formal type and effect
system for lock information in the first phase uses a constraint based flow anal-
ysis as proposed by [33]. The effects, using the flow information, capture in an
approximate manner on how often different locks are being held and is likewise
formulated using constraints. This information roughly corresponds to the notion
of lock-sets in that at each point in the program, the analysis gives approximate
information which locks are held. In the presence of re-entrant locks, an upper
bound on how many times the locks are being held is given, which corresponds to
a “may”-over-approximation. In contrast, the notion of lock-sets as used in many
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race-freedom analyses, represents sets of locks which are necessarily held, which
dually corresponds to a “must”-approximation.

Despite the fact that races, in contrast to deadlocks, are binary global concur-
rency errors in the sense that only two processes are involved, the instrumentation
is not restricted to deadlock cycles of length two. To avoid raising too many spu-
rious alarms when dealing with cycles of length larger than 2, the transformation
adds additional gate locks to check possible interleavings to a race (deadlock)
pairwise.

Our approach widens the applicability of freely available state-of-the-art static
race checkers: Goblint [45] for the C language, which is not designed to do any
deadlock checking, will report appropriate data races from programs instrumented
through our transformation, and thus becomes a deadlock checker as well. Chord
[34] for Java only analyses deadlocks of length two for Java’s synchronized con-
struct, but not explicit locks from java.util.concurrent, yet through our instru-
mentation reports corresponding races for longer cycles and for deadlocks involv-
ing explicit locks.

The remainder of the paper is organized as follows. Section 2 presents syn-
tax and operational semantics of the calculus. Afterwards, Section 4 formalizes
the data flow analysis in the form of a (constraint-based) effect system. The ob-
tained information is used in Sections 5 and 6 to instrument the program with
race variables and additional locks. The sections also prove the soundness of the
transformation. We conclude in Section 7 discussing related and future work.

2. Calculus

In this section we present the syntax and (operational) semantics for our calcu-
lus, formalizing a simple, concurrent language with dynamic thread creation and
higher-order functions. Locks can be created dynamically, they are re-entrant and
support non-lexical use of locking and unlocking. The abstract syntax is given in
Table 1. A program P consists of a parallel composition of processes p〈t〉, where
p identifies the process and t is a thread, i.e., the code being executed. The empty
program is denoted as /0. As usual, we assume ‖ to be associative and commu-
tative, with /0 as neutral element. As for the code we distinguish threads t and
expressions e, where t basically is a sequential composition of expressions. Val-
ues are denoted by v, and let x:T = e in t represents the sequential composition
of e followed by t, where the eventual result of e, i.e., once evaluated to a value,
is bound to the local variable x.
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P ::= /0 | p〈t〉 | P ‖ P program
t ::= v value
| let x:T = e in t local variables and sequ. composition

e ::= t thread
| v v application
| if v then e else e conditional
| spawn t spawning a thread
| new L lock creation
| v. lock acquiring a lock
| v. unlock releasing a lock

v ::= x variable
| lr lock reference
| true | false truth values
| fn x:T.t function abstraction
| fun f :T.x:T.t recursive function abstraction

Table 1: Abstract syntax

Expressions, as said, are given by e, and threads count among expressions.
Further expressions are function application, conditionals, and the spawning of a
new thread, written spawn t. The last three expressions deal with lock handling:
new L creates a new lock (initially free) and returns a reference to it (the L may be
seen as a class for locks), and furthermore v.lock and v.unlock acquires and re-
leases a lock, respectively. Values, i.e., evaluated expressions, are variables, lock
references, and function abstractions, where we use fun f :T1.x:T2.t for recursive
function definitions. Note that the grammar insists that, e.g., in an application,
both the function and the arguments are values, analogously when acquiring a
lock, etc. This form of representation is known as a-normal form [25]. Obviously,
the more “general” expressions like e1 e2 or e. lock etc. can straightforwardly
be transformed into a-normal form, by adding local variables, in case of the ap-
plication, e.g., by writing let x1 = e1 in (let x2 = e2 in x1 x2). We use this
representation to slightly simplify the formulation of the operational semantics
and in particular of the type systems, without sacrificing expressivity.

The grammar for types and type schemes, effects, and annotations is given
Table 2, where π represents labels (used to label program points where locks
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Y ::= ρ | X type-level variables
r ::= ρ | {π} | rt r lock/label sets

T̂ ::= B | Lr | T̂
ϕ−→ T̂ types

Ŝ ::= ∀~Y :C. T̂ type schemes
ϕ ::= ∆→ ∆ effects/pre- and post specification
∆ ::= • | X | ∆,r:n | ∆⊕∆ | ∆	∆ lock env./abstract state
C ::= /0 | ρ w r, C | X ≥ ∆,C constraints

Table 2: Types

are created), r represents (finite) sets of πs, where ρ is a corresponding variable.
Labels π are an abstraction of concrete lock references which exist at run-time
(namely all those references created at that program point) and therefore we refer
to labels π as well as lock sets r also as abstract locks. Types include basic types
B such as integers, booleans, etc., left unspecified, function types T̂1

ϕ−→ T̂2, and in
particular lock types L. To capture the data flow concerning locks, the lock types
are annotated with lock sets r, i.e., they are of the form Lr. This information will
be inferred, and the user, when using types in the program, uses types without
annotations (the “underlying” types). We write T,T1,T2, . . . for the underlying
types, and T̂ and its syntactic variants for the annotated types, as given in the
grammar. For the deadlock and race analysis we need not only information which
locks are used where, but also an estimation about the “value” of the lock, i.e.,
how often the abstractly represented locks are taken.

Estimation of the lock values, resp. their change is captured in the behavioral
effects ϕ in the form of pre- and post-specifications ∆1 → ∆2. Abstract states
(or lock environments) ∆ are of the form r0:n0,r1:n1, . . .. We use X for variables
representing lock environments. The constraint based type system works on lock
environments using variables only, i.e., the ∆ are of the form ρ0:n0,ρ1:n1, . . .,
maintaining that each variable occurs at most once. Thus, in the type system, the
environments ∆ are mappings from variables ρ to lock counter values n, where
n is an integer value including ∞ and −∞. As for the syntactic representation of
those mappings: we assume that a variable ρ not mentioned in ∆ corresponds to
the binding ρ:0, e.g. in the empty mapping •. Furthermore, lock environments can
be formed using ⊕ and 	. The definition of these binary operators will be given
later (cf. Definition 3.1). Constraints C finally are finite sets of subset inclusions of
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the form ρ w r and of constraints of the form X ≥ ∆. To allow a context-sensitive
analysis we use type schemes Ŝ, i.e., prefix-quantified types of the form ∀~Y :C.T̂ ,
where Y are variables ρ or X .

2.1. Semantics
Next we present the operational semantics, given in the form of a small-step

semantics, distinguishing between local and global steps (cf. Tables 3 and 4). The
local semantics deals with reduction steps of one single thread of the form

t1 −→ t2 . (1)

Rule R-RED is the basic evaluation step which replaces the local variable in the
continuation thread t by the value v (where [v/x] represents capture-avoiding sub-
stitution). The let-construct generalizes sequential composition and rule R-LET

restructures a nested let-construct expressing associativity of that construct. Thus
it corresponds to transforming (e1; t1); t2 into e1;(t1; t2). Together with the first
rule, it assures a deterministic left-to-right evaluation within each thread. The two
R-IF-rules cover the two branches of the conditional and the R-APP-rules deals
with function application (of non-recursive, resp. recursive functions).

let x:T = v in t −→ t[v/x] R-RED

let x2:T2 = (let x1:T1 = e1 in t1) in t2 −→ let x1:T1 = e1 in (let x2:T2 = t1 in t2) R-LET

let x:T = if true then e1 else e2 in t −→ let x:T = e1 in t R-IF1

let x:T = if false then e1 else e2 in t −→ let x:T = e2 in t R-IF2

let x:T = (fn x′:T ′.t ′) v in t −→let x:T = t ′[v/x′] in t R-APP1

let x:T = (fun f :T1.x′:T2.t ′) v in t −→ let x:T = t ′[v/x′][fun f :T1.x′:T2.t ′/ f ] in t R-APP2

Table 3: Local steps

The global steps are given in Table 4, formalizing transitions of configurations
of the form σ ` P, i.e., the steps are of the form

σ ` P−→ σ
′ ` P′ , (2)

where P is a program, i.e., the parallel composition of a finite number of threads
running in parallel, and σ is a finite mapping from lock identifiers to the status of
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each lock (which can be either free or taken by a thread where a natural number
indicates how often a thread has acquired the lock, modeling re-entrance). Thread-
local steps are lifted to the global level by R-LIFT. Rule R-PAR specifies that
the steps of a program consist of the steps of the individual threads, sharing σ .
Executing the spawn-expression creates a new thread with a fresh identity which
runs in parallel with the parent thread (cf. rule R-SPAWN). Globally, the process
identifiers are unique; for P1 and P2 to be composed in parallel, the ‖-operator
requires dom(P1) and dom(P2) to be disjoint, which assures global uniqueness.
A new lock is created by new L (cf. rule R-NEWL) which allocates a fresh lock
reference in the heap. Initially, the lock is free. A lock l is acquired by executing
l. lock. There are two situations where that command does not block, namely
the lock is free or it is already held by the requesting process p. The heap update
σ +p l is defined as follows: If σ(l) = free, then σ +p l = σ [l 7→ p(1)] and if
σ(l) = p(n), then σ +p l = σ [l 7→ p(n + 1)]. Dually σ −p l is defined as follows:
if σ(l) = p(n +1), then σ −p l = σ [l 7→ p(n)], and if σ(l) = p(1), then σ −p l =
σ [l 7→ free]. Unlocking works correspondingly, i.e., it sets the lock as being free
resp. decreases the lock count by one (cf. rule R-UNLOCK). In the premise of
the rules it is checked that the thread performing the unlocking actually holds the
lock.

t1 −→ t2
R-LIFT

σ ` p〈t1〉 −→ σ ` p〈t2〉

σ ` P1 −→ σ ′ ` P′1
R-PAR

σ ` P1 ‖ P2 −→ σ
′ ` P′1 ‖ P2

σ ` p1〈let x:T = spawn t2 in t1〉 −→ σ ` p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉 R-SPAWN

σ ′ = σ [l 7→ free] l is fresh
R-NEWL

σ ` p〈let x:T =new L in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = free∨σ(l) = p(n) σ ′ = σ +p l
R-LOCK

σ ` p〈let x:T = l. lock in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = p(n) σ ′ = σ −p l
R-UNLOCK

σ ` p〈let x:T = l. unlock in t〉 −→ σ
′ ` p〈let x:T = l in t〉

Table 4: Global steps

To analyse deadlocks and races, we specify which locks are meant statically
by labeling the program points of lock creations with π , i.e., lock creation state-
ments new L are augmented to newπ L where the annotations π are assumed unique
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for a given program. To formulate properties and the corresponding proofs later,
relating the semantics with the static type system, we assume further that lock
references l are also annotated, i.e. of the form lρ ; the labeling is done by the type
system presented next. The labeling is, as said, for proof-theoretic purposes only
and does not influence the semantics.

3. Type system

Next we present the type and effect system, which later then is turned into an
algorithmic version in Section 4. The typing part included flow-annotated types
for locks, which represents a basic flow analysis keeping track of where locks are
created resp. where they are used. The type based flow-analysis uses constraints
and basically is an adapdation of flow analysis techniques proposed in [33] (not for
locks, but for a functional, higher-order calculus). Besides the flow information
about lock definition and usage, effects take care of estimating an upper bound of
the lock-counter values, which may change by locking resp. unlocking. Also this
part of the static analysis is based on constraints, using known techniques (see
e.g. [49] and [9]). To enhance precision, the type and effect analysis is context-
sensitive, i.e., uses polymorphic types. To assure that type inference is feasible
later, polymorphic types allow prefix-quantification only, i.e., are based on the
well-known notion of type schemes and let-polymorphism.

The judgments of the type system are of the form

C;Γ ` e : T̂ :: ϕ (3)

where ϕ represents ∆1 → ∆2. The judgment asserts that e is of type T̂ , where
for annotated lock types of the form Lρ where ρ expresses the potential points of
creation of the lock. The effect ϕ = ∆1 → ∆2 expresses the change in the lock
counters, where ∆1 is the pre-condition and ∆2 the post-condition (in a partial
correctness manner). The types and the effects contain variables ρ and X and
hence the judgement is interpreted relative to solutions of the set of constraints C.

The rules for the type system are given in Table 5. The type (scheme) of a
variable is determined by its declaration in the context Γ (cf. rule T-VAR) and it
has no effect, i.e., its pre- and post-condition are identical. As a general obser-
vation and as ususal, values have no effect. Also lock creation in rule T-NEWL
does not have an effect. As for the flow: π labels the point of creation of the lock;
hence it must be a consequence of the constraints that π is contained in the anno-
tation ρ of the lock type, written as C ` ρ w {π} in the premise of the rule. The
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case for annotated lock references lρ in rule T-LREF works analogously, where
the constraints ensure that the annotation ρ of the lock variable is contained in
the annotation ρ ′ of the lock type. For function abstraction in rule T-ABS1, the
premise checks the body e of the function with the typing context appropriately
extended. Note that in the function definition, the type of the formal parameter is
declared as (un-annotated) type T , the declaration is remembered in the context
as the binding x:dTe. The operation dTe turns all occurrences of lock types L in
T into annotated counter-parts, i.e., lock types L are annotated as Lρ and arrow-
types T1→ T2 are annotated to T̂1

∆1→∆2−−−→ T̂2. The treatment of recursive functions
in T-ABS2 works similarly. The treatment of function application in rule T-APP is
straightforward: as function and argument are values, they have themselves no ef-
fect, and the post-condition is directly taken from the function’s latent effect. The
treatment of conditionals is standard (cf. rule T-COND), where two types and ef-
fects of the two branches must agree with each other. For sequential composition
(cf. rule T-LET), the post-condition of the first part serves as pre-condition of the
second. As far as the type is concerned, the (annotated) type schene S1 as derived
for e1 must be compatible with the type T1 as declared. The operation bŜ1c simply
erases all annotations (including quantifications of the type-schemes therefore)
and gives back the corresponding un-annotated type. Spawning a thread in rule
T-SPAWN has no effect, where the premise of the rule checks well-typedness of
the expression being spawned. Note that for that expression, all locks are assumed
to be free, assuming • as pre-condition. The two rules T-LOCK and T-UNLOCK

deal with locking and unlocking, simply counting up, resp. down the lock counter,
requiring the post-condition to be larger than ∆1⊕ (ρ:1), resp. ∆1	 (ρ1:1) (cf.
Definition 3.1).

Definition 3.1 (Operations on ∆). ∆1 ⊕ ∆2 is defined point-wise, i.e., for ∆ =
∆1⊕∆2, we have ∆(ρ) = ∆1(ρ)+ ∆2(ρ), for all ρ . Remember that, for the syn-
tactic representation of abstract states, variables which are not mentioned are
assumed to be 0, e.g., for the “empty” abstract state, •(ρ) = 0 for all ρ . The dif-
ference operation ∆1	∆2 is defined analogously using −. We also use ∆⊕ρ as
abbreviation for ∆⊕ (ρ:1), analogously for ∆	ρ . The order on abstract states,
written ∆1 ≤ ∆2, is defined point-wise. Analogously the least upper bound ∆1∨∆2
and the greatest lower bound ∆1∧∆2. Based on that, the judgment C ` ∆1 ≤ ∆2
is given by the rules of Table 7.

The two dual rules of generalization and instantiation T-GEN and T-INST in-
troduce, resp. eliminate type schemes. Together with a standard rule of subsump-
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tion T-SUB, these rules are not syntax-directed and need to be eliminated to obtain
an algorithmic version of the analysis.

Γ(x) = Ŝ
T-VAR

C;Γ ` x : Ŝ :: ∆→ ∆

C ` ρ w {π}
T-NEWL

C;Γ ` newπ L : Lρ :: ∆→ ∆

C ` ρ ′ w ρ

T-LREF

C;Γ ` lρ : Lρ ′ :: ∆→ ∆

T̂1 = dT1e C;Γ,x:T̂1 ` e : T̂2 :: ϕ ϕ = ∆1 −→ ∆2
T-ABS1

C;Γ ` fn x:T1.e : T̂1
ϕ−→ T̂2 :: ∆−→ ∆

T̂1 = dT1e T̂2 = dT2e C;Γ, f :T̂1
ϕ−→ T̂2,x:T̂1 ` e : T̂2 :: ϕ ϕ = ∆1→ ∆2

TA-ABS2

C;Γ ` fun f :T1→ T2,x:T1.e : T̂1
ϕ−→ T̂2 :: ∆1→ ∆1

C;Γ ` v1 : T̂2
∆1→∆2−−−−→ T̂1 :: ∆1 −→ ∆1 C;Γ ` v2 : T̂2 :: ∆1 −→ ∆1

T-APP

C;Γ ` v1 v2 : T̂1 :: ∆1 −→ ∆2

C;Γ ` v : Bool:: ∆1 −→ ∆1 C;Γ ` e1 : T̂ :: ∆1 −→ ∆2 C;Γ ` e2 : T̂ :: ∆1 −→ ∆2
T-COND

C;Γ ` if v then e1 else e2 : T̂ :: ∆1→ ∆2

C;Γ ` e1 : Ŝ1 :: ∆1→ ∆2 bŜ1c= T1 C;Γ,x:Ŝ1 ` e : T̂2 :: ∆2→ ∆3
T-LET

C;Γ ` let x:T1 = e1 in e2 : T̂2 :: ∆1→ ∆3

C;Γ ` t : T̂ :: •→ ∆2
T-SPAWN

C;Γ `spawn t : Thread:: ∆1→ ∆1

C;Γ ` v : Lρ :: ∆1→ ∆1; C ` ∆1⊕ (ρ:1)≤ ∆2
T-LOCK

C;Γ ` v. lock: Lρ :: ∆1→ ∆2

C;Γ ` v : Lρ :: ∆1→ ∆1 C ` ∆1	 (ρ:1)≤ ∆2
T-UNLOCK

C;Γ ` v. unlock: Lρ :: ∆1→ ∆2

C1;C2;Γ ` e : T̂ :: ∆1→ ∆2 ~Y not free in Γ,C1
T-GEN

C1;Γ ` e : ∀~Y :C2.T̂ :: ∆1→ ∆2

C1;Γ ` e : ∀~Y :C2.T̂ :: ∆1→ ∆2 θ = [~r,~∆/~Y ] C1 |= θC2
T-INST

C1;Γ ` e : θ T̂ :: ∆1→ ∆2

C;Γ ` e : T̂2 :: ∆1→ ∆2 C ` T̂2 ≤ T̂1 C ` ∆′1 ≤ ∆1 C ` ∆2 ≤ ∆′2
T-SUB

C;Γ ` e : T̂1 :: ∆
′
1→ ∆

′
2

Table 5: Type and effect system

Definition 3.2 (Subtyping). The subtyping relation with judgements of the form
C ` T̂1 ≤ T̂2 is given inductively in Table 6:

The typing rules from Table 5 work on the thread local level. Keeping track
of the lock-counter is basically a single-threaded problem, i.e., each thread can be
considered in isolation. This is a consequence of the fact that, even if shared, locks
are obviously protected from interference. For subject reduction later, we also
need to analyse processes running in parallel. The definition is straightforward,
since a global program is well-typed simply if all its threads are. For for one



3 TYPE SYSTEM 11

C ` T̂ ≤ T̂ S-REFL
C ` T̂1 ≤ T̂2 C ` T̂2 ≤ T̂3

S-TRANS

C ` T̂1 ≤ T̂3

C |= r1 ⊆ r2
S-LOCK

C ` Lr1 ≤ Lr2

C ` T̂ ′1 ≤ T̂1 C ` T̂2 ≤ T̂ ′2 C ` ∆′1 ≤ ∆1 C ` ∆2 ≤ ∆′2
S-ARROW

C ` T̂1
∆1→∆2−−−−→ T̂2 ≤ T̂ ′1

∆′1→∆′2−−−−→ T̂ ′2

Table 6: Subtyping

C ` ∆≤ ∆ S-REFL
C ` ∆1 ≤ ∆2 C ` ∆2 ≤ ∆3

S-TRANS

C ` ∆1 ≤ ∆3

C,∆≤ X ` ∆≤ X S-AX

∆1 ≤ ∆2
S-BASE

C ` ∆1 ≤ ∆2

C ` ∆1 ≥ •
S-PLUS1

C ` ∆2⊕∆1 ≥ ∆2

C ` ∆1 ≤ •
S-PLUS2

C ` ∆2⊕∆1 ≤ ∆2

C ` ∆1 ≥ •
S-MINUS1

C ` ∆2	∆1 ≤ ∆2

C ` ∆1 ≤ •
S-MINUS2

C ` ∆2	∆1 ≥ ∆2

Table 7: Order on abstract states

thread, p〈t〉 : p〈ϕ;C〉, if C ` t : T̂ :: ϕ for some type T̂ (cf. Table 8). We will
abbreviate p1〈ϕ1;C1〉 ‖ . . . ‖ pk〈ϕk;Ck〉 by Φ. Note that for a named thread p〈t〉
to be well-typed, the actual type T̂ of t is irrelevant. We assume that the variables
used in the constraint sets C1 and C2 are disjoint, and the same for ϕ1 and ϕ2.
Under this assumption ϕ1 ‖ ϕ2 is the independent combination of ϕ1 and ϕ2, i.e.,
for ϕ1 = ∆1 −→ ∆′1 and ϕ2 = ∆2 −→ ∆′2, then their parallel combination is given by
∆−→ ∆′ with ∆ is the parallel combination of the functions ∆1 and ∆2; analogously
for the post-condition. Furthermore, a running thread at the global level does not
contain free variables (as the semantics is based in substitutions; cf. rule R-RED).
Therefore, the premise uses an empty typing context Γ to analyse t.

C;` t : T̂ :: ϕ

T-THREAD

` p〈t〉 :: p〈ϕ;C〉

` P1 :: Φ1 ` P2 :: Φ2
T-PAR

` P1 ‖ P2 :: Φ1 ‖Φ2

Table 8: Type and effect system (global)
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4. Constraint generation

Next we turn the type system from Section 3 into an algorithm. To do so,
it requires to get rid of the sources of non-determinism in the type system when
using it an a goal-directed manner. In addition, instead of assuming a fixed set
of constraints given a priori and checked at appropriate places in the derivation,
constraints are generated (at those places) on the fly. The judgments of the system
are now of the form

Γ ` e : T̂ :: ϕ;C . (4)

Given Γ and e, the constraint set C is generated during the derivation. Further-
more, the pre-condition ∆1 is considered as given, whereas ∆2 is derived. The
algorithm proceeds in a syntax-directed manner and besides that generates the
weakest constraints. Its rules are given in Table 9. The rule TA-VAR combines
looking up the variable from the context with instantiation, choosing fresh vari-
ables to assure that the constraints θC, where C is taken form the variable’s type
scheme, are the most general. The rules TA-NEWL and TA-LREF correspond to
their counterparts from Table 5, except the rules now generate the corresponding
constraint instead of checking the constraints against a given constraint set C. For
function abstraction in rule TA-ABS1, the premise checks the body e of the func-
tion with the typing context extended by x:dTeA, where the operation dTeA turns
all occurrences of lock types L in T into their annotated counter-parts using fresh
variables, and likewise using fresh variables to annotate the latent effect for func-
tion types. In rule T-ABS1, a fresh variable is also used for the pre-condition of
the function body as well as for the post-condition in the latent effect of the func-
tional type. In rule TA-ABS2, checking the body e under assuming a type for the
variable f representing the recursive function generates new constraints, requiring
that the type T̂ ′2 derived for the body is a subtype of the guessed return type in the
latent effect; that’s represented by the premise T̂2 ≥ T̂ ′2 `C2. Analogously for the
comparison of the post-condition ∆2 with X2. Also for function application (cf.
rule TA-APP), the subtyping requirement between the type T̂2 of the argument and
the function’s input type T̂ ′2 is used to generating additional constraints. Further-
more, the precondition ∆ of the application connected with the precondition of the
latent effect ∆1 and the post-condition of the latent effect with the post-condition
of the application, the latter one using again a fresh variable. The corresponding
two constraints ∆≤ ∆1 and ∆2 ≤ X represent the control flow when calling, resp.
when returning to the call site. Note that rule TA-ABS1 resp. TA-ABS2 ensure
that ∆1 is actually a variable. The treatment of conditionals is standard (cf. rule
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TA-COND). To assure that the resulting type is an upper bound for the types of
the two branches, two additional constraints C and C′ are generated.

The let-construct (cf. rule TA-LET) is combined with the rule for generaliza-
tion, such that for checking the body e2, the typing context is extended by a type
scheme Ŝ1 which generalizes the type T̂1 of expression e1. The close-operation
is defined as close(Γ,C, T̂ ) = ∀~Y :C.T̂ where the quantifier binds all variables oc-
curring free in C and T̂ and not in Γ. Spawning a thread in rule TA-SPAWN has
no effect, where the premise of the rule checks well-typedness of the thread being
spawned. The last two rules deal with locking and unlocking, simply counting up,
resp. down the lock counter, setting the post-condition to over-approximate ∆⊕ρ ,
resp. ∆	ρ .

As mentioned, instead of checking given constraints, the algorithm generates
constraints on the fly. This is done for subtyping (corresponding to checking
subtyping from Definition 3.2) and for the order-relation on lock environments
(corresponding to checking that relation from Definition 3.1). The corresponding
judgment can be seen as partial functions on pairs of types.

Definition 4.1 (Constraint generation). The judgment T̂1 ≤ T̂2 ` C (read as “re-
questing T̂1 ≤ T̂2 generates, if satisfiable, the constraints C”) is inductively given
as follows:

B≤ B ` /0 C-BASIC Lρ1 ≤ Lρ2 ` {ρ1 v ρ2} C-LOCK

T̂ ′1 ≤ T̂1 `C1 T̂2 ≤ T̂ ′2 `C2 X ′1 ≤ X1 = C3 X2 ≤ X ′2 = C4
C-ARROW

T̂1
X1→X2−−−−→ T̂2 ≤ T̂ ′1

X ′1→X ′2−−−−→ T̂ ′2 `C1,C2,C3,C4

For uniformity of notation,1 we write ∆≤ X `C if C = ∆≤ X.

Note that for arrow types in C-ARROW, the latent effects are or the form X1→
X2, resp. X ′1→X ′2, i.e., formulated using variables. In the algorithm, this is assured
by the introduction rules TA-ABS1 and TA-ABS2 for arrow types. To determine
the type and the effect for conditionals, the algorithm has to determine the least
upper bound of the types resp. of the post-conditions of the two branches of the
conditional. This is formulated by generating appropriate constraints with the help
of fresh variables:

1For abstract states, we need the definition of constraint generation only for the trivial case
requiring ∆≤ X .
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Γ(x) = ∀~Y :C.T̂ ~Y ′ fresh θ = [~Y ′/~Y ]
TA-VAR

Γ ` x : θ T̂ :: ∆→ ∆;θC
ρ fresh

TA-NEWL
Γ ` newπ L : Lρ :: ∆→ ∆;ρ w {π}

ρ ′ fresh
TA-LREF

Γ ` lρ : Lρ ′ :: ∆→ ∆;ρ v ρ
′

T̂1 = dT1eA Γ,x:T̂1 ` e : T̂2 :: X1→ ∆2;C X1,X2 fresh
TA-ABS1

Γ ` fn x:T1.e : T̂1
X1→X2−−−−→ T̂2 :: ∆1 −→ ∆1;C,X2 ≥ ∆2

T̂1
X1→X2−−−−→ T̂2 = dT1→ T2eA Γ, f :T̂1

X1→X2−−−−→ T̂2,x:T̂1 ` e : T̂ ′2 :: X1→ ∆2;C1 T̂2 ≥ T̂ ′2 `C2 X2 ≥ ∆2 `C3
TA-ABS2

Γ ` fun f :T1→ T2,x:T1.e : T̂1
X1→X2−−−−→ T̂2 :: ∆1 −→ ∆1;C1,C2,C3

Γ ` v1 : T̂2
∆1→∆2−−−−→ T̂1 :: ∆−→ ∆;C1 Γ ` v2 : T̂ ′2 :: ∆−→ ∆;C2 T̂ ′2 ≤ T̂2 `C X fresh

TA-APP

Γ ` v1 v2 : T̂1 :: ∆−→ X ;C1,C2,C,∆≤ ∆1,∆2 ≤ X
T = bT̂1c= bT̂2c T̂ ;C = T̂1 ∨ T̂2 ∆′;C′ = ∆′1 ∨∆′2

Γ ` v : Bool:: ∆0 −→ ∆0;C0 Γ ` e1 : T̂1 :: ∆0 −→ ∆1;C1 Γ ` e2 : T̂2 :: ∆0 −→ ∆2;C2
TA-COND

Γ ` if v then e1 else e2 : T̂ :: ∆0→ ∆
′;C0,C1,C2,C,C′

Γ ` e1 : T̂1 :: ∆1→ ∆2;C1 bT̂1c= T1 Ŝ1 = close(Γ,C1, T̂1) Γ,x:Ŝ1 ` e : T̂2 :: ∆2→ ∆3;C2
T-LET

Γ ` let x:T1 = e1 in e2 : T̂2 :: ∆1→ ∆3;C2

Γ ` t : T̂ :: •→ ∆2;C
TA-SPAWN

Γ `spawn t : Thread:: ∆1→ ∆1;C
Γ ` v : Lρ :: ∆→ ∆;C1 X fresh X ≥ ∆⊕ (ρ:1) `C2

TA-LOCK

Γ ` v. lock: Lρ :: ∆→ X ;C1,C2

Γ ` v : Lρ :: ∆→ ∆;C1 X fresh X ≥ ∆	 (ρ:1) `C2
TA-UNLOCK

Γ ` v. unlock: Lρ :: ∆→ X ;C1,C2

Table 9: Algorithmic formulation with constraint generation

Definition 4.2 (Least upper bound). The partial operation ∨ on types, abstract
states, and on effects, giving back a set of constraints plus a type, an abstract
state, and an effect, respectively, is inductively given by the rules of Table 10. The
operations ∧ are defined dually.

4.1. Equivalence of the two formulations
Before we connect the static analysis to the operational semantics, proving

that it gives a static over-approximation, we show that the two alternative formu-
lations are equivalent. Notationally, we refer to judgements and derivations in the
system from Section 3 using `s (for “specification”) and `a for the one where the
constraints are generated by `a (for “algorithm”). Soundness of `a (wrt. `s) states
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B1 = B2
LT-BASIC

B1 ∨ B2 = B1; /0

ρ fresh Lρ1 ≤ Lρ `C1 Lρ2 ≤ Lρ `C2
LT-LOCK

Lρ1 ∨ Lρ2 = Lρ ;C1,C2

T̂ ′1 ∧ T̂ ′′1 = T̂ ;C1 T̂ ′2 ∨ T̂ ′′2 = T̂ ′;C2 ϕ1 ∨ϕ2 = ϕ;C3
LT-ARROW

T̂ ′1
ϕ1−→ T̂ ′2 ∨ T̂ ′′1

ϕ2−→ T̂ ′′2 = T̂1
ϕ−→ T̂2;C1,C2,C3

X fresh ∆1 ≤ X `C1 ∆2 ≤ X `C2
LE-STATES

∆1 ∨∆2 = X ;C1,C2

∆′1 ∧∆′′1 = ∆1;C1 ∆′2 ∨∆′′2 = ∆2;C2
LE-ARROW

∆1→ ∆2 ∨∆
′
1→ ∆

′
2 = ∆1→ ∆2;C1,C2

Table 10: Least upper bound

that everything derivable in the `a-system is analogously derivable in the original
one. We start with relating constraint checking with constraint generation in the
following lemma.

Lemma 4.3 (Constraint generation).

1. (a) T̂1 ≤ T̂2 `C, then C ` T̂1 ≤ T̂2.
(b) ∆≤ X `C, then C ` ∆≤ X.

2. (a) If C ` θ T̂1 ≤ θ T̂2, then T̂1 ≤ T̂2 `C′ with C |=θ C′.
(b) If C ` θ∆≤ θX, then ∆≤ X `C′ with C |=θ C′.

Proof. Straightforward.

Lemma 4.4 (Soundness). Given Γ `a t : T̂ :: ∆1 −→ ∆2;C, then C;Γ `s t : T̂ :: ∆1 −→
∆2.

Proof. We are given a derivation of Γ `a t : T̂ :: ∆1→ ∆2;C. The proof proceeds
by straightforward induction on the derivation.
Case: TA-VAR

We are given Γ `a x : θ T̂ :: ∆→ ∆;θC where Γ(x) = Ŝ = ∀~Y :C.T̂ and θ = [~Y ′/~Y ]
for some fresh variables~Y ′. The case follows by T-VAR and T-INST:

Γ(x) = Ŝ
T-VAR

θC;Γ `s x : Ŝ :: ∆→ ∆ θ = [~Y ′/~Y ] θC |= θC
T-INST

θC;Γ `s x : θ T̂ :: ∆→ ∆

Case: TA-NEWL
We are given Γ `a newπ : Lρ :: ∆→ ∆;C with C = ρ w {π} and ρ fresh. The case
follows directly from T-NEWL. The case for TA-LREF works analogously.
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Case: TA-ABS1
We are given

T̂1 = dT1eA Γ,x:T̂1 `a e : T̂2 :: X1→ ∆2;C X1,X2 fresh

Γ `a fn x:T1.e : T̂1
X1→X2−−−→ T̂2 :: ∆1 −→ ∆1;C′

where C′ = C,X2 ≥ ∆2. By induction, we get C;Γ,x:T̂1 `s e : T̂2 :: X1→ ∆2. Then,
by strengthening the constraint set from C to C′ and since bdT1eAc= T1, the case
follows by T-SUB and T-ABS1:

C′;Γ,x:T̂1 `s e : X1→ ∆2 C′ ` X2 ≥ ∆2
T-SUB

C′;Γ,x:T̂1 `s e : X1→ X2 bT̂1c= T1
T-ABS1

C′;Γ `s fn x:T1.e : T̂1
X1→X2−−−→ T̂2 :: ∆1→ ∆1

Case: TA-ABS2
We are given

T̂1 = dT1eA T̂2 = dT2eA X1,X2 fresh

Γ, f :T̂1
X1→X2−−−→ T̂2,x:T̂1 `a e : T̂ ′2 :: X1→ ∆2;C1 C2 ` T̂2 ≥ T̂ ′2 C3 = X2 ≥ ∆2

Γ `a fun f :T1→ T2,x:T1.e : T̂1
X1→X2−−−→ T̂2 :: ∆1 −→ ∆1;C

where C = C1,C2,C3. By induction and strengthening the constraint sets to C
we get C;Γ, f :T̂1

X1→X2−−−→ T̂2,x:T̂1 `a e : T̂2 :: X1→ ∆2, and since bdT1eAc = T1 and
bdT2eAc= T2, the case follows by T-SUB and T-ABS2

C;Γ, f :T̂1
X1→X2−−−→ T̂2,x:T̂1 `s e : T̂ ′2 :: X1→ ∆2 C ` T̂2 ≥ T̂ ′2 C ` X2 ≥ ∆2

T-SUB
C;Γ, f :T̂1

X1→X2−−−→ T̂2,x:T̂1 `s e : T̂2 :: X1→ X2
T-ABS2

C;Γ `s fun f :T1→ T2,x:T1.e : T̂1
X1→X2−−−→ T̂2 :: ∆1 −→ ∆1

Case: TA-APP

We are given

Γ `a v1 : T̂2
∆1→∆2−−−→ T̂1 :: ∆−→ ∆;C1 Γ `a v2 : T̂ ′2 :: ∆−→ ∆;C2 T̂ ′2 ≤ T̂2 `C3 X fresh

Γ `a v1 v2 : T̂1 :: ∆−→ X ;C

where C =C1,C2,C3,∆≤ ∆1,∆2≤ X . Induction on the first subgoal gives C1;Γ `s

v1 : T̂2
∆1→∆2−−−→ T̂1 :: ∆→ ∆. Strengthening the constraint set from C1 to C yields
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C;Γ `s v1 : T̂2
∆1→∆2−−−→ T̂1 :: ∆→ ∆. Similarly, induction on the second subgoal and

strengthen the constraint set from C2 to C gives C;Γ `s v2 : T̂ ′2 :: ∆→ ∆. Then, the
case follows by T-SUB and T-APP:

C;Γ `s v1 : T̂2
∆1→∆2−−−−→ T̂1 :: ∆→ ∆ C ` ∆≤ ∆1 C ` ∆2 ≤ X

T-SUB

C;Γ `s v1 : T̂2
∆→X−−→ T̂1 :: ∆→ ∆

C;Γ `s v2 : T̂ ′2 :: ∆→ ∆ C ` T̂ ′2 ≤ T̂2

T-SUB

C;Γ `s v2 : T̂2 :: ∆→ ∆

C;Γ `s v1v2 : T̂1 :: ∆→ X

Case: TA-COND

In this case, we are given

T = bT̂1c= bT̂2c T̂ ;C3 = T̂1 ∨ T̂2 ∆′;C4 = ∆1∨∆2
Γ `a v : Bool:: ∆0 −→ ∆0;C0 Γ `a e1 : T̂1 :: ∆0 −→ ∆1;C1 Γ `a e2 : T̂2 :: ∆0 −→ ∆2;C2

Γ `a if v then e1 else e2 : T̂ :: ∆0→ ∆
′;C

where C = C0,C1,C2,C3,C4. By induction and also stregthening the constraint
sets to C,

C;Γ `s v :Bool:: ∆0−→ ∆0, C;Γ `s e1 : T̂1 :: ∆0−→ ∆1 and C;Γ `s e2 : T̂2 :: ∆0−→ ∆2
(5)

Since C ` T̂1 ≤ T̂ and C ` T̂2 ≤ T̂ and furthermore C ` ∆1 ≤ ∆′ and C ` ∆2 ≤ ∆′,
we can conclude the case with subsumption and T-COND:

C;Γ `s v :Bool:: ∆0 −→ ∆0

C;Γ `s e1 : T̂1 :: ∆0 −→ ∆1

C;Γ `s e1 : T̂ :: ∆0 −→ ∆
′

C;Γ `s e2 : T̂2 :: ∆0 −→ ∆2

C;Γ `s e2 : T̂ :: ∆0 −→ ∆
′

C;Γ `sif v then e1 else e2 : T̂ :: ∆0 −→ ∆
′

Case: TA-LET

We are given

bT̂1c= T1 Ŝ1 = close(Γ,C1, T̂1)
Γ `a e1 : T̂1 :: ∆1→ ∆2;C1 Γ,x:Ŝ1 `a e : T̂2 :: ∆2→ ∆3;C2

Γ `a let x:T1 = e1 in e2 : T̂2 :: ∆1→ ∆3;C2

Induction on the first subgoal gives C1;Γ `s e1 : T̂1 :: ∆1 → ∆2, which gives by
T-GEN /0;Γ `s e1 : Ŝ1 :: ∆1→ ∆2 which further implies C2;Γ `s e1 : Ŝ1 :: ∆1→ ∆2.
This together with induction on the second subgoal concludes the case, using
T-LET:

C2;Γ `s e1 : Ŝ1 :: ∆1→ ∆2 C2,Γ,x:Ŝ1 `s e : T̂2 :: ∆2→ ∆3

C2;Γ `s let x:T1 = e1 in e2 : T̂2 :: ∆1→ ∆3
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Case: TA-SPAWN

Straightforward.
Case: TA-LOCK

In this case we have

Γ `a v : Lρ :: ∆→ ∆;C1 X fresh C2 = X ≥ ∆⊕ (ρ:1)

Γ `a v. lock: Lρ :: ∆→ X ;C1,C2

Induction on the first subgoal and strengthening the constraint set from C1 to C1,C2
gives C1,C2;Γ `s L

ρ :: ∆→ ∆. Then, the case follows by T-LOCK:

C1,C2;Γ `s v : Lρ :: ∆→ ∆; C1,C2 ` X ≥ ∆⊕ (ρ:1)

C1,C2Γ `s v. lock: Lρ :: ∆→ X

The unlocking case is analogous.

Completeness is the inverse; in general we cannot expect that the constraints
generated by `a are the ones used when assuming a derivation in `s. Since `a
generates as little constraints as possible, the ones given back by `a are weaker,
less restrictive than the ones assumed in `s. An analogous relationship holds for
the types and the post-conditions. The sources of non-determinism in the specifi-
cation are: instantiation, generalization, and weakening the result by subsumption.
For the proof of completeness, we first tackle the sources of non-determinism.

As an intermediate step, we remove the non-determinism from Table 5 by
“embedding” subsumption, and instantiation and generalization into those rules
where it is necessary. To remove subsumption, we build-in the weakening into
rules T-APP and T-COND; to remove instantiation and generalization, we only
instantiate when we look up the type of a variable and generalize only when we
put a variable into the context in the let-bound expression. The syntax directed
version is shown in Table 11.

Definition 4.5 (Generic instance). A type scheme ∀~Y1:C1.T̂1 is a generic instance
of ∀~Y2:C2.T̂2, written as ∀~Y1:C1.T̂1 .g ∀~Y2:C2.T̂2, iff there exists a substitution θ

where dom(θ)⊆ ~Y2 such that

1. C1 ` θC2

2. C1 ` θ T̂2 ≤ T̂1

3. No y in ~Y1 is free in ∀~Y2:C2.T̂2.

The following lemmas are used in the proof of completeness.
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Γ(x) = ∀~Y :C′.T̂ θ = [~r,~∆/~Y ] C |= θC′

T-VAR

C;Γ ` x : θ T̂ :: ∆→ ∆

C ` ρ w {π}
T-NEWL

C;Γ ` newπ L : Lρ :: ∆→ ∆

C ` ρ ′ w ρ

T-LREF

C;Γ ` lρ : Lρ ′ :: ∆→ ∆

T̂1 = dT1e C;Γ,x:T̂1 ` e : T̂2 :: ϕ ϕ = ∆1 −→ ∆2
T-ABS1

C;Γ ` fn x:T1.e : T̂1
ϕ−→ T̂2 :: ∆−→ ∆

T̂1 = dT1e T̂2 = dT2e C;Γ, f :T̂1
ϕ−→ T̂2,x:T̂1 ` e : T̂2 :: ϕ ϕ = ∆1→ ∆2

TA-ABS2

C;Γ ` fun f :T1→ T2,x:T1.e : T̂1
ϕ−→ T̂2 :: ∆1→ ∆1

C ` T̂ ′2 ≤ T̂2 C ` ∆≤ ∆1 C ` ∆2 ≤ ∆′

C;Γ ` v1 : T̂2
∆1→∆2−−−−→ T̂1 :: ∆−→ ∆ C;Γ ` v2 : T̂ ′2 :: ∆−→ ∆

T-APP

C;Γ ` v1 v2 : T̂1 :: ∆−→ ∆
′

C ` T̂1 ≤ T̂ C ` T̂2 ≤ T̂ C ` ∆1 ≤ ∆′ C ` ∆2 ≤ ∆′

C;Γ ` v : Bool:: ∆−→ ∆ C;Γ ` e1 : T̂1 :: ∆−→ ∆1 C;Γ ` e2 : T̂2 :: ∆−→ ∆2
T-COND

C;Γ ` if v then e1 else e2 : T̂ :: ∆→ ∆
′

C1,C2;Γ ` e1 : T̂1 :: ∆1→ ∆2 ~Y not free in Γ,C2 C2;Γ,x:∀~Y :C1.T̂1 ` e2 : T̂2 :: ∆2→ ∆3
T-LET

C2;Γ ` let x:T1 = e1 in e2 : T̂2 :: ∆1→ ∆3

C;Γ ` e : T̂ :: •→ ∆2
T-SPAWN

C;Γ `spawn e :Thread:: ∆1→ ∆1

C;Γ ` v : Lρ :: ∆1→ ∆1; C ` ∆1⊕ (ρ:1)≤ ∆2
T-LOCK

C;Γ ` v. lock: Lρ :: ∆1→ ∆2

C;Γ ` v : Lρ :: ∆1→ ∆1 C ` ∆1	 (ρ:1)≤ ∆2
T-UNLOCK

C;Γ ` v. unlock: Lρ :: ∆1→ ∆2

Table 11: Type and effect system (syntax directed)

Lemma 4.6 (Characterization of subtypes). If C ` T̂ ≤ T̂1
∆1→∆2−−−→ T̂2, then T̂ =

T̂ ′1
∆′1→∆′2−−−→ T̂ ′2 with C ` T̂1 ≤ T̂ ′1, C ` T̂ ′2 ≤ T̂2, C ` ∆1 ≤ ∆′1, and C ` ∆′2 ≤ ∆2.

Proof. Immediate.

Lemma 4.7. If C |= C1 and C |= C2, then C |= C1,C2.

Proof. Straightforward.

Lemma 4.8. Assume C2,Γ `n let x:T1 = e1 in e2 : T2 :: ∆1→ ∆2 with C1;Γ ` e1 :
T̂1 :: ∆1→ ∆2 and C2;Γ,x:∀~Y :C1.T̂1 `n e2 : ∆2→ ∆3 :: as premises of T-LET. If x
occurs free in e2, then C2 |= θC1 for some substitution θ .

Proof. Straightforward, by inspection of rule TA-VAR.
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Lemma 4.9 (Weakening (type schemes)). Assume C;Γ,x:Ŝ1 ` e : T̂2 :: ∆1 −→ ∆2
and Ŝ1 .g Ŝ′1. Then, C;Γ,x:Ŝ′1 ` e : T̂2 :: ∆1 −→ ∆2.

Proof. Straightforward.

Lemma 4.10. Assume C;Γ `n e : T̂ :: ∆1 −→ ∆2 and C ` ∆′1 ≤ ∆1. Then, C;Γ `n e :
T̂ :: ∆′1 −→ ∆′2 and C ` ∆′2 ≤ ∆2.

Proof. Straightforward.

Lemma 4.11 (Completeness). Assume Γ .θ Γ′, ∆1 .θ ∆′1, and C;Γ `n t : T̂ ::
∆1 −→ ∆2, then Γ `a t : T̂ ′ :: ∆′1 −→ ∆′2;C′ such that

1. C |=θ ′ C′,
2. C ` θ ′T̂ ′ ≤ T̂ , and
3. C ` θ ′∆′2 ≤ ∆2,

for some θ ′ = θ ,θ ′′.

Proof. Assume C;Γ `n t : T̂ :: ∆1→ ∆2. The proof then proceeds by induction on
the structure of e. Since the system is syntax-directed, each case corresponds to
the use of exactly one rule of Table 11.
Case: e = x
We are given

Γ(x) = ∀~Y :C̃.T̂ C |= θ̃C̃

C;Γ `n x : θ̃ T̂ :: ∆→ ∆

The assumption Γ .θ Γ′ implies Γ′(x) = ∀~Y :C̃′.T̂ ′ for some C̃′ and T̂ ′ where C̃ =
θC̃′ and T̂ = θ T̂ ′. We are furthermore given ∆′ .θ ∆. By TA-VAR,

Γ
′(x) = ∀~Y :C̃′.T̂ ′ θ2 = [~Y ′/~Y ] ~Y ′ fresh C |= θ̃

′C̃′

Γ `a x : θ̃ ′T̂ :: ∆
′→ ∆

′; θ̃
′C̃′

Since θ̃C̃ = θ̃θC̃′ = θ̃θ θ̃ ′
−1

θ̃ ′C̃′ and then letting θ ′ = θ̃θ θ̃ ′
−1, the premise C |=

θ̃C̃ of T-VAR can be written as C |=θ ′ θ̃
′C̃′, as required. Further θ ′θ̃ ′T̂ ′= θ̃θ θ̃ ′

−1
θ̃ ′T̂ ′=

θ̃θ T̂ ′ = θ̃ T̂ and hence, by reflexivity C ` θ ′θ̃ ′T̂ ′ ≤ θ̃ ′T̂ , as required. Finally, like-
wise by reflexivity, C ` θ ′∆′ ≤ ∆′, as required.
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Case: e =newπ L

We are given C;Γ `n newπ L: Lρ :: ∆→ ∆ where C ` ρ w {π}. In the algorithm,
TA-NEWL gives

ρ
′ fresh

Γ
′ `a newπ L : Lρ ′ :: ∆

′→ ∆
′;ρ
′ w {π}

and with setting θ ′ = θ , [ρ/ρ ′] the case is immediate, using reflexivity. The case
for references works analogously.
Case: e = fn x:T1.e′

We are given

T̂1 = dT1e C;Γ,x:T̂1 `n e′ : T̂2 :: ϕ ϕ = ∆1 −→ ∆2

C;Γ `n fn x:T1.e′ : T̂1
ϕ−→ T̂2 :: ∆−→ ∆

and furthermore Γ .θ Γ′ and ∆ .θ ∆′. Now let T̂ ′1 = dT1eA, i.e., an annotation of
T1 using fresh variables and let also X1 be fresh. Thus T̂1 = θ1T̂ ′1 and ∆1 = θ1X1
where dom(θ1) = fv(T̂ ′1) ∪̇ {X1}. Now let θ̃ = θ ,θ1 and hence

Γ,x:T̂1 .
θ̃

Γ
′,x:T̂ ′1 and ∆1 .

θ̃
X1 . (6)

Thus, by induction, Γ′,x:T̂ ′1 `a e′ : T̂ ′2 :: X1→ ∆′2;C′, where in addition

C |=θ ′ C
′, C ` θ

′T̂ ′2 ≤ T̂2, C ` θ
′
∆
′
2 ≤ ∆2, and θ

′ = θ̃ , θ̃ ′′ , (7)

for some θ̃ ′′. Using TA-ABS1 gives

T̂ ′1 = dT1eA Γ
′,x:T̂ ′1 `a e′ : T̂ ′2 :: X1 −→ ∆

′
2;C′ ϕ

′ = X1→ X2 X1,X2 fresh

Γ
′ `a fn x:T1.e′ : T̂ ′1

ϕ ′−→ T̂ ′2 :: ∆
′ −→ ∆

′;C′,X2 ≥ ∆
′
2

Now the conditions 1 – 3 of the completeness formulation remain to be checked.
For constraints, let θ ′′ = θ ′, [∆2/X2], and induction (cf. equation (7)) gives C `
θ ′∆′2 ≤ ∆2. This implies C ` θ ′′∆′2 ≤ θ ′′X2 which means C |=θ ′′ ∆

′
2 ≤ X2. We have

further from induction that (cf. equation (7)) C |=θ ′ C′ which means C |=θ ′′ C′,
and therefore C |=θ ′′ C′,∆′2 ≤ X2, as required. Now, θ ′′T̂ ′1 = θ ′T̂ ′1 = θ̃ , θ̃ ′′T̂ ′1 =
θ ,θ1, θ̃

′′T̂ ′1 = T̂1, hence C ` θ ′′T̂ ′1 ≥ T̂1 by reflexivity. By induction, C ` θ ′T̂ ′2 ≤ T̂2
(cf. again equation (7)) and since θ ′′T̂ ′2 = θ ′T̂ ′2, that implies C ` θ ′′T̂ ′2 ≤ T̂2. Since
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θ ′′X1 = θ ′X1 = ∆1, reflexivity gives C ` θ ′′X1 ≥ ∆1. Since θ ′′X2 = ∆2, again

reflexivity gives C ` θ ′′X2≤∆2. Together that yields C ` θ ′′(T̂ ′1
ϕ ′−→ T̂ ′2)≤ T̂1

ϕ−→ T̂2:

C ` θ
′′T̂ ′1 ≥ T̂1 C ` θ

′′T̂2 ≤ T̂1 C ` θ
′′X1 ≥ ∆1 C ` θ

′′X ′2 ≤ ∆2

C ` θ
′′(T̂ ′1

ϕ ′−→ T̂ ′2)≤ T̂1
ϕ−→ T̂2

as required for part 2. For part 3, θ ′′∆′ = θ ′∆′ = θ̃ , θ̃ ′′∆′ = θ ,θ1, θ̃
′′∆′ = ∆, and

thus C ` θ ′′∆′ ≤ ∆ follows by reflexivity.
Case: e = fun f :T1→ T2,x:T1.e′

We are given in this case

T̂1 = dT1e T̂2 = dT2e C;Γ, f :T̂1
ϕ−→ T̂2,x:T̂1 `n e′ : T̂2 :: ϕ ϕ = ∆1→ ∆2

C;Γ `n fun f :T1→ T2,x:T1.e′ : T̂1
ϕ−→ T̂2 :: ∆1→ ∆1

and furthermore Γ .θ Γ′ and ∆1 .θ ∆′1. Now let T̂ ′1 = dT1eA and T̂ ′2 = dT2eA, i.e.,
an annotation of T1 and T2 using fresh variables and let also X1 and X2 be fresh.
Thus T̂1 = θ1T̂ ′1, θ1T̂ ′2, ∆1 = θ1X1, and ∆2 = θ1X2 where dom(θ1) = fv(T̂ ′1) ∪̇
fv(T̂ ′2) ∪̇ {X1} ∪̇ {X2}. Now let θ̃ = θ ,θ1 and hence

Γ, f :T̂1
∆1→∆2−−−→ T̂2,x:T̂1 .

θ̃
Γ
′, f :T̂ ′1

X1→X2−−−→ T̂ ′2,x:T̂ ′1 and ∆1 .
θ̃

X . (8)

Then, by induction, Γ′, f :T̂ ′1
X1→X2−−−→ T̂ ′2,x:T̂ ′1 `a e′ : T̂ ′′2 :: X1 → ∆′′2;C′1, where in

addition

C |=θ ′ C
′
1, C ` θ

′T̂ ′′2 ≤ T̂2, C ` θ
′
∆
′
2 ≤ ∆2, and θ

′ = θ̃ , θ̃ ′′ , (9)

for some θ̃ ′′. By the second judgement in equation (9), C ` θ ′T̂ ′′2 ≤ θ̃ T̂ ′2 = θ ′T̂ ′2.
By Lemma 4.3, we get

T̂ ′′2 ≤ T̂ ′2 `C′2 and C |=θ ′ C
′
2 . (10)

Furthermore, with the third judgement in equation (9), C ` θ ′∆′2 ≤ θ̃X2 = θ ′X2.
By Lemma 2(2b), we get

C |=θ ′ ∆
′
2 ≤ X2 . (11)

Now, using TA-ABS2 gives

T̂ ′′2 ≤ T̂ ′2 `C′2 C′3 = ∆′2 ≤ X2

T̂ ′1
X1→X2−−−→ T̂ ′2 = dT1→ T2eA Γ′, f :T̂ ′1

X1→X2−−−→ T̂ ′2,x:T̂ ′1 `a e′ : T̂ ′′2 :: X1→ ∆′′2;C′1

Γ
′ `fun f :T1→ T2,x:T1.e′ : T̂ ′1

X1→X2−−−→ T̂ ′2 :: ∆
′
1→ ∆

′
1;C′1,C

′
2,C
′
3
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For part 1, the first judgement from induction (cf. equation (9)) and the sec-
ond judgements from equations (10) and (11), and by Lemma 4.7 gives C |=θ ′

C′1,C
′
2,C
′
3. Finally, C ` θ ′(T̂ ′1

X1→X2−−−→ T̂ ′2) ≤ T̂1
ϕ−→ T̂2 for part 2 and C ` θ ′∆′1 ≤ ∆1

for part 3 follows immediately by reflexivity.
Case: e =let x:T1 = e1 in e2
We are given

C1;Γ `n e1 : T̂1 :: ∆1→ ∆2 C2;Γ,x:∀~Y :C1.T̂1 `n e2 : T̂2 :: ∆2→ ∆3

C2,Γ `n let x:T1 = e1 in e2 : T̂2 :: ∆1→ ∆2

(12)

where~Y /∈ fv(Γ,C2) and furthermore Γ .θ Γ′ and ∆1 .θ ∆′1. Induction on e1 gives
Γ′ `a e1 : T̂ ′1 :: ∆′1→ ∆′2;C′1, where in addition

C1 |=θ1 C′1, C1 ` θ1T̂ ′1 ≤ T̂1, C1 ` θ1∆
′
2 ≤ ∆2, and θ1 = θ ,θ ′1 , (13)

for some θ ′1. Now let Ŝ1 = ∀~Y :C1.T̂1 and Ŝ2 = close(Γ′,C′1, T̂
′

1) = ∀~Y ′:C′1.T̂ ′1. Since
Ŝ1 .g Ŝ2, the second premise of (12) can be weakened with Lemma 4.9 to

C2;Γ,x:Ŝ2 `n e2 : T̂2 :: ∆2→ ∆3 . (14)

Assuming that x occurs free in e2, Lemma 4.8 gives

C2 |= θ
′C1 , (15)

for some θ ′. The case where x does not occur free in e2 is omitted: it is simpler,
since e2 can be typed with the context Γ alone. Now, applying θ ′ to the third
assertion from equation (13) yields θ ′C1 ` θ ′θ1∆′2 ≤ θ ′∆2, and strengthening the
constraints, using equation (15), yields

C2 ` θ
′
θ1∆

′
2 ≤ θ

′
∆2 . (16)

Since the domain of the substitution θ ′ are the variables ~Y (bound in Ŝ1), this
implies

C2 ` θ1∆
′
2 ≤ ∆2 . (17)

With this inequation, we can weaken the judgement from equation (14) by strength-
ening the pre-condition with Lemma 4.10 into

C2;Γ,x:Ŝ2 `n e2 : T̂2 :: θ1∆
′
2→ ∆

′′
3 with C2 ` ∆

′′
3 ≤ ∆3 . (18)
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The assumption Γ .θ Γ′ implies Γ,x:Ŝ2 .θ Γ′,x:Ŝ2. Since θ ′1Γ′ = Γ′, that implies
Γ,x:Ŝ2 .θ ,θ ′1

Γ′,x:Ŝ2, which means Γ,x:Ŝ2 .θ1 Γ′,x:Ŝ2 (since with equation (13),
θ1 = θ ,θ ′1). Since furthermore by definition, θ1∆′2 .θ1 ∆′2, we can use induction
on e2, resp. on the judgement from equation (18), yielding Γ′,x:Ŝ2 `a e2 : T̂ ′2 ::
∆′2→ ∆′3;C′2, where in addition

C2 |=θ2 C′2, C2 ` θ2T̂ ′2 ≤ T̂2, C2 ` θ2∆
′
3 ≤ ∆

′′
3, and θ2 = θ ,θ ′2 , (19)

for some θ ′2. By TA-LET, we get, with Ŝ2 = close(Γ′,C′1, T̂
′

1), as defined above,

Γ
′ `a e1 : T̂ ′1 :: ∆

′
1→ ∆

′
2;C′1 Γ

′,x:Ŝ2 `a e2 : T̂ ′2 :: ∆
′
2→ ∆

′
3;C′2

Γ
′ `a let x:T1 = e1 in e2 : T̂ ′2 :: ∆

′
1→ ∆

′
3;C′2

(20)

as required, and the conditions 1 – 2 follow directly from induction (cf. equation
(19)). Finally, for part 2, the second judgement in equation (18) and the third
judgement in equation (19), and by transitivity gives C2 ` θ2∆′3 ≤ ∆3, as required.
Case: e = v1v2
In this case we are given

C ` T̂ ′2 ≤ T̂2 C ` ∆0 ≤ ∆1 C ` ∆2 ≤ ∆

C;Γ `n v1 : T̂2
∆1→∆2−−−→ T̂1 :: ∆0 −→ ∆0 C;Γ `n v2 : T̂ ′2 :: ∆0 −→ ∆0

C;Γ `n v1 v2 : T̂1 :: ∆0 −→ ∆

(21)

where Γ .θ Γ′ and ∆0 .θ ∆′0. Induction on v1 yields Γ′ `a v1 : T̂ ′ :: ∆′0 −→ ∆′1;C′1
where

C |=θ ′1
C′1, C ` θ

′
1T̂ ′ ≤ T̂2

∆1→∆2−−−→ T̂1, C ` θ
′
1∆
′
1 ≤ ∆, and θ

′
1 = θ ,θ ′′1 . (22)

As v1 is a value, ∆′1 = ∆′0. By the characterization of subtyping from Lemma 4.6,

θ ′1T̂ ′ = ˜̂T2
∆̃1→∆̃2−−−→ ˜̂T1 = θ ′1T̂ ′′2

θ ′1∆′′1→θ ′1∆′′2−−−−−−→ θ ′1T̂ ′′1 where

C ` T̂2 ≤ θ
′
1T̂ ′′2 , C ` θ

′
1T̂ ′′1 ≤ T̂1, C ` ∆1 ≤ θ

′
1∆
′′
1, and C ` θ

′
1∆
′′
2 ≤ ∆2 .

(23)
Induction on v2 yields Γ′ `a v2 : T̂ ′′′2 :: ∆′0 −→ ∆′2;C′2 where

C |=θ ′2
C′2, C ` θ

′
2T̂ ′′′2 ≤ T̂ ′2, C ` θ

′
2∆
′
2 ≤ ∆, and θ

′
2 = θ ,θ ′′2 . (24)

As v2 is a value, ∆′2 = ∆′0. Wlog. dom(θ ′′1 )∩ dom(θ ′′2 ) = /0. Now define θ̃ =
θ ,θ ′′1 ,θ ′′2 .
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By transitivity, the second judgement of (24), the first premise of (21), and the
first judgment of (23) give C ` θ ′2T̂ ′′′2 ≤ θ ′1T̂ ′′2 , which implies

C ` θ̃ T̂ ′′′2 ≤ θ̃ T̂ ′′2 . (25)

By Lemma 4.3, that means

T ′′′2 ≤ T̂ ′′2 `C′3 with C |=
θ̃

C′3 . (26)

Now, by TA-APP

T̂ ′′′2 ≤ T̂ ′′2 `C′3 X fresh

Γ′ `a v1 : T̂ ′′2
∆′′1→∆′′2−−−→ T̂ ′′1 :: ∆′0 −→ ∆′0;C′1 Γ′ `a v2 : T̂ ′′′2 :: ∆′0 −→ ∆′0;C′2

Γ
′ `a v1 v2 : T̂ ′′1 :: ∆

′
0→ X ;C′

(27)

where C′ = C′1,C
′
2,C
′
3,∆
′
0 ≤ ∆′′1,∆

′′
2 ≤ X and where the two typing premises are

given by induction and the subtyping premise is covered by (26).
The second premise of (21) and the third judgment of (23) give C `∆0≤ θ ′1∆′′1 ,

using transitivity. This implies C ` θ ′1∆′0 ≤ θ ′1∆′′1 and thus further C ` θ̃∆′0 ≤ θ̃∆′′1 ,
which means C |=

θ̃
∆′0 ≤ ∆′′1 .

Likewise with transitivity, the third premise of (21) and the fourth judgment
of (23) give C ` θ ′1∆′′2 ≤ ∆, and further C ` θ̃∆′′2 ≤ ∆. With setting θ̃ ′ = θ̃ , [∆/X ],
C |= θ̃ ′∆′′2 ≤ θ̃ ′X , i.e., C |=

θ̃ ′ ∆
′′
2 ≤ X . The conditions concerning constraints C can

be summed up as follows:

C |=
θ̃ ′ C

′
1, C |=

θ̃ ′ C
′
2, C |=

θ̃ ′ C
′
3 C |=

θ̃ ′ (∆
′
0 ≤ ∆

′′
1) C |=

θ̃ ′ (∆
′′
2 ≤ X) (28)

which means with Lemma 4.7 C |=
θ̃ ′ C′, as required in part 1. For part 2, C `

θ̃ ′T̂ ′′2 ≤ T̂1 follows from the second judgment of equation (23). For part 3, C `
θ̃ ′X ≤ ∆′ follows by reflexivity and the definition of θ̃ ′ as θ̃ , [∆′/X ].
Case: e =if v then e1 else e2
We are given

C ` T̂1 ≤ T̂ C ` T̂2 ≤ T̂ C ` ∆1 ≤ ∆ C ` ∆2 ≤ ∆

C;Γ ` v : Bool:: ∆0 −→ ∆0 C;Γ ` e1 : T̂1 :: ∆0 −→ ∆1 C;Γ ` e2 : T̂2 :: ∆0 −→ ∆2

C;Γ `n if v then e1 else e2 : T̂ :: ∆0→ ∆

(29)
and further Γ .θ Γ′ and ∆0 .θ ∆′0. Induction on the subterm v gives Γ′ `a v :
Bool:: ∆′0 −→ ∆′0;C′0, where

C |=θ ′0
C′0, C ` θ

′
0 Bool ≤ Bool, C ` θ

′
0∆
′
0 ≤ ∆0, and θ

′
0 = θ ,θ ′′0 , (30)
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for some substitution θ ′′0 . Induction on the second subterm gives Γ′ `a e1 : T̂ ′1 ::
∆′0 −→ ∆′1;C′1, where

C |=θ ′1
C′1, C ` θ

′
1T̂ ′1 ≤ T̂1, C ` θ

′
1∆
′
1 ≤ ∆1, and θ

′
1 = θ ,θ ′′1 , (31)

for some substitution θ ′′1 . By transitivity, the second resp. third judgement of (31),
and first resp. third premise of (29) gives

C ` θ
′
1T̂ ′1 ≤ T̂ , resp. C ` θ

′
1∆
′
1 ≤ ∆ . (32)

Similarly, induction on the last subterm e2 gives Γ′ `a e2 : T̂ ′2 :: ∆′0−→ ∆′2;C′2, where

C |=θ ′2
C′2, C ` θ

′
2T̂ ′2 ≤ T̂2, C ` θ

′
2∆
′
2 ≤ ∆2, and θ

′
2 = θ ,θ ′′2 , (33)

for some substitution θ ′′2 . By transitivity, the second, resp. the third judgment of
(33), and the first, resp. the third premise of (29) give

C ` θ
′
2T̂ ′2 ≤ T̂ , resp. C ` θ

′
2∆
′
2 ≤ ∆ . (34)

By rule TA-COND, we get

T = bT̂ ′1c= bT̂ ′2c T̂ ′;C′3 = T̂ ′1 ∨ T̂ ′2 ∆′;C′4 = ∆′1∨∆′2
Γ′ `a v : Bool:: ∆′0 −→ ∆′0;C′0 Γ′ `a e1 : T̂ ′1 :: ∆′0 −→ ∆′1;C′1 Γ′ `a e2 : T̂ ′2 :: ∆′0 −→ ∆′2;C′2

Γ
′ `aif v then e1 else e2 : T̂ ′ :: ∆

′
0→ ∆

′;C′

where C′=C′0,C
′
1,C
′
2,C
′
3,C
′
4 with T̂ ′1 ≤ T̂ ′, T̂ ′2 ≤ T̂ ′ `C′3 and ∆′1≤ ∆′,∆′2≤ ∆′ `C′4.

Wlog. the domains of the substitutions θ ′′0 , θ ′′1 , and θ ′′2 are pairwise disjoint.
By definition of ∨ on types, T̂ ′ is annotated with fresh variables, and hence
(dom(θ)∪dom(θ ′′0 )∪dom(θ ′′1 )∪dom(θ ′′2 ))∩ fv(T̂ ′) = /0. Furthermore, T̂ = θ̃ ′T̂ ′

where dom(θ̃ ′) = fv(T̂ ′). Similarly, by the definition of ∨, ∆′ is a fresh variable.
Hence, (dom(θ)∪dom(θ ′′0 )∪dom(θ ′′1 )∪dom(θ ′′2 ))∩ fv(∆′) = /0. We further know
that ∆ = θ̃ ′′∆′ where dom(θ̃ ′′) = fv(∆′). Now setting θ ′= θ ,θ ′′0 ,θ ′′1 ,θ ′′2 , θ̃ ′, θ̃ ′′, the
first judgments of (32) resp. (34) imply

C ` θ
′T̂ ′1 ≤ θ

′T̂ ′ resp. C ` θ
′T̂ ′2 ≤ θ

′T̂ ′ (35)

By Lemma 4.3, that means

T̂ ′1 ≤ T̂ ′, T̂ ′2 ≤ T̂ ′ `C′3 with C |=θ ′ C
′
3 . (36)
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Similary, the second judgements of (32) resp. (34) implies

C ` θ
′
∆
′
1 ≤ θ

′
∆
′ resp. C ` θ

′
∆
′
2 ≤ θ

′
∆
′ (37)

That implies, again by Lemma 4.3,

∆
′
1 ≤ ∆

′, ∆
′
2 ≤ ∆

′ `C′4 with C |=θ ′ C
′
4 . (38)

Furthermore, the first judgements of the equations (30), (31) and (33) gives

C |=θ ′ C
′
0, C |=θ ′ C

′
1 and C |=θ ′′ C

′
2 . (39)

Hence, equations (39), (36) and (38) give C |=θ ′ C′, as required in part 1. For part
2 resp. 3, C ` θ ′T̂ ′ ≤ T̂ resp. C ` θ ′∆′ ≤ ∆ by reflexivity, as required.
Case: e =spawn e′

We are given
C;Γ `n e′ : T̂ :: •→ ∆2

C;Γ `n spawn e′ : Thread:: ∆1→ ∆1

and further Γ .θ Γ′ and ∆1 .θ ∆′1. By induction on e′, Γ′ `a e′ : T̂ ′ :: • → ∆′2;C′

where additionally

C |=θ ′ C
′, C ` θ

′T̂ ′ ≤ T̂ , C ` θ
′
∆
′
2 ≤ ∆2, and θ

′ = θ ,θ ′′ (40)

for some substitution θ ′′. Applying rule TA-SPAWN gives

Γ
′ `a e′ : T̂ ′ :: •→ ∆

′
2;C′

Γ
′ `a spawn e′ :Thread :: ∆

′
1→ ∆

′
1;C′

Immediately C |=θ ′ C′ by induction, and C `Thread≤ Thread and C ` θ ′∆1≤ ∆1
by reflexivity, which concludes the case.
Case: e = v. lock
In this case, we have

C;Γ ` v : Lρ :: ∆1→ ∆1; C ` ∆1⊕ (ρ:1)≤ ∆2

C;Γ ` v. lock: Lρ :: ∆1→ ∆2
(41)

and further Γ .θ Γ′ and ∆1 .θ ∆′1. We get by induction that Γ′ `a v : Lρ ′ :: ∆′1→
∆′′1;C′ where ∆′′1 = ∆′1 as v is a value. In addition, we have

C |=θ ′ C
′, C ` θ

′Lρ ′ ≤ Lρ C ` θ
′
∆
′
1 ≤ ∆1 and θ

′ = θ ,θ ′′ (42)



4 CONSTRAINT GENERATION 28

By TA-LOCK, we get

Γ
′ `a v : Lρ ′ :: ∆

′
1→ ∆

′
1;C′ X ′ fresh ∆

′
1⊕ (ρ ′:1)≤ X ′ `C′′

Γ
′ `a v. lock : Lρ ′ :: ∆

′
1→ X ′;C′,C′′

Setting θ̃ = θ ′, [∆2/X ]. The second judgement of (41) gives C ` θ̃∆′1⊕ (ρ ′:1) ≤
θ̃X ′ and therefore C |=

θ̃
C′′. Then, together with the first judgement in (42) and by

Lemma 4.7, we get C |=
θ̃

C′,C′′, as required. Then, C ` θ̃Lρ ′ ≤ Lρ by induction,
and the case follows by reflexivity for C ` θ̃X ′ ≤ ∆2.

It is analogous for the unlocking case.

4.2. Soundness of the static analysis and subject reduction
Next we prove soundness of the analysis wrt. the semantics. The core of

the proof is the preservation of well-typedness under reduction (“subject reduc-
tion”). The static analysis does not only derive types (as an abstraction of result-
ing values) but also effects (in the form of pre- and post-specification). While
types are preserved, we cannot expect that the effect of an expression, in par-
ticular its pre-condition, remains unchanged under reduction. As the pre- and
post-conditions specify (upper bounds on) the allowed lock values, the only steps
which change are locking and unlocking steps. To relate the change of pre-
condition with the steps of the system we assume the transitions to be labelled.
Relevant is only the variable ρ; the label π and the actual identity of the lock
are not relevant for the formulation of subject reduction, hence we do not in-
clude that information in the labels here and the steps for lock-taking are of the
form σ1 ` p〈t1〉

p〈ρ.lock〉−−−−→ σ2 ` p〈t2〉; unlocking steps analogously are labelled by
p〈ρ.unlock〉 and all other steps are labelled by τ , denoting internal steps. As a
side remark: as for now, τ steps do not change the σ . Nonetheless, subject reduc-
tion in Lemma 4.13(1) is formulated in a way that mentions σ2 as a state after the
step possibly different from the state σ1 before the step. If our language featured
mutable state (apart from the lock counters), which we left out as orthogonal for
the issues at hand, the more general formulation would be more adequate. Also
later, when introducing race variables, which are mutable shared variables, τ-steps
may change σ , and so we chose the more general formulation already here, even
if strictly speaking not needed yet. The formulation of subject reduction can be
seen as a form of simulation (cf. Figure 1): The concrete steps of the system —for
one process in the formulation of subject reduction— are (weakly) simulated by
changes on the abstract level; weakly, because τ-steps are ignored in the simula-
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tion. To make the parallel between simulation and subject reduction more visible,
we write ∆1

ρ.lock−−−→ ∆2 for ∆2 = ∆1⊕ρ (and analogously for unlocking).

Lemma 4.12 (Subject reduction (local)). Assume C;Γ ` t1 : T̂ :: ∆1 → ∆2 and
t1

τ−→ t2, then C;Γ ` t2 : T̂ :: ∆1→ ∆2.

Proof. Straightforward, by case analysis of the rules of Table 3. Note that the
derivation steps do not change the state of the locks.

Constraints C are of the forms r v ρ and ∆ ≤ X . We consider both kinds
of constraints as independent, in particular a constraint of the form, for instance,
X ≥ ∆⊕ (ρ:n) is considered as a constraint between the abstract states, inde-
pendent from solving constraints concerning ρ . Given C, we write Cρ for the
ρ-constraints in C and CX for the constraints concerning X-variables. Solutions to
the constraints are ground substitutions; we use θ to denote substitutions. Analo-
gous to the distinction for the constraints, we write θ ρ for substitutions concerning
the ρ-variables and θ X for substitutions concerning the X-variables. A ground
θ ρ -substitution maps ρ’s to finite sets {π1, . . . ,πn} of labels and a ground θ X -
substitution maps X’s to ∆’s (which are of the form ρ1:n1, . . . ,ρk:nk); note that the
range of the ground θ X -substitution still contains ρ-variables. We write θ ρ |= C
if θ ρ solves Cρ and analogously θ X |= C if θ X solves CX . For a θ = θ X θ ρ ,
we write θ |= C if θ ρ |= C and θ X |= C. Furthermore we write C1 |= C2 if
θ |= C1 implies θ |= C2, for all ground substitutions θ . For the simple super-set
constraints of the form ρ w r, constraints always have a unique minimal solu-
tion. Analogously for the CX -constraints. A heap σ satisfies an abstract state ∆,
if ∆ over-approximates the lock counter for all locks in σ : Assuming that ∆ does
not contain any ρ-variables and that the lock references in σ are labelled by π’s,
σ |= ∆ if ∑π∈r σ(lπ)≤ ∆(r) (for all r in dom(∆)). Given a constraint set C, an ab-
stract state ∆ (with lock references lρ labelled by variables) and a heap σ , we write
σ |=C ∆ (“σ satisfies ∆ under the constraints C”), iff θ |= C implies θσ |= θ∆, for
all θ . A heap σ satisfies a global effect Φ (written σ |= Φ), if σ |=Ci ∆i for all
i≤ k where Φ = p1〈ϕ1;C1〉 ‖ . . . ‖ pk〈ϕk;Ck〉 and ϕi = ∆i −→ ∆′i.

Lemma 4.13 (Subject reduction (global)). Assume Γ ` P ‖ p〈t1〉 :: Φ ‖ p〈∆1 →
∆2;C〉, and furthermore θ |= C for some ground substitution and σ1 |= θ∆1 and
σ1 |= Φ.

1. σ1 ` P ‖ p〈t1〉
p〈τ〉−−→ σ2 ` P ‖ p〈t2〉, then Γ ` P ‖ p〈t2〉 :: Φ ‖ p〈∆1 −→ ∆2;C〉

where σ2 |= θ∆1 and σ2 |= Φ.
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2. σ1 `P ‖ p〈t1〉
p〈ρ.lock〉−−−−→σ2 `P ‖ p〈t2〉, then Γ`P ‖ p〈t2〉 :: Φ ‖ p〈∆′1−→∆2;C〉

where C ` ∆′1 ≥ ∆1⊕ρ . Furthermore σ2 |= θ∆′1 and σ2 |= Φ.

3. σ1 ` P ‖ p〈t1〉
p〈ρ.unlock〉−−−−−→ σ2 ` P ‖ p〈t2〉, then Γ ` P ‖ p〈t2〉 :: Φ ‖ p〈∆′1 −→

∆2;C〉 where C ` ∆′1 ≥ ∆1	ρ . Furthermore σ2 |= θ∆′1 and σ2 |= Φ.

The property of the lemma is shown pictorially in Figure 1.

∆ ∆

σ1 ` p〈t1〉 σ2 ` p〈t2〉

=

p〈τ〉

|= θ |= θ

∆1 ∆′1

σ1 ` p〈t1〉 σ2 ` p〈t2〉

ρ. lock

p〈ρ.lock〉

|= θ |= θ

Figure 1: Subject reduction (case of unlocking analogous)

Proof. Concentrating on a single thread, assume Γ ` p〈t1〉 :: p〈∆1 −→ ∆2;C〉, and
furthermore θ |= C1 and σ1 |= θ∆1 . Part 1 for τ-steps follows from subject re-
duction for local steps from Lemma 4.12.

For part 2 and part 3, to simplify the presentation of the proof, we make
the proof wrt. the normalized system (cf. Table 11), i.e. all the sources of non-
determinism are removed. The formulation of the lemma remains unchanged.

In part 2, we are given σ1 ` p〈t1〉
p〈ρ.lock〉−−−−→ σ2 ` p〈t2〉; the only rule justifying

that step is R-LOCK in Table 4:
Case: R-LOCK:
σ1 ` p〈let x:T = lρ . lock in t〉 p〈ρ.lock〉−−−−→ σ2 ` p〈let x:T = lρ in t〉
where σ1(l) = free or σ1(l) = p(n) and σ2 = σ1 +p l. The assumption of well-
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typedness and inverting rules T-THREAD, T-LET, T-LOCK, and T-LREF gives

C ` ρ
′ w ρ

C;Γ ` lρ : Lρ ′ :: ∆1 −→ ∆1 C ` ∆1⊕ρ
′ ≤ ∆

′
1

T-LOCK
C;Γ ` lρ . lock : Lρ ′ :: ∆1 −→ ∆

′
1 C;Γ,x:Lρ ′ ` t : T̂ :: ∆

′
1 −→ ∆2

T-LET
C;Γ ` let x:T = lρ . lock in t : Lρ ′ :: ∆1 −→ ∆2

Γ ` p〈let x:T = lρ . lock in t〉 :: p〈∆1 −→ ∆2;C〉

For the configuration after the step, applying rules T-LREF, T-LET, and T-THREAD

gives:

C ` ρ
′ w ρ

T-LREF
C;Γ ` lρ : Lρ ′ :: ∆

′
1 −→ ∆

′
1 C;Γ,x:Lρ ′ ` t : T̂ :: ∆

′
1 −→ ∆2

T-LET
C;Γ `let x:T = lρ in t : Lρ ′ :: ∆

′
1 −→ ∆2

Γ ` p〈let x:T = lρ in t〉 :: p〈∆′1 −→ ∆2;C〉

Given σ1 |= θ∆1 and σ2 = σ1 +p l together with C ` ∆′1 ≥ ∆1⊕ρ ′ and C ` ρ ′ w ρ

gives σ2 |= θ∆′1. Since σ2 = σ1 +p l means that process p is holding the lock l,
and does not affect the local states of the other processes, therefore σ2 |= Φ, which
concludes the case.

Part 3 for unlocking works analogously.

As an immediate consequence, all configurations reachable from a well-typed
initial configuration are well-typed itself. In particular, for all those reachable
configurations, the corresponding pre-condition (together with the constraints) is
a sound over-approximation of the actual lock counters in the heap.

Corollary 4.14 (Soundness of the approximation).

1. If Γ ` t : T̂ :: ∆1 −→ ∆2;C and t −→∗ t ′, then Γ ` t ′ : T̂ :: ∆1 −→ ∆2;C.
2. Let σ0 ` p〈t0〉 be an initial configuration. Assume further Γ ` p〈t0〉 ::

p〈∆0→∆2;C〉 and θ |=C and where ∆0 is the empty context. If σ0 ` p〈t0〉−→
∗σ ` P, then Γ ` P :: Φ, where Φ = p1〈∆1→ ∆′1;C1〉 ‖ . . . ‖ pk〈∆k→ ∆′k;Ck〉
and where where σ |= θ∆i (for all i).

Proof. By induction of the number of steps using Lemma 4.13. Since initially, all
locks in σ0 are free, σ0 |= θ∆0 for all C and all θ |= C.



5 RACE VARIABLES FOR DEADLOCK DETECTION 32

Next we carry over subject reduction and soundness of the type system to
the algorithmic formulation. We start with subject reduction, which corresponds
to Lemma 4.13 (see also Figure 1). Again we concentrate on the effect part.
Since now the type system calculates the minimal effect, in particular, given a
pre-condition, a minimal post-condition, reduction may lead to an stricter post-
condition. Similarly for the set of constraints.

Lemma 4.15 (Subject reduction). Assume Γ ` P ‖ p〈t1〉 :: Φ ‖ p〈∆1 → ∆2;C1〉,
and furthermore θ |= C1 for some ground substitution and σ1 |= θ∆1 and σ1 |= Φ.

1. σ1 ` P ‖ p〈t1〉
p〈τ〉−−→ σ2 ` P ‖ p〈t2〉, then Γ ` P ‖ p〈t2〉 :: Φ ‖ p〈∆′1 −→ ∆′2,C2〉

where C1 |= C2 and σ2 |= θ∆1 and σ2 |= Φ and furthermore C1 ` ∆1 ≤ ∆′1
and C1 ` ∆′2 ≤ ∆2.

2. σ1 ` P ‖ p〈t1〉
p〈ρ.lock〉−−−−→ σ2 ` P ‖ p〈t2〉, then Γ ` P ‖ p〈t2〉 :: Φ ‖ p〈∆′1 −→

∆2,C2〉 where C1 ` ∆1⊕ ρ ≤ ∆′1. Furthermore C1 |= C2, σ2 |= θ∆′1 and
σ2 |= Φ.

3. σ1 ` P ‖ p〈t1〉
p〈ρ.unlock〉−−−−−→ σ2 ` P ‖ p〈t2〉, then Γ ` P ‖ p〈t2〉 :: Φ ‖ p〈∆′1 −→

∆2,C2〉 where C1 ` ∆1	 ρ ≤ ∆′1. Furthermore, C1 |= C2, σ2 |= θ∆′1 and
σ2 |= Φ.

Proof. Basically a consequence of the corresponding subject reduction Lemma
4.13 plus soundness and completeness: We are given Γ `a P ‖ p〈t1〉 :: Φ ‖ p〈∆1→
∆2;C1〉, which implies by soundness from Lemma 4.4 that also Γ `s P ‖ p〈t1〉 ::
Φ ‖ p〈∆1→ ∆2;C1〉.

In part 1, the corresponding part of Lemma 4.13 gives for the configuration
after the step

Γ `s P ‖ p〈t2〉 :: Φ ‖ p〈∆1 −→ ∆2;C1〉 (43)

and furthermore σ2 |= θ∆1 and σ2 |= Φ, as required. Furthermore, derivability
of (43) implies with completeness from Lemma 4.11 that Γ `a P ‖ p〈t2〉 :: Φ ‖
p〈∆′1 −→ ∆′2;C2〉, where C1 |= C2 and C1 ` ∆′2 ≤ ∆2, which discharges two further
claims and concludes part 1. Parts 2 and 3 work analogously.

5. Race variables for deadlock detection

Next we use the information inferred by the type system in the previous sec-
tion to locate control points in a program which potentially give rise to a deadlock.
As we transform the given program after analyzing it, for improved precision, we
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assume that in the following all non-recursive function applications are instanti-
ated/inlined: a unique call-site per function ensures the most precise type- and
effect information for that function, and correspondingly the best suitable instru-
mentation. The polymorphic type system gives a context-sensitive representation,
which can then be instantiated per call-site. Note that this way, we need to anal-
yse only the original program, and each function in there once, although for the
next step, we duplicate methods. Recursive functions are instantiated once with
(minimal) effects capturing all call-sites.

Those points are instrumented appropriately with assignments to additional
shared variables, intended to flag a race. In this way, deadlock detection is re-
duced to the problem of race detection. To be able to do so, we slightly need
to extend our calculus. The current formulation does not have shared variables,
as they are irrelevant for the analysis of the program, which concentrates on the
locks. In the following we assume that we have appropriate syntax for access-
ing shared variables; we use z,z′,z1, . . . to denote shared variables, to distinguish
them from the let-bound thread-local variables x and their syntactic variants. For
simplicity, we assume that they are statically and globally given, i.e., we do not
introduce syntax to declare them. Together with the lock references, their values
are stored in σ . To reason about changes to those shared variables, we introduce
steps of the form p〈!z〉−−→ and

p〈?z〉−−→, representing write resp. read access of process p to
z. Alternatives to using a statically given set of shared variables, for instance using
dynamically created pointers to the heaps are equally straightforward to introduce
syntactically and semantically, without changing the overall story.

5.1. Deadlocks and races
We start by formally defining the notion of deadlock used here, which is fairly

standard (see also [38]): a program is deadlocked, if a number of processes are
cyclically waiting for each other’s locks.

Definition 5.1 (Waiting for a lock). Given a configuration σ ` P, a process p
waits for a lock l in σ ` P, written as waits(σ ` P, p, l), if (1) it is not the case that
σ ` P

p〈l.lock〉−−−−→, and furthermore (2) there exists σ ′ s.t. σ ′ ` P
p〈l.lock〉−−−−→ σ ′′ ` P′. In a

situation without (1), we say that in configuration σ ` P, process p tries for lock l
(written tries(σ ` P, p, l)).

Definition 5.2 (Deadlock). A configuration σ ` P is deadlocked if σ(li) = pi(ni)
and furthermore waits(σ ` P, pi, li+k1) (where k≥ 2 and for all 0≤ i≤ k−1). The
+k is meant as addition modulo k. A configuration σ ` P contains a deadlock,
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if, starting from σ ` P, a deadlocked configuration is reachable; otherwise it is
deadlock free.

Thus, a process can only be deadlocked, i.e., being part of a deadlocked con-
figuration, if p holds at least one lock already, and is waiting for another one. With
re-entrant locks, these two locks must be different. Independent from whether it
leads to a deadlock or not, we call such a situation —holding a lock and attempting
to acquire another one— a second lock point. More concretely, given a configu-
ration, where we abbreviate the situation where process p holds lock l1 and tries
l2 by slp(σ ` P)l1→l2

p . The abstraction in the analysis uses program points π to
represent concrete locks, and the goal thus is to detect in an approximate manner
cycles using those abstractions π . As stated, a concrete deadlock involves a cycle
of processes and locks. We call an abstract cycle ∆C a sequence of pairs ~p:~π with
the interpretation that pi is holding πi and wants πi+1 (modulo the length of the
cycle). Next we fix the definition for being a second lock point. At run-time a
process is at a second lock point simply if it holds a lock and tries to acquire a
another, different one.

Definition 5.3 (Second lock point (runtime)). A local configuration σ ` p〈t〉 is
at a second point (holding l1 and attempting l2, when specific), written slp(σ `
p〈t〉)l1→l2 , if σ(l1) = p(n) and tries(σ ` p〈t〉, l2). Analogously for abstract locks
and heaps over those: slp(σ ` p〈t〉)π1→π2 , if σ(π1) = p(n) and tries(σ ` p〈t〉,π2).
Given an abstract cycle ∆C, a local configuration is at a second lock point of
∆C, if slp(σ ` p〈t〉)π1→π2 where, as specified by ∆C, p holds π1 and wants π2.
Analogously we write for global configurations e.g., slp(σ ` P)π1→π2

p , where p is
the identity of a thread in P.

Ultimately, the purpose of the static analysis is to derive (an over-approximation
of the) second lock points as a basis to instrument with race variables. The
type system works thread-locally, i.e., it derives potential second lock points per
thread. Given a static thread, i.e., an expression t without run-time syntax, sec-
ond lock points are control points where the static analysis derives the danger of
attempting a second lock. A control-point in a thread t corresponds to the occur-
rence of a sub-expression; we write t[t ′] to denote the occurrence of t ′ in t. As
usual, occurrences are assumed to be unique.

Definition 5.4 (Second lock point (static)). Given a static thread t0[t], a process
identifier p and ∆0 ` t0 : ∆, with ∆0 = •. The occurrence of t in t0 is a static slp if:

1. t = let x:L{...,π,...} = v. lock in t ′.
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2. ∆1 ` t :: ∆2, for some ∆1 and ∆2, occurs in a sub-derivation of ∆0 ` t0 :: ∆.
3. there exists π ′ ∈ ∆1 s.t. ∆C ` p has π ′, and ∆C ` p wants π .

Assume further σ0 ` p〈t0〉 −→∗ σ ` p〈t〉. We say σ ` p〈t〉 is at a static second
lock point if t occurs as static second lock point in t0.

Lemma 5.5 (Static overapproximation of slp’s). Given ∆C and σ ` P be a reach-
able configuration where P = P′ ‖ p〈t〉 and where furthermore the initial state of
p is p〈t0〉. If σ ` p〈t〉 is at a dynamic slp (wrt. ∆C), then t is a static slp (wrt. ∆C).

Proof. A direct consequence of soundness of the type system (cf. Corollary 4.14).

Next we define the notion of race. A race manifests itself, if at least two
processes in a configuration attempt to access a shared variables at the same time,
where at least one access is a write-access.

Definition 5.6 (Race). A configuration σ ` P has a (manifest) race, if σ ` P
p1〈!x〉−−−→,

and σ `P
p2〈!x〉−−−→ or σ `P

p2〈?x〉−−−→, for two different p1 and p2. A configuration σ `P
has a race if a configuration is reachable where a race manifests itself. A program
has a race, if its initial configuration has a race; it is race-free else.

Race variables will be added to a program to assure that, if there is a deadlock,
also a race occurs. More concretely, being based on the result of the static anal-
ysis, appropriate race variables are introduced for each static second lock points,
namely immediately preceding them. Since static lock points over-approximate
the dynamic ones and since being at a dynamic slp is a necessary condition for
being involved in a deadlock, that assures that no deadlock remains undetected
when checking for races. In that way, that the additional variables “protect” the
second lock points.

Definition 5.7 (Protection). A property ψ is protected by a variable z starting
from configuration σ ` p〈t〉, if σ ` p〈t〉 −→∗ a−→ σ ′ ` p〈t ′〉 and ψ(p〈t ′〉) implies
that a =!z. We say, ψ is protected by z, if it is protected by z starting from an
arbitrary configuration.

Protection, as just defined, refers to a property and the execution of a single
thread. For race checking, it must be assured that the local properties are protected
by the same, i.e., shared variable are necessarily and commonly reached. That this
is the case is formulated in the following lemma:



5 RACE VARIABLES FOR DEADLOCK DETECTION 36

Lemma 5.8 (Lifting). Assume two processes p1〈t1〉 and p2〈t2〉 and two thread-
local properties ψ1 and ψ2 (for p1 and p2, respectively). If ψ1 is protected by x
for p1〈t1〉 and ψ2 for p2〈t2〉 by the same variable, and a configuration σ ` P with
P = p1〈t1〉 ‖ p2〈t2〉 ‖ P′′ is reachable from σ ′ ` P′ such that ψ1∧ψ2 holds, then
σ ′ ` P′ has a race.

Proof. Straightforward.

5.2. Instrumentation
Next we specify how to transform the program by adding race variables. The

idea is simple: each static second lock point, as determined statically by the type
system, is instrumented by an appropriate race variable, adding it in front of the
second lock point. In general, to try to detect different potential deadlocks at
the same time, different race variables may be added simultaneously (at differ-
ent points in the program). The following definition defines where to add a race
variable representing one particular cycle of locks ∆C. Since the instrumentation
is determined by the static type system, one may combine the derivation of the
corresponding lock information by the rules of Table 9 such that the result of the
derivation not only derives type and effect information, but transforms the pro-
gram at the same time, with judgments of the form Γ `p t B t ′ : T̂ :: ϕ , where t
is transformed to t ′ in process p. Note that we assume that a solution to the con-
straint set has been determined and applied to the type and the effects. Since the
only control points in need of instrumentation are where a lock is taken, the trans-
formation for all syntactic constructs is trivial, leaving the expression unchanged,
except for v. lock-expressions, where the additional assignment is added if the
condition for static slp is satisfied (cf. equation (5.9) from Definition 5.4).

Definition 5.9 (Transformation). Given an abstract cycle ∆C. For a process p
from that cycle, the control points instrumented by a !z are defined as follows:

Γ `p v : Lr :: ∆1 −→ ∆1 ∆
′ = ∆1⊕ r π ∈ r π

′ ∈ ∆1 ∆C ` p wants π ∆C ` p has π
′

Γ `p v. lock : Lr :: ∆1 −→ ∆2 Γ,x:Lr `p t B t ′ : T :: ∆2→ ∆3

Γ `p let x:T = v. lock in t B let x:T = (!z;v. lock) in t ′ : T :: ∆1 −→ ∆3

By construction, the added race variable protects the corresponding static slp,
and thus, ultimately the corresponding dynamic slp’s, as the static ones over-
approximate the dynamic ones.
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Remark 5.10 (Re-entrant vs. binary locks). These definitions are applicable for
both re-entrant and non-re-entrant, i.e., binary locks. Of course, “self-deadlock”
where a process deadlocks in trying to acquire a lock it already has cannot be
detected by adding race variables as races involve two processes. On the other
hand, self-deadlocks (in a setting with binary locks) are straightforward to detect
by standard techniques, compared to deadlocks involving cycles of length larger
than two processes, as they can be checked thread-locally.

Lemma 5.11 (Race variables protect slp’s). Given a cycle ∆C and a correspond-
ing transformed program. Then all static second lock points in the program are
protected by the race variable (starting from the initial configuration).

Proof. By construction, the transformation syntactically adds the race variable
immediately in front of static second lock points.

The next lemma shows that there is a race “right in front of” a deadlocked
configuration for a transformed program.

Lemma 5.12. Given an abstract cycle ∆C, and let P0 be a transformed program
according to Definition 5.9. If the initial configuration σ0 ` P0 has a deadlock wrt.
∆C, then σ0 ` P0 has a race.

Proof. By the definition of deadlock (cf. Definition 5.2), some deadlocked con-
figuration σ ′ ` P′ is reachable from the initial configuration:

σ0 ` P0 −→∗ σ
′ ` P′ where P′ = . . . pi〈t ′i〉 ‖ . . . ‖ p j〈t ′j〉 ‖ . . . , (44)

where by assumption, the processes pi and the locks they are holding, resp. on
which they are blocked are given by ∆C, i.e., σ(li)= pi(ni) and waits(σ ′ `P′, pi, li+k1).
Clearly, each participating process σ ′ ` pi〈t ′i〉 is at a dynamic slp (cf. Definition
5.3). Since those are over-approximated by their static analogues (cf. Lemma 5.5),
the occurrence of t ′i in t0

i resp. of t ′j in t0
j is a static slp. By Lemma 5.11, all static

slp (wrt. the given cycle) are protected, starting from the initial configuration, by
the corresponding race variable. This together with the fact that σ ′ ` pi〈t ′i〉 is
reachable from σ0 ` pi〈t0

i 〉 implies that the static slp in each process pi is pro-
tected by the same variable x. Hence, by Lemma 5.8, σ0 ` P0 has a race between
pi and p j.

The previous lemma showed that the race variables are added at the “right
places” to detect deadlocks. Note, however, that the property of the lemma was
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formulated for the transformed program while, of course, we intend to detect
deadlocks in the original program. So to use the result of Lemma 5.12 on the
original program, we need to convince ourselves that the transformation does not
change (in a relevant way) the behavior of the program, in particular that it neither
introduces nor removes deadlocks. Since the instrumentation only adds variables
which do not influence the behavior, this preservation behavior is obvious. The
following lemma shows that transforming programs by instrumenting race vari-
ables preserves behavior.

Lemma 5.13 (Transformation preserves behavior). P is deadlock-free iff PT is
deadlock-free, for arbitrary programs.

Proof. Straightforward.

Next, we show with the absence of data race in a transformed program that the
corresponding original one is deadlock-free:

Lemma 5.14 (Data races and deadlocks). P is deadlock-free if PT is race-free, for
arbitrary programs.

Proof. A direct consequence of Lemma 5.12 and Lemma 5.13.

In the next section, where we additionally add new locks to enhance the preci-
sion of the analysis, it becomes slightly more complex to establish that connection
between the original and the transformed program.

6. Gate locks

Next we refine the transformation to improve its precision. By definition,
races are inherently binary, whereas deadlocks in general are not, i.e., there may
be more than two processes participating in a cyclic wait. In a transformed pro-
gram, all the processes involved in a specific abstract cycle ∆C share a common
race variable. While sound, this would lead to unnecessarily many false alarms,
because already if two processes as part of a cycle of length n > 2 reach simulta-
neously their race-variable-instrumented control-points, a race occurs, even if the
cycle may never be closed by the remaining processes. In the following, we add
not only race variables, but also additional locks, which removes false positives
by allowing us to check reachability of slp-s pairwise. We call these locks gate
locks. Adding new locks, however, needs to be done carefully so as not to change
the behaviour of the program, in particular, not to break Lemma 5.13.
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We first define another (conceptual) use of locks, denoted short-lived locks. A
lock, resp. its usage is short-lived, if the execution between taking the lock and re-
leasing it is atomic, i.e., free from interference. In particular, between acquisition
and release, no further lock-acquisition is allowed, including taking the same lock
again in a re-entrant manner. It is obvious that transforming a program by adding
short-lived locks does not lead to more deadlocks. We will use short-lived locks
as gate-locks to protect assignment to the added race variables.

A deadlock involving a short-lived lock g and any other lock l means that there
exists two processes where one is holding l and tries to take g, while the other one
is holding g and tries l. Since no locking step is allowed while one is holding a
short-lived lock without first releasing it, such a deadlock does not exist.

A gate lock is a short-lived lock which is specially used to protect the access
to race variables in a program. Since gate locks are short-lived locks, no new
deadlocks will be introduced. Similar to the transformation in Definition 5.9, we
still instrument with race variables at the static second lock points, but also wrap
the access with locking/unlocking of the corresponding gate lock (there is one gate
lock per ∆C). However, we pick one of the processes in ∆C which only accesses
the race variable without the gate lock held. This transformation ensures that the
picked process and at most one of the other processes involved in a deadlock cycle
may reach the static second lock points at the same time, and thus a race occurs.
That is, only the race between the process which could close the deadlock cycle
and any one of the other processes involved in the deadlock will be triggered.
If the verdict here is “no race detected”, it means that the designated process
never reaches any slp (for a particular cycle) at the same time as one of the other
processes, thus ruling out a deadlock at those slps.

Observe that depending on the chosen process, the race checker may or may
not report a race—due to the soundness of our approach, we are obviously inter-
ested in the best result, which is “no race detected”.

This can be illustrated through a variant of the Dining Philosophers example,
where the commonly-known deadlock is avoided by one process not closing the
cycle: for any possible cycle, one of the processes fails to participate. If we do
not non-deterministically select that process as the special one, there will always
be a race reported between two other processes, indicating that they are willing to
contribute their share to cycle.

Therefore, we suggest to run the analysis with each process being designated
as special in turn in parallel to find the optimal result. Note that checks for dif-
ferent cycles can also easily be run in parallel or distributed. It is also possible
to instrument a single program for the detection of multiple cycles: even though
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a lock statement can be a second lock point for multiple abstract locks, the trans-
formations for each of them do not interfere with each other (as we have shown
through the concept of short-lived locks), and can be analysed in a single race
checker-run.

Theorem 6.1 (Soundness). Given a program P, PT is a transformed program of
P instrumenting with race variables and gate locks, P is deadlock-free if PT is
race-free.

To test our approach, we generate a static number of the Dining Philosophers
(see Appendix A.2) together with the required locks, calculate all potential cycles
of length up to n that we have to check for, and instrument the C program accord-
ing to our transformation with race accesses for each cycle and gate locks (each
race variable is protected with at most one gate lock).

n # potential # race vars. time peak heap
cycles per phil. single run (approx.)

2 2 1 <0.1s 5 mb
3 30 4 ∼0.1s 5 mb
4 732 54 <0.5s 11 mb
5 29780 1384 ∼4m 666 mb

Table 12: Checking the Dining Philosophers with Goblint

Table 12 shows the corresponding values for a statically optimal version of the
philosophers, that is, no abstraction occurs and thus it is known which philosopher
uses which locks. Measurements have been taken on a recent Linux machine with
Goblint version 0.9.6 / OCaml 3.12.1. We also report peak memory consumption
of Goblint. Given this perfect static information, e.g. in the case of four philoso-
phers, the transformation uses out of 732 race variables (one per potential cycle
from all combinations of 4 processes/4 locks/cycles up to length 4) 54 per process.
Our generator did not terminate producing the instrumented code for six dining
philosophers due to the large number of potential cycles.

In the case of the “fixed” dining philosophers problem, where one of the pro-
cesses avoids to close the cycle by breaking the symmetry, we need the same
effort to certify it as deadlock-free. As a further optimization, we could ob-
serve if for each potential cycle, all its “segments” have in fact been used in a
transformation—if not, we can immediately discharge this cycle without having
to check for any races.
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For each size n we have to generate n programs rotating the “special” process
for the gate lock, giving another linear factor for the number of race checker runs.
An instance is reported as safe (e.g. in the case where one philosopher avoids to
close the cycle) when at least one of the n runs does not report a (potential) race.

Interpreting counter-examples. A potential race report immediately allows to con-
clude which particular cycle may have been closed, as by default each race vari-
able corresponds to one particular cycle. We expect that the race checker reports
the variable the race has happened on (as is the case with e.g. Goblint), and ad-
ditional output by the checker may indiciate at which source code-location the
cycle occurred: the statement with the race access directly corresponds to a sub-
sequent lock-statement, as indicated by our transformation. Likewise, multiple
race reports can be interpreted individually in a similar fashion.

Bounded search. As the number of potential cycles grows quickly with the num-
ber of threads and (abstract) locks goes up (see again Table 12), users may choose
a staged approach to deadlock detection. In a larger problem (e.g. five dining
philosophers), the size of the program can be minimized by collapsing race vari-
ables. Due to the soundness of our mechanism, it is possible to partition the
search into all cycles of length 2 individually, but collapsing all larger cycles. An
analysis result could then in principle report deadlocks with cycles of length 2,
and absence of any deadlock for larger cycles. Conversely, if a deadlock in the
larger abstraction is reported, the check could be repeated with partitioning race
variables into explicit detection of cycles of length 3, and collapsing sizes 4 and 5
into a single check. In a further step, sizes 4 and five could be split and checked
separately if necessary.

7. Conclusion

We presented an approach to statically analyse multi-threaded programs by
reducing the problem of deadlock checking to data race checking. The type and
effect system statically over-approximates program points, where deadlocks may
manifest themselves and instruments programs with additional variables to signal
a race. Additional locks are added to avoid too many spurious false alarms. We
show soundness of the approach, i.e., the program is deadlock free, if the corre-
sponding transformed program is race free.

To the best of our knowledge, our contribution is the first formulation of (po-
tential) deadlocks in terms of data races. Due to the number of race variables
introduced in the transformation, and assuming that race checking scales linearly
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in their number, we expect an efficiency comparable to explicit-state model check-
ing.

Compared to our earlier work [38], apart from using a race checker instead of
formulation a search for deadlocks in terms of a model checking problem, our new
approach can soundly handle locks that are (repeatedly) created from the same
abstract location. Also, we present here a polymorphic effect-inference which
does not share the restriction to first-order functions of [37]. Unlike the model
checking-based approach with a growing call-stack that must be cut off at a finite
depth, we now summarise recursive methods in the effect system and rely on the
soundness, precision, and effectiveness of the race checker, which should scale
linearly in the source code-size of the instrumented program. We also provide a
more detailed theory and proofs compared to the conference contribution [39].

Related work. Numerous approaches have been investigated and implemented
over the years to analyse concurrent and multi-threaded programs (cf. e.g. [41]
for a survey of various static analyses). Not surprisingly, in particular approaches
to prevent races [11] and/or deadlocks [17] have been extensively studied for var-
ious languages and based on different techniques.

A classic programming discipline to prevent deadlocks a priori is to impose
an order on the locks [12]. Acquiring locks consistent with that given order elim-
inates circular waits as one of the four necessary conditions for deadlocks [16].
Unlike the work presented here, many static type system build upon that idea
by incorporating information about lock orders in their types. For instance, [14]
introduced “deadlock types” extending their earlier work [15] on race-free Java.
These incorporate a lock-level into the types for locks; the lock levels are ordered
and the type system is responsible to assure adherence to an order-consistent lock
acquisition policy. Actually, the paper allows more flexibility than adherence to
a fixed lock order in that the order may change at run-time, without of course
violating acyclicity. To enhance precision, the type system supports lock level
polymorphism. Furthermore, the paper sketches how type inference can be done
in their system, however, it seems, it is not attempted for the lock-polymorphic
part. Different from the work presented here, the language in [14] is based on a
block-structured locking discipline (using Java’s synchronized-keyword). Also
[22], besides race freedom, covers checking for deadlock freedom using ordered
lock levels in the type system. To prevent races, the work introduced a form of
singleton types for locks, i.e., a form of dependent types. A singleton lock type
represents a single lock and the type system keeps track of sets of singleton lock
types, there called permissions, representing statically the locks which are neces-
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sarily held at a given point, i.e., a permission corresponds to the notion of lock
sets, which is a key ingredient in many static (and dynamic) analyses to assure
race freedom. In comparison with the current work, they roughly correspond
to our notion of lock environments or abstract states, except that we are dealing
with re-entrant locks, i.e., the lock environment of the type system corresponds to
multi-sets as they approximate the number of times a lock is held. Besides that,
lock environments in our work correspond to a “may”-interpretation, whereas the
lock sets or permissions represent the locks which are necessarily held. Another
difference is that our language supports non-block-structured locking. Thus, our
type system considers pre- and post-specifications of the lock environments (to-
gether forming the effect of an expression), whereas in the block-structured disci-
pline of [22] allows a simpler treatment in the type system where it suffices to type
check an expression under the assumption of a given lock set, but without the need
of a post-condition as the life-time of a lock ends at the end of a block. Finally,
our type system makes no use of singleton types, but represents locks abstractly
by their point of creation. A type-based analysis for non block-structured locking
disciplines and for binary locks is presented in [47]. As the previously mentioned
works, deadlock freedom is assured by incorporating lock levels into the types for
locks. To deal with mutable references and aliasing, the work uses furthermore
ownership types but does not consider type inference. Type inference assuring
deadlock freedom for non-block-structured locking disciplines is investigated in
[51] for a low-level concurrent polymorphic calculus.

The strengths resp. weaknesses of static vs. dynamic approaches to avoid or
prevent (concurrency) errors are complementary: static approaches, when insist-
ing on soundness, necessarily over-approximate and achieving acceptable preci-
sion is problematic. Dynamic checking, on the other hand, may incur run-time
overhead and, concentrating individual runs, may miss erroneous situations. So
some work tries to achieve the best of both worlds by combining dynamic and
static approaches. To prevent races, for instance [6, 7] present a novel exten-
sion of type inference in the context of parametrized race-free Java PRFJ [15].
The parametric polymorphism of PRFJ makes complete type inference infeasible,
so, to infer lock annotations, the work resorts to an incomplete inference algo-
rithm, which is aided by monitoring executions at run-time. The paper coins the
term type discovery for this form of run-time assisted type inference. [42] im-
proves on the results in covering not only polymorphic instantiation (as [6]) but
also polymorphic generalization. [8] combines static and dynamic techniques in
an opposite way: where in type discovery, run-time analysis is used to assist the
static analysis, in particular type inference, [8] uses a static type system to reduce
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the overhead of run-time checking, based on the well-known GoodLock algo-
rithm [30], by inferring which run-time checks may safely be omitted. The paper
focuses on deadlock analysis using deadlock types. Extending [44], it covers
also race-freedom and absence of atomicity violations besides deadlock freedom.
The paper deals with block-structured locking in a Java-like language. They also
present a type inference algorithm for basic, i.e., non-polymorphic deadlock types
(in contrast to [14]). Also [27, 28] present a combination of static and dynamic
techniques for deadlock avoidance. In contrast to [8], the static phase is not used
to improve a dynamic monitoring of the running system, but, based on the result
of the static phase, to interfere with the execution to “schedule around” impend-
ing deadlocks. Targeting mainly low-level languages, the system extends [13]
to cover non block-structured lock-usage. Especially for non-block-structured
locking locking, aliasing is a major problem, as lock sets cannot adequately be
calculated statically and so the calculation is deferred until run-time. In general,
the approaches use effect systems to approximate future lock usage and the gen-
eralization beyond a block-structured locking discipline necessitates to consider
behavioral effects, i.e., taking the order of future lock acquisitions and releases
into account (“continuation effects”). The type and effect system uses singleton
lock types and supports lock-polymorphic function.

As mentioned in the introduction, in a concurrency model based on shared
memory and lock-based synchronization, races and deadlocks are related but com-
plementary concurrency problems. As emphasized, most static analyses including
the type-based ones for deadlock prevention are based on confirming or deriving
an acyclic order on lock acquisition. In contrast, our static analysis is not order-
based but derives information about which locks are potentially held per thread,
i.e., independent from a global order, to defer the global task of deadlock detection
to race checking, after an appropriate transformation. Our type and effect analysis
therefore resembles thus also static techniques determining “lock sets” which are
used for race detection [21] [1] [23] [24] [29] to name a few. In general, races
are prevented not just by protecting shared data via locks; a good strategy is to
avoid also shared data in the first place. The biggest challenge for static analysis,
especially when insisting on soundness of the analysis, is to achieve better approx-
imations as far as the danger of shared, concurrent access is concerned. Indeed,
the difference between an overly approximate analysis and one that is usable in
practice lies not so much in obtaining more refined conditions for races as such,
but to get a grip on the imprecision caused by aliasing, and the same applies to
static deadlock prevention.

[35] presents a model-checking approach to deadlock detection on the control-
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flow graph which relies on the precision of the underlying analyses that are neces-
sary to handle all features of Javaprograms in terms of abstract locks and threads.
This approach checks deadlocks between a pair of abstract threads and a pair of
locks. It abstracts threads and locks by their allocation sites. The approach is
neither sound nor complete.

Future work. Our analysis summarizes the potential locations of recursive func-
tion arguments based on its call-sites, which is the reason for some of the (ex-
pected) imprecision. In earlier work, we investigated inference and polymorphism
[37], but how the presence of a static second lock points can be ascertained in such
a polymorphic setting needs further investigation. A natural extension of our work
would be an implementation of our type and effect system to transform concur-
rent programs written in e.g. in C and Java. Complications in those languages
like aliasing would need to be taken into account, although we expect that results
from a may-alias analysis could directly be consumed by our analysis. For prac-
tical applications, the restriction on fixed number of processes will not fit every
program. We presume that our approach will work best on code found e.g. in the
realm of embedded system, where generally a more resource-aware programming
style means that threads and other resources are statically allocated.

Acknowledgements. We are grateful for detailed discussion of Goblint to Kalmer
Apinis, and Axel Simon, from TU München, Germany.
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Appendix A. Code

Appendix A.1. Philosopher Generation (Haskell)

module Main where

{− $ Id : MkPhi ls . hs 32648 2013−02−28 1 4 : 4 3 : 3 1 Z s t o l z $

T h i s s h o u l d g e n e r a t e ’n ’ p h i l o s o p h e r s , where t h e 1 s t one i s ” s p e c i a l ” i n t h e
s e n s e t h a t i t doesn ’ t need t h e g a t e l o c k ,

and t h e 2nd can be made t o be t h e ” f i x e d ” p h i l o s o p h e r t h a t b r e a k s t h e c y c l e by
c h o o s i n g ( r , l ) i n s t e a d o f ( l , r ) .

Usages :
r u n h a s k e l l MkPhi ls . hs 2 True 1
r u n h a s k e l l MkPhi ls . hs 2 F a l s e 1
r u n h a s k e l l MkPhi ls . hs 3 True 1
r u n h a s k e l l MkPhi ls . hs 3 F a l s e 1
. . .

Most n o t a b l y , f o r one o f t h e ‘ MkPhi ls 3 True i ‘ runs , i t s h o u l d NOT r e p o r t a race
. C u r r e n t l y i =2

because o f t h e s i n g l e c y c l e t h a t we are l o o k i n g f o r .

TODO:
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− p r i n t c y c l e f o r each r a c e v a r
− don ’ t d e c l a r e unused v a r i a b l e s
−}

import System . IO
import Data . L i s t
import Data . Map (Map)
import q u a l i f i e d Data . Map ( f r o m L i s t , lookup )
import Data . S e t ( Set , s i z e )
import q u a l i f i e d Data . S e t ( empty , i n s e r t )
import C o n t r o l . Monad ( when , u n l e s s )
import System . Env i ronment ( getArgs )

type RaceVar = S t r i n g
type C y c l e I n f o = Map I n t ( Int , I n t )
data Cycle = Cycle RaceVar C y c l e I n f o d e r i v i n g ( Show )

−− g e n e r a t e c y c l e w i t h wrap around s t a r t i n g from o i / i :
−− Main> cycleFromTo 2 2 3 F a l s e
−− [ ( 2 , 3 ) , ( 3 , 1 ) , ( 1 , 2 ) ]
cycleFromTo : : I n t −> I n t −> I n t −> Bool −> [ ( Int , I n t ) ]
cycleFromTo o i i j f i n i s h e d
| i == j && f i n i s h e d = [ ]
| i == j && ( not f i n i s h e d ) = ( j , 1 ) : ( cycleFromTo o i 1 o i True )
| i < j = ( i , i +1) : cycleFromTo o i ( i +1) j f i n i s h e d

cyc leTo : : I n t −> [ ( Int , I n t ) ]
cyc l eTo t = cycleFromTo 1 1 t F a l s e

main = do
args@ ( numStr : f i x S t r : s p e c i a l S t r : ) <− getArgs
l e t numLocks = ( read numStr ) : : I n t
−− unbreak one p h i l o s o p h e r
l e t f i x P h i l = ( read f i x S t r ) : : Bool
−− d e s i g n a t e d p h i l n o t u s i n g g a t e l o c k s
l e t s p e c i a l P h i l = ( read s p e c i a l S t r ) : : I n t
−− no more read−s t a t e m e n t s below .
l e t l o c k s = [ 1 . . numLocks ]
l e t c y c l e s = zipWith (\ i c −> Cycle ( ” z ”++show i ) c ) [ 1 . . ] ( c y c l e I n f o numLocks

numLocks )
putStrLn $ ” /∗ g e n e r a t e d t h r o u g h : . / MkPhi ls ” ++ ( concat $ i n t e r s p e r s e ” ” a r g s

) ++ ” ∗ / ”
p reamble c y c l e s l o c k s
−− g e t a l l d e s i r e d ( l , r ) c o m b i n a t i o n s f o r p h i l s
l e t ( s p e c i a l : f i x e d : r e s t ) = cyc l eTo numLocks
−− Am I t h e s p e c i a l one who doesn ’ t need g a t e l o c k s ?
pS <− p h i l 1 c y c l e s (1 == s p e c i a l P h i l ) s p e c i a l
−− Am I t h e p h i l o s o p h e r who ” b r e a k s ” t h e c y c l e ? f i x p h i l =F a l s e w i l l c r e a t e

a n o t h e r ” min ion ” .
−− I f we have o n l y 2 p r o c e s s e s , don ’ t use gate−l o c k s .
pF <− p h i l 2 c y c l e s ( numLocks <= 2 | | 2 == s p e c i a l P h i l ) ( ( \ ( l , r ) −> i f f i x P h i l

then ( r , l ) e l s e ( l , r ) ) f i x e d )
−− Our m i n i o n s :
ps <− mapM (\ ( n , l r ) −> p h i l n c y c l e s ( n == s p e c i a l P h i l ) l r ) ( z i p [ 3 . . ] r e s t )
cMain ( pS : pF : ps )

−− F i l t e r o n l y ” c o r r e c t ” c y c l e s ( 1 , 2 −> 2 , . . −> . . . −> n , 1 ) .
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wf : : [ ( Int , I n t ) ] −> Bool
wf c@( ( hd , ) : ) = wf2 c

where
−− need t o remember t h e head p o s i t i o n f o r wrap−around
wf2 ( ( , x ) : ( y , b ) : [ ] ) = x == y && hd == b −− check i f c y c l e i s a c t u a l l y a

c y c l e
wf2 ( ( , x ) : r@ ( ( y , ) : ) ) = x == y && wf2 r

n e x t I n C y c l e : : I n t −> [ I n t ] −> [ ( Int , I n t ) ]
n e x t I n C y c l e c u r a l l o w e d = [ ( cur , a ) | a <− a l lowed , a /= c u r ]

−− Doesn ’ t g e n e r a t e ” t r u e ” c y c l e s , need t o f i l t e r w i t h ‘ wf ‘ .
a l l C y c l e s : : I n t −> I n t −> [ [ ( Int , I n t ) ] ]
a l l C y c l e s c n t n
| n > c n t = error ”Can ’ t have l o n g e r c y c l e s t h a n number o f l o c k s ! ”
| n == 1 = concat $ f o l d r (\ cs s −> (map (\c@( , t o ) −> [ c ] ) c s ) : s ) [ ] [ f i l t e r

(\ ( l , r ) −> l /= r ) $ n e x t I n C y c l e i [ 1 . . c n t ] | i <− [ 1 . . c n t ] ]
| o t h e r w i s e = concatMap ( (\c@( ( hd , ) : ) −> l e t ( , t l ) = l a s t c in [ c ++[ n i c ] |

n i c <− n e x t I n C y c l e t l [ 1 . . c n t ] ] ) ) ( a l l C y c l e s c n t ( n−1) )

a l l C y c l e s U p t o : : I n t −> I n t −> [ [ ( Int , I n t ) ] ]
a l l C y c l e s U p t o c n t l e n = concat [ f i l t e r wf ( a l l C y c l e s c n t l ) | l <− [ 2 . . l e n ] ]

c y c l e I n f o : : I n t −> I n t −> [ C y c l e I n f o ]
−− maximum c y c l e l e n g t h = # o f l o c k s
−− s t i l l c o n t a i n s d u p l i c a t e s , so need t o nub
c y c l e I n f o p h i l s l o c k s = Data . L i s t . nub $ map Data . Map . f r o m L i s t $ map ( uncurry z i p )

[ ( p , c ) | p <− ( p e r m u t a t i o n s [ 1 . . p h i l s ] ) , c <− ( a l l C y c l e s U p t o l o c k s l o c k s ) ]

p reamble : : [ Cycle ] −> [ I n t ] −> IO ( )
p reamble zs l o c k s = do

putStrLn ” # i n c l u d e <p t h r e a d . h>”
putStrLn ” # i n c l u d e <s t d i o . h>”
putStrLn ” ”
putStrLn $ ” p t h r e a d m u t e x t ”++ concat ( i n t e r s p e r s e ” , ” (map (\ ( Cycle n ) −> ”

g a t e ”++n ) zs ) ) ++” = PTHREAD MUTEX INITIALIZER ; ”
mapM (\ l −> putStrLn $ ” p t h r e a d m u t e x t mutex ” ++( show l ) ++” =

PTHREAD MUTEX INITIALIZER ; ” ) l o c k s
putStrLn $ ” i n t ” ++ concat ( i n t e r s p e r s e ” , ” (map (\ ( Cycle n ) −> n ) z s ) ) ++ ”

; ”
putStrLn ” ”

data P h i l = P h i l I n t ( S e t RaceVar ) S t r i n g d e r i v i n g ( Show )

p h i l : : I n t −> [ Cycle ] −> Bool −> ( Int , I n t ) −> IO P h i l
p h i l i cyc s g a t e d ( l , r ) = do

putStrLn $ ” vo id ∗ p h i l ” ++( show i ) ++” ( vo id ∗ a r g ) {”
putStrLn $ ” w h i l e ( 1 ) { p t h r e a d m u t e x l o c k (&mutex ” ++( show l ) ++” ) ; ”
−− Kalmer s u g g e s t s t o a v o i d a d d i t i o n t o speed up t h i n g s here :
l e t ( zs , g a t e s ) = f o l d r (\ ( Cycle z cs ) old@ ( ozs , o u t ) −> l e t r a c e A c c e s s = ” ”++z

++” =1; / / RACE! ”
in maybe o l d (\ ( have , want ) −> i f ( have == l

&& want == r )
then ( Data . S e t . i n s e r t z ozs , ( i f g a t e d

then r a c e A c c e s s
e l s e ” p t h r e a d m u t e x l o c k (& g a t e

”++z++” ) ;\ n ”++ r a c e A c c e s s ++”\
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n p t h r e a d m u t e x u n l o c k (&
g a t e ”++z++” ) ; ” ) : o u t )

e l s e o l d ) ( Data . Map . lookup i c s ) ) ( Data .
S e t . empty , [ ] ) cycs

mapM putStrLn g a t e s
putStrLn $ ” p t h r e a d m u t e x l o c k (&mutex ” ++( show r ) ++” ) ; ”
putStrLn $ ” p t h r e a d m u t e x u n l o c k (&mutex ” ++( show l ) ++” ) ; ”
putStrLn $ ” p t h r e a d m u t e x u n l o c k (&mutex ” ++( show r ) ++” ) ; ”
putStrLn $ ” }”
putStrLn ”}”
hPutStrLn s t d e r r $ show ( i , Data . S e t . s i z e zs )
re turn $ P h i l i z s ( ” p h i l ” ++ ( show i ) )

cMain : : [ P h i l ] −> IO ( )
cMain ps = do

putStrLn ” i n t main ( vo id ) {”
putStrLn $ ” p t h r e a d t ” ++ concat ( i n t e r s p e r s e ” , ” (map (\ ( P h i l i z s n ) −> ”

i d ”++n ) ps ) ) ++ ” ; ”
mapM (\ ( P h i l i z s n ) −> do

putStrLn $ ” p t h r e a d c r e a t e (& i d ”++n++” , NULL, ”++n++” , NULL) ; ” ) ps
putStrLn ” r e t u r n 0 ; ”
putStrLn ”}”

Appendix A.2. Generated Philosophers (C)
Three philosophers, “instantiated” body, with gatelocks, instrumented for all

possible 54 cycles. Observe how after applying the transformation it becomes
obvious that only the cycle represented by race variable z7 can actually occur, as
it is the only variable reference by more than a single process.
/∗ g e n e r a t e d t h r o u g h : . / MkPhi ls 3 F a l s e 1 ∗ /
# i n c l u d e <p t h r e a d . h>
# i n c l u d e <s t d i o . h>

p t h r e a d m u t e x t ga t ez1 , ga t ez2 , ga t ez3 , ga t ez4 , ga t ez5 , ga t ez6 , ga t ez7 , ga t ez8 , ga t ez9 ,
ga t ez10 , ga t ez11 , ga t ez12 , ga t ez13 , ga t ez14 , ga t ez15 , ga t ez16 , ga t ez17 , ga t ez18 ,
ga t ez19 , ga t ez20 , ga t ez21 , ga t ez22 , ga t ez23 , ga t ez24 , ga t ez25 , ga t ez26 , ga t ez27 ,
ga t ez28 , ga t ez29 , g a t e z 3 0 = PTHREAD MUTEX INITIALIZER ;

p t h r e a d m u t e x t mutex1 = PTHREAD MUTEX INITIALIZER ;
p t h r e a d m u t e x t mutex2 = PTHREAD MUTEX INITIALIZER ;
p t h r e a d m u t e x t mutex3 = PTHREAD MUTEX INITIALIZER ;
i n t z1 , z2 , z3 , z4 , z5 , z6 , z7 , z8 , z9 , z10 , z11 , z12 , z13 , z14 , z15 , z16 , z17 , z18 , z19 , z20 , z21 ,

z22 , z23 , z24 , z25 , z26 , z27 , z28 , z29 , z30 ;

void ∗ p h i l 1 ( void ∗ a r g ) {
p t h r e a d m u t e x l o c k (&mutex1 ) ;
z1 =1; / / RACE!
z7 =1; / / RACE!
z17 =1; / / RACE!
z27 =1; / / RACE!
p t h r e a d m u t e x l o c k (&mutex2 ) ;
p t h r e a d m u t e x u n l o c k (&mutex1 ) ;
p t h r e a d m u t e x u n l o c k (&mutex2 ) ;
re turn NULL;
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}
void ∗ p h i l 2 ( void ∗ a r g ) {

p t h r e a d m u t e x l o c k (&mutex2 ) ;
p t h r e a d m u t e x l o c k (& g a t e z 6 ) ;
z6 =1; / / RACE!
p t h r e a d m u t e x u n l o c k (& g a t e z 6 ) ;
p t h r e a d m u t e x l o c k (& g a t e z 7 ) ;
z7 =1; / / RACE!
p t h r e a d m u t e x u n l o c k (& g a t e z 7 ) ;
p t h r e a d m u t e x l o c k (& g a t e z 1 6 ) ;
z16 =1; / / RACE!
p t h r e a d m u t e x u n l o c k (& g a t e z 1 6 ) ;
p t h r e a d m u t e x l o c k (& g a t e z 2 4 ) ;
z24 =1; / / RACE!
p t h r e a d m u t e x u n l o c k (& g a t e z 2 4 ) ;
p t h r e a d m u t e x l o c k (&mutex3 ) ;
p t h r e a d m u t e x u n l o c k (&mutex2 ) ;
p t h r e a d m u t e x u n l o c k (&mutex3 ) ;
re turn NULL;

}
void ∗ p h i l 3 ( void ∗ a r g ) {

p t h r e a d m u t e x l o c k (&mutex3 ) ;
p t h r e a d m u t e x l o c k (& g a t e z 7 ) ;
z7 =1; / / RACE!
p t h r e a d m u t e x u n l o c k (& g a t e z 7 ) ;
p t h r e a d m u t e x l o c k (& g a t e z 1 3 ) ;
z13 =1; / / RACE!
p t h r e a d m u t e x u n l o c k (& g a t e z 1 3 ) ;
p t h r e a d m u t e x l o c k (& g a t e z 2 3 ) ;
z23 =1; / / RACE!
p t h r e a d m u t e x u n l o c k (& g a t e z 2 3 ) ;
p t h r e a d m u t e x l o c k (& g a t e z 2 9 ) ;
z29 =1; / / RACE!
p t h r e a d m u t e x u n l o c k (& g a t e z 2 9 ) ;
p t h r e a d m u t e x l o c k (&mutex1 ) ;
p t h r e a d m u t e x u n l o c k (&mutex3 ) ;
p t h r e a d m u t e x u n l o c k (&mutex1 ) ;
re turn NULL;

}
i n t main ( void ) {

p t h r e a d t i d p h i l 1 , i d p h i l 2 , i d p h i l 3 ;
p t h r e a d c r e a t e (& i d p h i l 1 , NULL, p h i l 1 , NULL) ;
p t h r e a d c r e a t e (& i d p h i l 2 , NULL, p h i l 2 , NULL) ;
p t h r e a d c r e a t e (& i d p h i l 3 , NULL, p h i l 3 , NULL) ;
re turn 0 ;

}
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