
UNIVERSITY OF OSLO
Department of Informatics

Estimating
Resource Bounds
for Software
Transactions

Research Report No.
414 (revised)

Thi Mai Thuong
Tran, Martin
Steffen, and Hoang
Truong

ISBN 82-7368-376-1
ISSN 0806-3036

Feb 2013

This is a revised version of the technical report. We are indepted to the anonymous reviewers
of earlier versions for their thorough reviews and suggestions, which has lead to extensions of the
formalization and the proofs.

3

Compositional Static Analysis for
Multithreaded Transactions with Join Synchronization

Thi Mai Thuong Tran1, Martin Steffen1, and Hoang Truong2

1 Department of Informatics, University of Oslo, Norway
2 University of Engineering and Technology, VNU Hanoi

Abstract. We present an effect-based static analysis to calculate upper and lower bounds
on multithreaded and nested transactions as measure for the resource consumption in an
execution model supporting implicit join synchronization. The analysis is compositional and
takes into account implicit join synchronizations that arise when more than one thread jointly
commit a transaction. Central for a compositional and precise analysis is to capture as part
of the effects a tree-representation of the future resource consumption and synchronization
points (which we call joining commit trees). The analysis is formalized for a concurrent
variant of Featherweight Java extended by transactional constructs. We show the soundness
of the analysis.

1 Introduction

Software Transactional Memory (STM) [22,11] has recently been introduced to concurrent pro-
gramming languages as an alternative for lock-based synchronization, enabling an optimistic form
of synchronization for shared memory. Nested and multi-threaded transactions are advanced fea-
tures of recent transactional models. Multi-threaded transactions means that inside one transac-
tion there can be more than one thread running in parallel. Nesting of transactions means that a
parent transaction may contain one or more child transactions which must commit before their
parent. Additionally, if a transaction commits, all threads spawned inside must join via a commit.
To achieve isolation, each transaction operates via reads and writes on its own local copy of the
memory, called log. It is used to record these operations to allow validation or potentially roll-
backs at commit time. The logs are a critical factor of memory resource consumption of STM.
As each transaction operates on its own log of the variables it accesses, a crucial factor in the
memory consumption is the number of thread-local transactional memories (i.e., logs) that may
co-exist at the same time in parallel threads. Note that the number of logs neither corresponds to
the number of transactions running in parallel (as transactions can contain more than one thread)
nor to the number of parallel threads, because of the nesting of transactions. A main complication
is that parallel threads do not run independently; instead, executing a commit in a transaction may
lead to a form of implicit join synchronization with other threads inside the same transaction.

In this paper, we develop a type and effect system for statically approximating the resource
consumption in terms of the maximum number of logs of a program. It can be more generally
understood as a compositional static analysis of a concurrency model with implicit join synchro-
nization. For the concrete formulation of the analysis, we use a variant of Featherweight Java
extended with transactional constructs known as Transactional Featherweight Java (TFJ) [18].
The language features non-lexical starting and ending a transaction, concurrency, choice and se-
quencing. The analysis is compositional, i.e., syntax-directed. The analysis is multi-threaded in

http://www.ifi.uio.no
http://www.uio.no
http://uet.vnu.edu.vn

that, due to synchronization, it does not analyze each thread in isolation, but needs to take their
interaction into account. This complicates the effect system considerably, as the synchronization
is implicit in the use of commit-statements and connected to the nestedness of the transactions.
To our knowledge, the issue of statically and compositionally estimating the memory resource
consumption in such a setting has not been addressed.

The rest of the paper is structured as follows. Section 2 starts by illustrating the execution
model and sketching the technical challenges in the design of the effect system. Section 3 intro-
duces the syntax and operational semantics. Section 4 presents an effect system for estimating the
resource consumption. The soundness of the analysis is sketched in Section 5. We conclude in
Section 6 with related and future work.

2 Compositional analysis of implicit join synchronization

We start by sketching the concurrency model with nested and multi-threaded transactions. The
consequences for a compositional analysis of the memory resource consumption are presented
informally and by way of examples.

Example 1 (Joining commits). Consider the following (contrived) code snippet.

1 o n a c i d ; / / t h r e a d 0 (main t h r e a d)
2 o n a c i d ;
3 spawn (e1 ; commit ; commit) ; / / t h r e a d 1
4 o n a c i d ;
5 spawn (e2 ; commit ; commit ; commit) ; / / t h r e a d 2
6 commit ;
7 e3
8 commit ;
9 e4 ;

The main expression of thread 0 spawns two new threads 1 and 2. The onacid-statement
expresses the start of a transaction and commit the end. Hence, thread 1 starts its execution at a
nesting depth of 2 and thread 2 at depth 3. See also Fig. 1a, where the values of n represent the
nesting depth of open transactions at different points in the main thread. We often write in the
illustrations and examples [and] for starting resp. committing a transaction. Note that e.g. thread
1 is executing inside the first two transactions started by its parent thread and that it uses two
commits (after e1) to close those transactions. Important is that parent and child thread(s) commit
an enclosing transaction at the same time, i.e., in a form of join synchronization. We call an occur-
rence of a commit-statement which synchronizes in that way a joining commit. Fig. 1b makes the
nesting of transactions more explicit and the right-hand edge of the corresponding boxes marks
the joining commits. E.g., e2 and e3 cannot execute in parallel since e2 is sequentialized by a
joining commit before e3 starts. If the child thread, say in e1, starts its own transactions (nested
inside the surrounding ones), e.g., if e1 = [; [; [;] ;] ;], then these three commits are no joining
commits. ut

Our goal is a compositional, static worst-case estimation of memory resource consumption
for the sketched execution model. To achieve isolation, an important transactional property, each
thread operates on a local copy of the needed memory which is written back to global mem-
ory when and if the corresponding transaction commits; that thread-local and transactional-local
memory is called log. We measure the resource consumption at a given point by the number of
logs co-existing at the same time. This ignores that different logs have different memory needs

5

[[[] e3] e4

e1]]

e2]]]

5+3+7
5+7+2

thread0

thread1

thread2

n = 0 n = 2 n = 3 n = 1

(a)

[[[] e3] e4

e1]]

e2]]]

[[[] e3] e4

e1]]

e2]]]

(b)

Fig. 1: Nested, multi-threaded transactions and join synchronization

(e.g., accessing more variables transactionally). Abstracting away from this difference, we con-
centrate on the synchronization and nesting structure underlying the concurrency model. A more
fine-grained estimation of resource consumption per log is an orthogonal issue and the corre-
sponding refinement can be incorporated. The refinement would be based on a conservative es-
timation of the memory consumption per individual transaction, which in turn depends on the
resource consumption per variable used in the transaction and potentially, dependent on the trans-
actional model, how many times variables are accessed.

Example 2 (Resource consumption). In Example 1, assume that e1 opens and closes three nested
transactions (i.e., is of the form [. . . [. . . [. . .] . . .] . . .] . . .), e2 four, e3 five, and e4 six. The resource
consumption after spawning e2’s thread and before the subsequent commit is at most 15 = 5 +
3+7 (at the left vertical line): the main thread executes inside three transactions, thread 1 inside
five (3 from e1 plus 2 “inherited” from the parent), and thread 2 inside 7. At the point when thread
0 executes e3, i.e., after its first commit, the worst case is 14 = 5+7+2. Note that e2 cannot run
in parallel with e3 whereas e1 can: the commit before e3 synchronizes with the commit after e2
which sequentializes their execution. Thus e1 still contributes 5, e2 contributes only 2, and the
main thread of e3 contributes 7 (i.e, 5 from e3 and 2 from the enclosing transactions). ut

To be scalable and thus usable in practice, the analysis should be compositional. This syntax-
directedness is common for type/effect-based analyses. Here, the analysis needs to cope with
parallelism and synchronization. In principle, the resource consumption of a sequential compo-
sition e1;e2 is approximated by the maximum of consumption of its constituent parts. For e1 and
e2 running (independently) in parallel, the consumption of e1 ‖ e2 is approximated by the sum of
the respective contributions. The challenges in our setting are:

Multi-threaded analysis: due to joining commits, threads running in parallel do not necessarily
run independently and a sequential composition spawn e1;e2 does not sequentialize e1 and e2.
They may synchronize, which introduces sequentialization, and to be precise, the analysis must
be aware of which program parts can run in parallel and which cannot. Assuming independent
parallelism would allow us to analyze each thread in isolation. Such a single-threaded analysis
would still yield a sound over-approximation, but would be too imprecise.

6

Implicit synchronization: Compositional analysis is rendered intricate as the synchronization is
not explicitly represented syntactically. In particular, there is no clean syntactic separation be-
tween sequential and parallel composition. E.g., writing (e1 ‖ e2);e3 would make the sequential
separation of e1 ‖ e2 from e3 explicit and would make a compositional analysis straightforward.
Here instead, the sequentialization constraints are entailed by joining commits and it’s not ex-
plicitly represented with which other threads, if any, a particular commit should synchronize.

Thus, the model has neither independent parallelism nor full sequentialization, but synchroniza-
tion is affected by the nesting structure of the multi-threaded transactions. It should be clear that
one would (more) easily obtain a sound resource estimation assuming independent paralellism.
Ignoring those synchronization points, however, would entail a loss of precision. For instance,
without taking the joining commits into account, i.e., igoring that their respective maximal values
cannot occur at the same time, the resource consumption in Example 2 would have to be overap-
proximated by the sum of the maximal resource consumption of the 3 involved threads, yielding
19.

Example 3. Let us split the code of Example 1 after the first spawn, i.e., at the semicolon at the
end of line 3 to analyze the two parts, say el and er independently. Writing m for the effect that
over-approximates the memory consumption, a rule for sequential composition could resemble
the following:

` el :: m1 ` er :: m2 m = f (m1,m2)

` el ;er :: m

In the schematic rule, ` e :: m is read as “expression e has effect m as interface specification”.
For compositionality, the “interface” information captured in the effects must be rich enough
such that m in the conclusion can be calculated from m1 and m2. Especially, the upper bound
of the overall resource consumption, i.e., the value we are ultimately interested in, is in itself
non-compositional. Consider Fig. 2, which corresponds to Fig. 1a except that we separated the
contributions of el and er (by the surrounding boxes). As the execution of el partly occurs be-
fore er and partly in parallel, m1 must distinguish the sequential and the parallel contribution of
e1, i.e., the contribution of the spawned thread. Moreover, the parallel part of m1 is partly syn-
chronized with er by joining commits, and thus the effects must contain information about the
corresponding synchronization points. Ultimately, the judgments of the effect system use a six-
tuple of information that allows a compositional analysis of sequential and parallel composition

[[[] e3] e4

e1]]

e2]]]

el

er

;

Fig. 2: Compositional analysis (sequential composition el ;er)

7

P ::= 0 | P ‖ P | p〈e〉 processes/threads
L ::= class C{~f :~T ;K; ~M} class definitions
K ::= C(~f : ~T){this.~f := ~f} contructors
M ::= m(~x:~T){e} : T methods
e ::= v | v. f | v. f := v |if v then e else e
| let x:T = e in e | v.m(~v) expressions
| new C(~v) | spawn e | onacid | commit

v ::= r | x | null values

Table 1: Abstract syntax

(plus the other language constructs). A central part of the effect system to achieve compositional
analysis is a tree-representation of the future resource consumption and joining commits, which
we call jc-trees. ut

3 A transactional calculus

Next we present the syntax and semantics of TFJ. We have chosen this calculus as the vehicle for
our investigation, as it supports a quite expressive transactional concurrency model, and secondly,
it allows us to present the formal semantical analysis in a concise manner. Note, however, that the
core of our analysis, i.e., a compositional analysis of concurrent threads with join-synchronization
does not depend on the concrete choice of language. TFJ as presented here is, with some adap-
tations, taken from [18]. The main adaptations, as in [19], are: we added standard constructs
such as sequential composition (in the form of the let-construct) and conditionals. Besides that,
we did not use evaluation-context based rules for the operational semantics, which simplifies the
analysis. The underlying type system (without the effects) is standard and omitted here.

3.1 Syntax

FJ is a core language originally introduced to study typing issues related to Java, such as inheri-
tance, sub-type polymorphism. A number of extensions have been developed for other language
features, so FJ is today a generic name for Java-related core calculi. Following [18] and in contrast
to the original FJ proposal, we ignore inheritance, subtyping, and type casts, as these features are
orthogonal to the issues at hand, but include imperative features such as destructive field updates,
further concurrency and transactions.

Table 1 shows the abstract syntax of TFJ. A program consists of a number of processes/threads
p〈e〉 running in parallel, where p is the thread’s identifier and e the expression being executed.
The empty process is written 0. The syntactic category L captures class definitions. In absence of
inheritance, a class class C{~f :~T ;K; ~M} consists of a name C, a list of fields ~f with corresponding
type declarations ~T (assuming that all fi’s are different), a constructor K, and a list ~M of method
definitions. A constructor C(~f :~T){this.~f := ~f} of the corresponding class C initializes the fields
of instances of that class, these fields are mentioned as the formal parameters of the constructor.
We assume that each class has exactly one constructor, i.e., we do not allow constructor over-

8

loading. Similarly, we assume that all methods defined in a class have a different name; likewise
for fields. A method definition m(~x:~T){e} : T consists of the name m of the method, the formal
parameters ~x with their types ~T , the method body e, and finally the return type T of the method.
Here the vector notation is used analogously to the vector ~f which presents a list of fields. The
vector ~T represents a sequence of types, ~x stands for a sequence of variables. When writing ~x:~T
we assume that the length of ~x corresponds to the length of ~T , and we refer by xi : Ti to the i’th
pair of variable and type. For brevity, we do not make explicit or formalize such assumptions,
when they are clear from the context.

In the syntax, v stands for values, i.e., expressions that can no longer be evaluated. In the core
calculus, we implicitly assume standard values like booleans, integers, . . . ; besides those, values
can be object references r, variables x or null. The expressions v. f and v1. f := v2 represent field
access and field update respectively. Method calls are written v.m(~v) and object instantiation is
new C(~v). The next two expressions deal with the basic, sequential control structures: if v then
e1 else e2 represents conditions, and the let-construct let x:T = e1 in e2 represents sequential
composition: first e1 is evaluated, and afterwards e2, where the eventual value of e1 is bound
to the local variable x. Consequently, standard sequential composition e1;e2 is syntactic sugar
for let x:T = e1 in e2 where the variable x does not occur free in e2. The let-construct, as
usual, binds x in e2. We write fv(e) for the free variables of e, defined in the standard way. The
language is multi-threaded: spawn e starts a new thread of activity which evaluates e in parallel
with the spawning thread. Specific for TFJ are the two dual constructs onacid and commit.
The expression onacid starts a new transaction and executing commit successfully terminates a
transaction by committing its effect, otherwise the transaction will be rolled back or aborted. In
case of multiple threads inside the same transaction, all threads perform a join synchronization
when committing the transaction.

A note on the form of expressions and the use of values may be in order. The syntax is re-
stricted concerning where to use general expressions e. E.g., Table 1 does not allow field updates
e1. f := e2, where the object whose field is being updated and the value used in the right-hand side
are represented by general expressions that need to be evaluated first. It would be straightforward
to relax the abstract syntax that way and indeed the proposal of TFJ from [18] allows such more
general expressions. We have chosen this presentation, as it slightly simplifies the operational
semantics and the (presentation of the) type and effect system later: [18] specifies the operational
semantics using so-called evaluation contexts, which fixes the order of evaluation in such more
complex expressions. With that slightly restricted representation, we can get away with a seman-
tics without evaluation contexts, using simple rewriting rules (and the let-syntax). Of course, this
is not a real restriction in expressivity. E.g., the mentioned expression e1. f := e2 can easily and
be expressed by let x1 = e1 in (let x2 = e2 in x1. f := x2), making the evaluation order explicit.
The transformation from the general syntax to the one of Table 1 is standard. For a thread spawned
inside a transaction, we impose the following restriction: after a joining commit with its parent,
the child thread is not allowed to start another transaction. This restriction is imposed to simplify
the analysis later and is not a real restriction in practice as one can transform programs easily to
adhere to that convention (at the expense of spawning further threads).

3.2 Semantics

The operational semantics of TFJ is given in two different levels: a local and a global one. The
local semantics of Table 2 deals with the evaluation of one expression/thread and reducing con-

9

figurations E ` e. Local transitions are thus of the form

E ` e−→ E ′ ` e′ , (1)

where e is one expression and E a local environment. Note that in the chosen presentation, the ex-
pression starts uniformly with a let and the redex is always the left expression of the let construct.
Locally, the relevant commands only concern the current thread and consist of reading, writing,
invoking a method, and creating new objects.

Definition 1 (Local environment). A local environment E of type LEnv is a finite sequence of
the form l1:ρ1, . . . , lk:ρk, i.e., of pairs of transaction labels li and a corresponding log ρi. We write
|E| for the size of the local environment, i.e., the number of pairs l:ρ in the local environment.

Transactions are identified by labels l, and as transactions can be nested, a thread can execute
“inside” a number of transactions. So, the E in the above definition is ordered, where e.g. lk to
the right refers to the inner-most transaction, i.e., the one most recently started and committing
removes bindings from right to left. For a thread with local environment E, the number |E| rep-
resents the nesting depth of the thread, i.e., how many transactions the thread has started but not
yet committed. The corresponding logs ρi can be thought of as “local copies” of the heap. The
log ρi, a sequence of mappings from references to values, is used to keep track of changes by a
thread in transaction li. The exact structure of such environments and the logs have no influence
on our static analysis, and indeed, the environments may be realized in different ways (e.g., [18]
gives two different flavors, a “pessimistic”, lock-based one and an “optimistic” one).

The operational rules are formulated exploiting the let-construct/sequential composition, and
the restricted form of (abstract) syntax. The syntax for the conditional construct from Table 1,
e.g., insists that the boolean condition is already evaluated (i.e., either a boolean value or val-
ue/reference to such a value), and the R-COND-rules apply when the previous evaluation has
yielded already true, resp. false.

We use the let-construct to unify sequential composition, local variables, and handing over
of values in a sequential composition, and rule R-LET basically expresses associativity of the
sequential composition, i.e., ignoring the local variable declarations, it corresponds to a step from
(e1;e);e′ to e1;(e;e′). Note further that the left-hand side for all local rules (and later the global
ones) insists that the top-level construct is a let-construct. That is assured during run-time induc-
tively by the form of the initial thread and the restriction on our syntax.

The first two rules deal with the basic evaluation based on substitution and specifying a left-
to-right evaluation (cf.R-RED and R-LET). The two R-COND-rules deal with conditionals in an
obvious way. Unlike the first four rules, the remaining ones do access the heap. Thus, in the
premises of these rules, the local environment E is consulted to look up object references and
then changed in the step. The access and update of E is given abstractly by corresponding access
functions read, write, and extend (which look-up a reference, update a reference, resp. allocate
a new reference on the heap). Note that also the read-function actually changes the environment
from E to E ′ in the step. The reason is that in a transaction-based implementation, read-access to
a variable may be logged, i.e., remembered appropriately, to be able to detect conflicts and to do a
roll-back if necessary. The premises assume that the class table is given implicitly where fields(C)
looks up fields of class C and mbody(C,m) looks up the method m of class C. So, field look-up
in R-FIELD works as follows: consulting the local environment E, the read-function looks up the
object referenced by r; the object is C(~u), i.e., it’s an instance of class C, and its fields carry the

10

values ~u. The (run-time) type C of the object is further used to determine the fields ~f , using the
object referenced by r, where fields finds the fields of the object referenced by r, and the step
replaces the field access r. fi by the corresponding value ui. Field update in rule R-UPD works
similarly, again using read to look up the objects, and additionally using write to write the value
r′ back into the local environment, thereby changing E ′ to E ′′ (again, the exact details of the
function are left abstract).

The function mbody in the rule R-CALL for method invocation gives back the method’s formal
parameters ~x and the method body, and invocation involves substituting ~x by the actual parame-
ters ~r and substituting this by the object’s identity r. Rule R-NEW, finally, takes care of object
creation, using a fresh object identity r to refer to the new instance C(~null), which has all fields
initialized to null. The function extend in that rule extends E by binding the fresh reference r to
the newly created instance.

E `let x : T = v in e−→ E ` e[v/x] R-RED

E `let x2 : T2 = (let x1 : T1 = e1 in e) in e′ −→ E `let x1 : T1 = e1 in (let x2 : T2 = e in e′) R-LET

E `let x : T = (if true then e1 else e2) in e−→ E `let x : T = e1 in e R-COND1

E `let x : T = (if false then e1 else e2) in e−→ E `let x : T = e2 in e R-COND2

read(E,r) = E ′,C(~u) fields(C) = ~f
R-LOOKUP

E `let x:T = r. fi in e−→ E ′ `let x:T = ui in e

read(E,r) = E ′,C(~r) fields(C) = ~f
write(r 7→ (C(~r)[fi 7→r′]),E ′) = E ′′

R-UPD

E `let x:T = r. fi := r′ in e−→ E ′′ `let x:T = r′ in e

read(E,r) = E ′,C(~u) mbody(C,m) = (~x,e)
R-CALL

E `let x:T = r.m(~r) in e′ −→ E ′ `let x : T = e[~r/~x][r/this] in e′

r fresh E ′ = extend(r 7→C(~u),E)
R-NEW

E `let x:T =newC(~u) in e−→ E ′ `let x = r in e

Table 2: Semantics (local)

The rules of the global semantics are given in Table 3. The semantics works on configurations
of the form

Γ ` P , (2)

, where P is a program and Γ is a global environment. Besides that, we need a special configu-
ration error representing an error state. Basically, a program P consists of a number of threads
evaluated in parallel (cf. Table 1), where each thread corresponds to one expression, whose evalu-
ation is described by the local rules. Now describing the behavior of a number of (labeled) threads
or processes p〈e〉, we need one E for each thread p. This means, Γ is a “sequence” (or rather a
set) of p:E bindings where p is the name of a thread and E is its corresponding local environment.

Definition 2 (Global enviroment). A global environment Γ of type GEnv is a finite mapping,
written as p1:E1, . . . , pk:Ek, from threads names pi to local environments Ei (the order of bindings
plays no role, and each thread name can occur at most once).

So global steps are of the form:

Γ ` P =⇒ Γ
′ ` P′ or Γ ` P =⇒ error . (3)

11

Γ ` p : E E ` e−→ E ′ ` e′ reflect(p,E ′,Γ) = Γ ′

G-PLAIN

Γ ` P ‖ p〈e〉=⇒ Γ
′ ` P ‖ p〈e′〉

p′ fresh spawn(p, p′,Γ) = Γ ′

G-SPAWN

Γ ` P ‖ p〈let x : T = spawn e1 in e2〉=⇒ Γ
′ ` P ‖ p〈let x : T = null in e2〉 ‖ p′〈e1〉

l fresh start(l, p,Γ) = Γ ′

G-TRANS

Γ ` P ‖ p〈let x : T = onacid in e〉=⇒ Γ
′ ` P ‖ p〈let x : T = null in e〉

Γ = Γ ′′, p:E E = E ′, l:ρ intranse(Γ , l) = ~p = p1 . . . pk

commit(~p,~E,Γ) = Γ ′ p1:E1, p2:E2, . . . pk :Ek ∈ Γ ~E = E1,E2, . . . ,Ek
G-COMM

Γ ` P ‖ . . . ‖ pi〈let x : Ti = commit in ei〉 ‖ . . . =⇒ Γ
′ ` P ‖ . . . ‖ pi〈let x : Ti = null in ei〉 ‖ . . .

Γ = Γ ′′, p:E E = /0
G-COMM-ERROR

Γ ` P ‖ p〈let x : T = commit in e〉=⇒ error

Table 3: Semantics (global)

Also the global steps make use of a number of functions accessing and changing the (this time
global) environment. As before, some semantical functions are left abstract. However, their ab-
stract properties relevant for proving soundness of our analysis are given later in Definition 3 after
discussing the global rules. Note further, that two specific implementations of those functions (an
optimistic and a pessimistic) have been given in [18]. As the functions’ concrete details are ir-
relevant for our static analysis, we refer the interested reader to [18] for possible concretizations
of the semantics. Rule G-PLAIN simply lifts a local step to the global level, using the reflect-
operation, which roughly makes local updates of a thread globally visible; the premise Γ ` p:E
means p:E ∈ Γ . Rule G-SPAWN deals with starting a thread. The next three rules treat the two
central commands of the calculus, those dealing with the transactions. The first one G-TRANS
covers onacid, which starts a transaction. The start function creates a new label l in the local en-
vironment E of thread p. The two rules G-COMM and G-COMM-ERROR formalize the successful
commit resp. an errenous use of the commit-statement outside any transaction. In G-COMM, l is
the label of the transaction to be committed and the function intranse(Γ , l) finds the identities
p1, . . . , pk of all concurrent threads in the transaction l and which all join in the commit. In the
erroneous case of G-COMM-ERROR, the local environment E is empty; i.e., the thread executes
a commit outside of any transaction, which constitutes an error.

Definition 3. The properties of the abstract functions are specified as follows:

1. The function reflect satisfies the following condition: if reflect(p,E,Γ) = Γ ′ and Γ = p1:E1,
. . . , pk:Ek, then Γ ′ = p1:E ′1, . . . , pk:E ′k with |Ei|= |E ′i | (for all i).

2. The function spawn satisfies the following condition: Assume Γ = p:E,Γ ′′ and p′ /∈ Γ and
spawn(p, p′,Γ) = Γ ′, then Γ ′ = Γ , p′:E ′ s.t. |E|= |E ′|.

3. The function start satisfies the following condition: if start(l, pi,Γ) = Γ ′ for Γ = p1:E1, . . . ,
pi:Ei, . . . , pk:Ek and for a fresh l, then Γ ′ = p1:E1, . . . , pi:E ′i , . . . , pk:Ek, with |E ′i |= |Ei|+1.

4. The function intranse satisfies the following condition: Assume Γ = Γ ′′, p:E s.t. E = E ′, l:ρ
and intranse(Γ , l) = ~p, then

12

(a) p ∈ ~p and
(b) for all pi ∈ ~p we have Γ = . . . , pi : (E ′i , l:ρi),
(c) for all threads p′ with p′ /∈ ~p and Γ = . . . , p′:(E ′, l′:ρ ′), . . ., we have l′ 6= l.

5. The function commit satisfies the following condition: if commit(~p,~E,Γ) = Γ ′ for Γ = Γ ′′,
p:(E, l:ρ) and for a ~p = intranse(Γ , l) then Γ ′= . . . , p j:E ′j, . . . , pi:E ′i , . . . where pi ∈~p, p j /∈~p,
p j:E j ∈ Γ , with |E ′j|= |E j| and |E ′i |= |Ei|−1.

Definition 4. Let TrName be the type of transaction labels. Given a local environment E, the
function l : (LEnv→ List of TrName) is defined inductively as follows: l(ε) = ε , and l(l: ,E) =
l, l(E). Overloading the definition, we lift the function straightforwardly to global environments
(with type l : TName×GEnv→ List of TrName), s.t. l(p,(p:E),Γ) = l(E).

The first definition, extracting the list of transaction labels from a local environment E is a
straightforward projection, simply extracting the sequence of transaction labels. As for the order
of the transactions: As said, the most recent, the innermost transaction label is to the right. Given
a transaction, the following function determines the threads for which the given transaction is
(properly) “nested” in a global environment, i.e., those threads which execute inside the given
transaction but where the transaction is not the current, directly enclosing transaction.

Definition 5 (Nesting). Given a global environment, the function nested : TrName×GEnv→
List of TName returns the list of all threads nested inside a given transaction.

4 Effect system

Next we present our analysis as an effect system. The underlying types T include names C of
classes, basic types B (natural numbers, booleans, etc.) and Void. The underlying type system
for judgments of the form Γ ` e : T (“under type assumptions Γ , expression e has type T ”) is
standard and therefore omitted here.

Thread-local effects, sequential composition, and joining commits On the local level, the
judgments of the effect part are of the following form:

n1 ` e :: n2,h, l,~t,S , (4)

where n1, n2, h, and l are natural numbers with the following interpretation. n1 and n2 are the
pre- and post-condition for the expression e, capturing the current nesting depth: starting at a
nesting depth of n1, the depth is n2 after termination of e. We call the numbers n1 resp. n2 the
current balance of the thread before and after execution. Starting from the pre-condition n1, the
numbers h and l approximate the maximum resp., the minimum value of the balance during
the execution of e (the “highest” and the “lowest” balance during execution). The numbers so
far describe the balances of the thread executing e. Executing e, however, may spawn new child
threads and the remaining elements~t and S take their contribution into account. Roughly speaking,
the information S is needed to achieve compositionality wrt. sequential composition and~t for
compositionality wrt. parallel composition.

The S-part represents the resources of threads being spawned in e, more precisely their re-
source consumption after e. S is needed when considering e in a sequential composition with a

13

trailing expression. E.g., in the sequential composition of Figure 2, the S of the left expression
corresponds to the part of the left box which overlaps with the trailing expression on the right.
Depending on the nesting depth at the point of being spawned, a thread may or may not be syn-
chronized by a joining commit in the trailing expression. E.g., splitting the program of Figure
1a after the second spawn and before the first commit, this commit affects only the thread of
e2 but not the one of e1. To distinguish the two situations, S must contain, for each thread, the
thread’s nesting depth at the point it is spawned. Thus, S is of the form {(p1,c1),(p2,c2), . . .},
i.e., a multi-set of pairs of natural numbers. For all spawned threads, S keeps its maximal con-
tribution to the resource consumption at the point after e, i.e., (pi,ci) represents that the thread i
can have maximally a resource need of pi +ci, where pi represents the contribution of the spawn-
ing thread (“parent”), i.e., the nesting depth at the point when the thread is being spawned, and
ci the additional contribution of the child threads themselves. That reflects the fact that in the
operational semantics, a child thread is contained in the surrounding transactions and further-
more, the transactional log of the parent is copied into the newly spawned thread. In contrast,
~t is needed for compositionality wrt. parallel composition. The~t is a sequence of non-negative
numbers, representing the maximal, overall (“total”) resource consumption during the execution
of e, including the contribution of all threads (the current and the spawned ones) separated by
joining commits of the main thread. We call ~t a joining-commit sequence, or jc-sequence for
short. In Example 3, the right-hand expression [spawn (e2]]])]e3]e4 has one joining commit, i.e.,
the jc-sequence is of length 2. Assuming that the execution of the expression starts at nesting
depth 2 (as is the case at the end of the left-hand expression) the jc-sequence is~t = 10,7 (where
10 = ((4 + 3)+ 3)∨ ((5 + 2)+ 2) and 7 = 6 + 1). For uniformity, we use ∨ resp. ∧ not only for
the least upper bound resp. greatest lower bound in general, but also for the maximum, resp. the
minimum of natural numbers.

The rules for expressions are shown in Table 4. The rules for variables, the null reference, for
field look-up and field update, and for object instantiation are trivial, as they neither affect the bal-
ance nor is any other thread involved. Note that not “counting” the resource consumption of these
operations reflects the decision, as stated earlier, that we simply use the number of logs running in
parallel as measure for memory consumption. To achieve a more fine-grained model would mean
to add an appropriate estimation of memory consumption as non-trivial effect to those rules. The
estimation could be made dependent on the type of the value accessed, but the formulation is
orthogonal to the problems of synchronization and concurrency. Initiating a transaction (cf. rule
T-ONACID) increases the balance by one and accordingly the highest balance and the total sum,
whereas the minimum value stays constant. The committing in rule T-COMMIT similarly keeps
the maximal value constant. Considered in isolation, the commit is a joining commit, and hence
~t has two elements, where the resource consumption is decreased by one after the commit.

The treatment of sequential composition is more complicated, for the reasons explained in
Section 2. In particular, calculating the jc-sequence ~u and the parallel weight S for the composed
expression from the corresponding information in the premises is intricate. The following two
definitions formalize the necessary calculations:

Definition 6 (Parallel weight). Let S be a multi-set of the form {(p1,c1), . . . ,(pk,ck)} where the
pi, ci, and l are natural numbers. The overall parallel weight of S is defined as |S|= ∑i(pi + ci).
Furthermore we define the following functions:

par(S, l) = {(p,c) ∈ S | p≤ l} seq(S, l) = {(p,c) ∈ S | p > l} .
bScl = {(l,0),(l,0), . . .} S ↓l = par(S, l)∪bseq(S, l)cl

(5)

14

where for bScl , the number of tuples in S equals the number of (l,0) in bScl .

To determine S in T-LET, the spawned weight S1 of e1 is split into two halves(cf. Definition
6):

1. The part par(S1, l2) of S1 unaffected by a commit in e2 and thus able to run in parallel with e2.
2. The part seq(S1, l2) of S1 affected by a commit in e2 via a join synchronization.

The parallel weight S1 of e1 is a multi-set of pairs (pi,ci), one pair for each spawned thread,
where the first element pi of the pair represents the balance of the parent thread at the time of
the spawning, i.e., the nesting depth inherited from the parent thread. Whether the contribution
(pi,ci) of a thread spawned in e1 counts as being composed in parallel or affected by a join syn-
chronization with e2 depends on whether e2 does a commit which closes a transaction containing
the thread of (pi,ci). This distinction is based on comparing the inherited nesting depth pi with
the minimal balance l2 of e2. The par(S1, l2) consists of the half of S1 unaffected by any join
synchronization. Even if seq(S1, l2) in contrast synchronizes via joining commits in e2, it still
contributes to the resource consumption after e2, because transactions may be nested, and after
the joining synchronization, the rest of a spawned thread still consumes resources corresponding
to the not-yet-committed parent transactions. The operation bseq(S1, l2)cl2 calculates that remain-
ing contribution. So bS1cl2 contains the consumption after e1 of threads spawned during e1. In
the conclusion of T-LET, that estimation is added to e2’s own contribution S2 by multi-set union,
resulting in S1 ↓l2 ∪ S2 overall. The correctness of the calculation in T-LET depends on the re-
striction that once a spawned thread commits a transaction inherited from its parent thread, it
will not open another transaction. Note, however, that corresponds to the standard semantics of
the explicit join-construct, e.g., in Java, letting the caller wait for the termination of the thread it
intends to “join”.

Definition 7 (Sequential composition of jc-sequences-x). Let~s = s0, . . . ,sk,~t = t0, . . . , tm, and
m ≥ p ≥ 0. Then~s⊕p~t is defined as:~s⊕p~t = s0, . . . ,sk ∨ t0 . . .∨ tp, tp+1, . . . , tm. Given a parallel
weight S and a n ≥ m ≥ 0, then 5n is defined as S 5n~t = t ′0, t

′
1, . . . , t

′
m where t ′0 = t0 + |S|, t ′1 =

t1 + |bScn−1|, . . . , t ′m = tm + |bScn−m|.

The compositional calculation of the jc-sequence ~u (cf. Definition 7) takes care of two phe-
nomena: Firstly, the parallel weight S1 at the end of e1 may increase the resource consumption
of the jc-sequence~t. This is formalized by the 5 operation of Definition 7. Secondly, joining
commits of e2 may no longer be joining commits of the composed expression let x = e1 in e2.

l1

n1

s0 s1 s2 s3

(a)~s of e1

n2

t0 t1 t2 t3

(b)~s of e1

n2 n1

s0 s1 s2 s3 ∨ t0 ∨ t1 ∨ t2
p = n2− l1 = 2

t3

(c)~s⊕p~t of e1;e2

Fig. 3: Sequential composition of jc-sequences (cf. Definition 7)

15

T-VAR

n ` x :: n,n,n, [n], /0
T-REF

n ` r :: n,n,n, [n], /0
T-NULL

n ` null:: n,n,n, [n], /0
T-LOOKUP

n ` v. f :: n,n,n, [n], /0

T-UPD

n ` v1. fi := v2 :: n,n,n, [n], /0
T-NEW

n ` newC :: n,n,n, [n], /0

T-ONACID

n ` onacid:: n+1,n+1,n, [n+1], /0

n≥ 1
T-COMMIT

n ` commit:: n−1,n,n−1, [n;n−1], /0

n1 ` e1 :: n2,h1, l1,~s,S1 n2 ` e2 :: n3,h2, l2,~t,S2

h = h1 ∨h2 l = l1 ∧ l2 p = n2− l1 S = S1 ↓l2 ∪S2 ~u =~s⊕p (S1 5n2
~t)

T-LET

n1 `let x:T = e1 in e2 :: n3,h, l,~u,S

n ` e1 :: n′,h1, l1,~s,S1 n ` e2 :: n′,h2, l2,~t,S2
T-COND

n ` if v then e1 else e2 :: n′,h1 ∨h2, l1 ∧ l2,~s∨~t,S1 tS2

n1 ` e :: 0,h,0,~s,S
T-SPAWN

n1 ` spawn e :: n1,n1,n1, [n1 + s0],S∪{(n1,h−n1)}

mtype(C,m) :: n′1→ n′2,h, l,~t,S n′1 ≤ n1 n = n1−n′1
T-CALL

n1 ` v.m(~v) :: n′2 +n,h+n, l +n,~t +n,S +n

Table 4: Effect system

For instance, in Example 3, the (only) joining commit of er (the one separating e3 from e4)
is no longer a joining commit of el ;er, as it cannot synchronize with anything outside the com-
posed expression. The calculation of the composed jc-sequence from the constituent ones as~s⊕p~t
“merges” an appropriate number of elements from~t (using ∨) depending on how many joining
commits disappear in the composition. This number p is given by n2− l1. See also the illustra-
tion in Fig. 3, where the respective joining commits are indicated by the vertical, dotted lines. So
in rule T-LET, the overall ~u is given as ~s⊕p (S1 5n2

~t). The calculation of the remaining effects
in T-LET is straightforward: given the balance n1 as pre-condition, the post-condition n2 of e1
serves as pre-condition for the subsequent e2, whose post-balance n3 gives the corresponding fi-
nal post-balance. The values h and l are calculated by the least upper bound, resp., the greatest
lower bound of the corresponding numbers of e1 and e2. The treatment of h, l, and of the current
balance is simple because the syntax of sequential composition reflects and separates the contri-
butions of e1 and e2. For the parallel contributions of e1 and e2, they are not necessarily separated
by the syntax: threads spawned in e1 can run in parallel with e2. In this case, the contributions
of e1 and e2 need to be treated additively as they may occur at the same time in the worst case.
If potential parallelism were the only relationship between the spawned threads of e1 and the
subsequent e2, the situation would still be comparatively simple. In the model of nested and con-
current transactions, however, threads do not run uncoordinated in parallel: A commit executed
by a thread spawned inside a transaction synchronizes via a join with the corresponding commit
of the spawning thread. This may lead to a sequentiality constraint between the effects of e1 and
e2 such that the overall effect is not calculated additively, by taking the corresponding least upper
bound. This kind of sequentiality concerning the effects of the spawned threads of e1 and the
effects of e2 are not reflected syntactically in the sequential composition let x = e1 in e2, which
makes the compositional treatment of the sequential composition complicated. The treatment of

16

conditionals in rule T-COND is comparatively simple, after having defined an appropriate order
on the jc-sequences and the parallel weights.

Definition 8 (Order). The order relation on jc-sequences (of equal length) ~s ≤~t is defined
pointwise and we write ~s∨~t for the corresponding least upper bound. For parallel weights,
the order S1 v S2 is defined as follows. For pairs of natural numbers and in abuse of nota-
tion, (p1,c1) v (p2,c2) iff p1 = p2 and c1 ≤ c2. Then for S1 = {(p1,c1), . . . ,(pk,ck)} and S2 =
{(p′1,c

′
1), . . . ,(p′k,c

′
k),(p′k+1,c

′
k+1), . . .}, S1 v S2 if (pi,ci) v (p′i,c

′
i), for all 1 ≤ i ≤ k. We write

S1 t S2 for the corresponding least upper bound of S1 and S2 wrt. v (cf. Lemma 1 which states
the existance of the least upper bound).

Lemma 1 (Least upper bound). The order relation v on parallel weight (Definition 8) has a
least upper bound.

Proof. Given S1 and S2. Given a natural number p, let Sp
1 be defined as the multi-set {(p,c) |

(p,c) ∈ S1}, and analogously for Sp
2 . Given a fixed p, assume that both multisets Sp

1 and Sp
2 are

ordered decreasingly, i.e., Sp
1 = {(p,c1), . . . ,(p,ck)} such that (p,ci) w (p,ci+1) for all i (which

means ci ≥ ci+1, for all i). Analogously for Sp
2 = {(p,c′1), . . . ,(p,c′m)}. Wlog., assume k ≤ m.

Now let Sp
1 tSp

2 be defined as the multi-set {(p,c′′1), . . . ,(p,c′′k),(p,c′k+1), . . .(p,c′m)}, where c′′i is
given as the maximum of ci and c′i. Then S1tS2 is defined “pointwise”, i.e., as (Sp1

1 tSp1
2)∪ . . .∪

(Spn
1 tSpn

2), for all values pi occurring in S1∪S2.
That S1 t S2 thus defined is the least upper bound wrt. to v rests on the following obser-

vation. Assume one particular value of p fixed and let S1 and S2 both contain only elements
of the form (p,ci). Let’s interpret S1 and S2 not as multi-sets but lists in the following way:
Sord

1 = [(p,c1), . . . ,(p,ck) | (p,ci) ∈ S1for all 1≤ i≤ k and c j ≥ c j+1, for all 1≤ j ≤ k−1]; anal-
ogously for Sord

2 . Let furthermore definevlist as order on lists as follows: [(p,c1), . . . ,(p,ck)]vlist

[(p,c′1), . . . ,(p,c′k),(p,c′k+1), . . .] iff ci ≤ c′i, for all 1 ≤ i ≤ k. It’s easy to see, that S1 v S2 iff.
Sord

1 vlist Sord
2 . It’s furthermore easy to see that the least upper bound wrt. vlist exists and corre-

ponds to the above-given definition of t. ut

: Coming back to rule T-COND for conditionals: the maximal balance is given as least upper
bound and dually the minimal balance as greatest lower bound of the corresponding values of the
two branches. Similarly, the common jc-sequence and the common parallel weight is determined
by the corresponding least upper bounds of the two branches. When spawning a new thread e
(cf. rule T-SPAWN), the pre-condition n1 remains unchanged, as the effect of e as determined
by the premise does not concern the current, i.e., spawning thread. Likewise, the maximal and
minimal value are simply n1, as well. The jc-sequence of total resource consumption takes into
account the contribution s0 of the spawned thread before its first joining commit plus the resource
consumption n1 of the current thread. Finally, the parallel weight S of the spawned expression is
increased by the maximal value h of e’s thread, where that contribution is split into the “inherited”
part n1 and the rest h−n1. The effect of a method call v.m(~v) (cf. T-CALL) is given by the interface
information of method m in class C appropriately increased by the difference n of the balance n1 at
the call-site and the specified pre-condition n′1; the interface information for the method is looked
up using mtype in the given class table (the function is standard and its definition is omitted here).
The appropriate adapation of the interface information concerning~t and S is defined as follows:

Definition 9 (Shift). Given a natural number n, the addition ~t + n on a jc-sequence ~t is de-
fined point-wise. For parallel weights S = {(p1,c1), . . . ,(pk,ck)}, S + n is defined as {(p1 +
n,c1), . . . ,(pk +n,ck)}.

17

Example 4. The example illustrates our type and effect system by giving the derivation for Ex-
ample 1 in Section 2 as follows (focusing on the~t- and S-part, only):

...

0 ` [[;spawn (e1]]) :: [7],{(2,3)}

...

2 ` [;spawn (e2]]]);] ;e3] ;e4 :: [10,8],{(1,0)}

0 ` [[;spawn (e1;]]) ; [;spawn (e2;]]]);] ;e3] ;e4 :: t,{(1,0),(1,0)}

The overall resource consumption then is 15 = 7∨ (10+ |{(2,3)}|)∨ (8+ |{(1,0)}|).

Global effects, parallel composition, and joining commit trees The rest of the section is con-
cerned with formalizing the resource analysis on the global level, in essence, capturing the parallel
composition of threads (cf. Table 5 below). The key is again to find an appropriate representation
of the resource effects which is compositional wrt. parallel composition. At the local level, one
key was to capture the synchronization point of a thread in what we called jc-sequences. Now that
more than one thread is involved, that data-structure is generalized to jc-trees which are basically
finitely branching, finite trees where the nodes are labeled by a transaction label and an integer.
With t as jc-tree, the judgments at the global level are of the following form:

Γ ` P :: t . (6)

Definition 10 (Jc-tree). Joining commit trees (or jc-trees for short) are defined as tree of type
JCtree = Node of Nat×Lab× (List ofJCtree), with typical element t. We write~t for lists of jc-
trees. We write also [] for the empty list, and Node(n, l,~t) for a jc-tree whose root carries the
natural number n as weight and l as label, and with children~t.

Definition 11 (Weight). The weight of a jc-tree is given inductively as |Node(n, l,~t)| = n∨
∑
|~t|
i=1(|ti|). The initial weight of a join tree t, written |t|1, is the weight of its leaves.

Definition 12 (Parallel merge). We define the following two functions ⊗1 of type JCtree×
JCForest→ JCForest and ⊗2 of type JCForest2 → JCForest by mutual induction. In abuse of
notation, we will write ⊗ for both in the following.

t⊗1 [] = [t]
Node(n1, l, f1)⊗1 (Node(n2, l, f2) :: f) = Node(n1 +n2, l, f1⊗2 f2) :: f

Node(n1, l1, f1)⊗1 (Node(n2, l2, f2) :: f) = Node(n2, l2, f2) :: (Node(n1, l1, f1)⊗1 f) l1 6= l2

[]⊗2 f = f
t :: f1⊗2 f2 = f1⊗2 (t⊗1 f2)

Remember from Definition 1, that local environments are of the form l1:ρ1, . . . , lk:ρk. In the
semantics, the transaction labelled lk is the inner-most one.

Definition 13 (Lifting). The function lift of type LEnv×Nat+→ JCtree is given inductively as:

lift([], [n]) = Node(n,⊥, [])
lift((l:ρ :: E),~s :: n) = Node(n, l, [lift(E,~s])) .

18

Note that the function is undefined if |E| 6= |~s|−1. It is an invariant of the semantics, that |E| =
|~s|−1, and hence the function is well-defined for all reachable configurations. Defining the weight
(and in abuse of notation) of a jc-sequence~s as the maximum of their elements, we obviously have
|~s|= |lift(E,~s)|.

5 Correctness

This section establishes the soundness of the analysis, i.e., that the static estimation over-approximates
the actual potential resource consumption for all reachable configurations. Remember that the re-
source consumption is measured in terms of numbers of logs co-existing simultaneously. We start
by defining the actual resource consumption of a program:

Definition 14 (Resource consumption). The weight of a local environment E, written |E| is
defined as its length, i.e., the number of its l:ρ-bindings. The weight of a global environment Γ ,
written |Γ | is defined as the sum of weights of its local environments.

The following lemmas establish a number of facts about the operations used in the calculation
of resource consumption needed later.

Lemma 2. (S1∪S2)5n~t = S1 5n (S2 5n~t).

Proof. Straightforward. ut

Lemma 3. Let S be a parallel weight and n1 and n2 two non-negative numbers.

1. bbScn1cn2 = bbScn2cn1 .
2. If n2 ≤ n1, then bbScn1cn2 = S ↓n2 .

Proof. By straightforward calculation. ut

The next two lemmas show that the way the resource consumption is calculated in the let-rule is
associative, which is a crucial ingredient in subject reduction.

Lemma 4 (Associativity of parallel weight). Let S1,S2 be parallel weights and l be a non-
negative natural number. Define the function f as f (S1, l,S2) = S1 ↓l ∪S2. Then

f (f (S1, l2,S2), l3,S3) = f (S1, l2∧ l3, f (S2, l3,S3)) .

Proof. By straightforward but slightly tedious calculation. ut

Lemma 5 (Associativity of ⊕ and 5). Let l1 = n1−|s|+1, l2 = n2−|~t|+1, p1 = n2− l1, and
p2 = n3− l2. Then~s⊕p1 (S1 5n2 (~t⊕p2 (S2 5n3 ~u))) = (~s⊕p1 (S1 5n2

~t))⊕p2 ((S2∪S1 ↓l2)5n3 ~u).

|E| ` e :: n,h, l,~s,S t = lift(E,~s)
T-THREAD

p:E ` p〈e〉 :: t

Γ1 ` P1 : t1 Γ2 ` P2 : t2
T-PAR

Γ1,Γ2 ` P1 ‖ P2 : t1⊗2 t2

Table 5: Effect system

19

Proof. We are given~s = s0, . . . ,sk,~t = t0, . . . , tm, and ~u = u0, . . . ,uq. Further we set

l1 = n1−|s|+1 = n1− k
l2 = n2−|t|+1 = n2−m
l3 = n3−|u|+1 = n3−q
p1 = n2− l1
p2 = n3− l2

(7)

where the li, ni and the relation connecting them with the pi reflect the use of those quantities in
the T-LET type rule. We distinguish according to the relationship between the low points l1, l2,
and l3.

Case: l2 ≤ l1 and l3 ≤ l2
The assumption l2 ≤ l1 implies with the equations (7) p1 ≤m and l3 ≤ l2 implies p2 ≤ q. Expand-
ing the definitions for the left-hand and the right-hand side of the equation of the lemma gives the
following two chains of equations:

~s⊕p1 (S1 5n2 (~t⊕p2 (S2 5n3 ~u))) =
~s⊕p1 (S1 5n2 (~t⊕p2 (u0 + |S2|,u1 + |S2 ↓n3−1|, . . . ,uq + |S2 ↓n3−q|))) =
~s⊕p1 (S1 5n2 (~t⊕p2 ~u

′)) =
~s⊕p1 (S1 5n2 (t0, t1, . . . , tm∨u′0∨u′1∨ . . .∨u′p2

,u′p2+1, . . . ,u
′
q)) =

~s⊕p1 (S1 5n2 (t0, t1, . . . , t̃m,u′p2+1, . . . ,u
′
q)) =

~s⊕p1 (t0 + |S1|, t1 + |S1 ↓n2−1|, . . . , t̃m + |S1 ↓n2−m|,
u′p2+1 +S1 ↓n2−(m+1), . . . ,u′q +S1 ↓n2−(m+q−p2))

=

~s⊕p1 (t ′′0 , t ′′1 , . . . , t̃ ′′m,u′′p2+1, . . . ,u
′′
q) =

~s⊕p1 (t ′′0 , t ′′1 , . . . , t ′′p1
, t ′′p1+1, . . . , t̃

′′
m,u′′p2+1, . . . ,u

′′
q) =

s0, . . . ,sk ∨ t ′′0 ∨ t ′′1 ∨ t ′′p1
, t ′′p1+1, . . . , t̃

′′
m,u′′p2+1, . . . ,u

′′
q =

(8)

and

(~s⊕p1 (S1 5n2
~t))⊕p2 (S2∪S1 ↓l2 5n3 ~u) =

(~s⊕p1 (t0 + |S1|, t1 + |S1 ↓n2−1|, . . . , tm + |S1 ↓n2−m|))⊕p2 (S2∪S1 ↓l2 5n3 ~u) =
(~s⊕p1 (t ′′0 , t ′′1 , . . . , t ′′m))⊕p2 (S2∪S1 ↓l2 5n3 ~u) =
(s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1

, t ′′p+1, . . . , t
′′
m)⊕p2 (S2∪S1 ↓l2 5n3 ~u) =

(s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1
, t ′′p+1, . . . , t

′′
m)⊕p2 (S1 ↓l2 5n3 (S2 5n3 ~u)) =

(s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1
, t ′′p+1, . . . , t

′′
m)⊕p2 (S1 ↓l2 5n3 ~u

′)
(s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1

, t ′′p+1, . . . , t
′′
m)⊕p2 ~u

′′′ =
s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1

, t ′′p+1, . . . , t
′′
m−1, t

′′
m∨u′′′0 ∨ . . .∨u′′′p2

,u′′′p2+1, . . . ,u
′′′
q =

s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1
, t ′′p+1, . . . , t

′′
m−1, t

′′′
m ,u′′′p2+1, . . . ,u

′′′
q

(9)

20

In the calculation, we used the following abbreviations:

~u′ = S2 5n3 ~u = (u0 + |S2|,u1 + |S2 ↓n3−1|, . . . ,uq + |S2 ↓n3−q|)))
t̃m = tm∨u′0∨u′1∨ . . .∨u′p2

t ′′0 , t ′′1 , . . . , t ′′m−1 = (t0 + |S1|, t1 + |S1 ↓n2−1|, . . . , tm−1 + |S1 ↓n2−(m−1)|,
t̃ ′′m = t̃m + |S1 ↓n2−m|

u′′p2+1 . . . ,u′′q = u′p2+1 +S1 ↓n2−(m+1), . . . ,u′q +S1 ↓n2−(m+q−p2))

t ′′m = tm + |S1 ↓n2−m|
~u′′′ = S1 ↓l2 5n3 ~u

′

t ′′′m = t ′′m∨u′′′0 ∨ . . .∨u′′′p2
S′1 = S1 ↓l2
S′2 = S1 ↓l2 ∪S2

To see that (8) and (9) are equal, we need to establish the following two equation. The required
equality t̃ ′′m = t ′′′m is shown as follows:

t̃ ′′m = t̃m + |S1 ↓n2−m|
= (tm∨u′0∨u′1∨ . . .∨u′p2

)+ |S1 ↓n2−m| (distributivity)
= ((tm + |S1 ↓n2−m|)∨ (u′0 + |S1 ↓n2−m|)∨

(u′1 + |S1 ↓n2−m|)∨ . . .∨ (u′p2
+ |S1 ↓n2−m|)

(l2 = n2−m)

= (tm + |S1 ↓l2 |)∨ (u′0 + |S1 ↓l2 |)∨ (u′1 + |S1 ↓l2 |)∨
. . .∨ (u′p2

+ |S1 ↓l2 |)
(Lemma 3)

= (tm + |S1 ↓l2 |)∨ (u′0 + |S1 ↓l2 |)∨ (u′1 + |S1 ↓l2 ↓n3−1|)∨
. . .∨ (u′p2

+ |S1 ↓l2 ↓n3−p2 |)
= (tm + |S1 ↓n2−m|)∨u′′′0 ∨ . . .∨u′′′p2
= t ′′m∨u′′′0 ∨ . . .∨u′′′p2
= t ′′′m

For the application of Lemma 3, observe that for all indices n3− j, we have n3− j ≥ l2. For the
required equality u′′p2+1, . . . ,u

′′
q = u′′′p2+1, . . . ,u

′′′
q , we argue as follows:

u′′p2+1, . . . ,u
′′
q = u′p2+1 + |S1 ↓n2−(m+1)|, . . . ,u′q + |S1 ↓n2−(m+q−p2)| (by definition)

= u′p2+1 + |S1 ↓l2 ↓n2−(m+1)|, . . . ,u′q + |S1 ↓l2 ↓n2−(m+q−p2)| (Lemma 3)
= u′p2+1 + |S1 ↓l2 ↓l2−1|, . . . ,u′q + |S1 ↓l2 ↓n2−(m+q−p2)| (l2 = n2−m)
= u′p2+1 + |S1 ↓l2 ↓l2−1|, . . . ,u′q + |S1 ↓l2 ↓l2−(q−p2)| (l2 = n2−m)
= u′p2+1 + |S1 ↓l2 ↓n3−(p2+1)|, . . . ,u′q + |S1 ↓l2 ↓n3−q| (l2 = n3− p2)
= u′′′p2+1, . . .u

′′′
q

The remaining cases are similar. ut

The order on trees is defined “point-wise” in that the smaller tree must be a sub-tree (respect-
ing the labelling) of the larger one and furthermore each node of the smaller tree with weight w1
is represented by the corresponding node with a weight w2 ≥ w1.

21

Definition 15 (Order on trees). We define the binary relation ≤ on jc trees inductively as fol-
lows: Node(n, l,~s)≤Node(m, l,~t) if n≤m and for each tree si in~s, there exists a t j in~t such that
si ≤ t j. (Note that the labels l in a jc tree are unique.)

Lemma 6 (Lifting of ordering). If~s≤~t (as comparison between jc-sequences), then lift(E,~s)≤
lift(E,~t) (as comparison between jc trees).

Proof. Obvious. ut

Lemma 7 (Lifting and commit). lift(E, l:ρ,n ::~u)≥ lift(E,~u).

Proof. Straightforward. ut

Lemma 8 (Monotonicity). If t1 ≤ t ′1 and t2 ≤ t ′2, then (t1⊗ t2)≤ (t ′1⊗ t ′2).

Proof. By straightforward calculation. ut

Next we prove preservation of well-typedness under reduction, i.e., subject reduction, split into
two parts, preservation under local resp. global reduction steps.

Lemma 9 (Subject reduction (local)). If n1 ` e1 :: n2,h1, l1,~s,S1 and E1 ` e1 −→ E2 ` e2, then
n1 ` e2 :: n2,h2, l2,~t,S2 s.t. h2 ≤ h1, l2 ≥ l1,~t ≤~s, and S2 v S1.

Proof. In induction on the derivation of the local reduction steps using the rules from Table 2.
The cases for field look-up, field update, and object instantiation are immediate. In the proof we
concentrate on the parallel weights and the jc-sequences, as the other parts (pre- and post-balance,
high and low points) are straightforward.

Case: R-RED: E `let x : T = v in e−→ E ` e[v/x]
The assumption of well-typedness gives

n1 ` v :: n1,n1,n1, [n1], /0 n1 ` t :: n2,h2, l2,~s,S
T-LET

n1 `let x = v in t :: n2,h2, l2,~s,S

The~s in the conclusion is justified by the observation that s0, the first element of~s, is ≥ n1. The
result follows from the fact that n1 ` t : n2,h2, l2,~s,S implies n1 ` t[v/x] : n2,h2, l2,s,S, as required.

Case: R-COND1: E `let x : T = (if true then e1 else e2) in e−→ E `let x : T = e1 in e
By well-typedness, we are given

n ` e1 :: n′,h1, l1,~s,S1 n ` e2 :: n′,h2, l2,~t,S2 S = S1tS2

n ` if v then e1 else e2 :: n′,h1∨h2, l1∧ l2,~s∨~t,S

The case follows from the fact that~s≤~s∨~t and that S1 v S1tS2 (cf. Definition 8 and Lemma 1).
The case for R-COND2 works symmetrically.

22

Case: R-LET: E `let x2 : T2 = (let x1 : T1 = e1 in e2) in e3 −→ E `let x1 : T1 = e1 in (let x2 :
T2 = e2 in e3)
We are given:

n1 ` e1 :: n2,h1, l1,~s,S1 n2 ` e2 :: n3,h2, l2,~t,S2

n1 `let x1 = e1 in e2 :: n3,h1∨h2, l1∧ l2,~v,S1 ↓l2 ∪S2 n3 ` e3 :: n4,h3, l3,~u,S3

n1 `let x2 = (let x1 = e1 in e2) in e3 :: n4,(h1∨h2)∨h3,(l1∧ l2)∧ l3,~w,(S1 ↓l2 ∪S3) ↓l3 ∪S3

where ~w = (~s⊕p1 (S1 5n2
~t))⊕p2 (S2∪S1 ↓l2 5n3 ~u) and we need to prove

n1 ` e1 :: n2,h1, l1,~s,S1

n2 ` e2 :: n3,h2, l2,~t,S2 n3 ` e3 :: n4,h3, l3,~u,S3

n2 `let x2 = e1 in e2 :: n4,h2∨h3, l2∧ l3,~v′,S2 ↓l3 ∪S3

n1 `let x1 = e1 in (let x2 = e2 in e3) :: n4,h1∨ (h2∨h3), l1∧ (l2∧ l3),~w′,S1 ↓l2∧l3 ∪ (S2 ↓l3 ∪S3)

where ~w′ =~s⊕p1 (S1 5n2 (~t⊕p2 (S2 5n3 ~u))). For high and low points, we use associativity of ∨
and ∧ For parallel weights, we use associativity from Lemma 4. Finally, ~w = ~w′ follows from
Lemma 5.
Case: R-LOOKUP, R-UPD, and R-NEW
Trivial, as not transactions are involved and no threads are spawned.
Case: R-CALL
Straightforward. ut

Lemma 10 (Subject reduction).

Γ ` P :: t and Γ ` P =⇒ Γ
′ ` P′ implies Γ

′ ` P′ :: t ′ where t ′ ≤ t.

Proof. By induction on the derivation/derivation tree of the reduction step Γ ` P =⇒ Γ ′ ` P′ by
the rules of the semantics.
Case: G-PLAIN
A consequence of subject reduction for the local level (Lemma 9), the compatibility of the orders
for the sequences on the local level and the trees on the global level (Lemma 6) and fact that the
reflect-function does not change the length of the local environments (cf. Definition 3).
Case: G-SPAWN
We are given Γ ` p〈let x : T =spawn e1 in e2〉 =⇒ Γ ′ ` p〈let x : T =null in e2〉 ‖ p′〈e1〉.
Well-typedness of the configuration before the steps gives

n1 ` e2 :: 0,h2,0,~u,S2

n1 ` spawn e2 :: n1,n1,n1, [n1 +u0],S2∪{(n1,h2−n1)} n1 ` e1 :: n2,h1,0,~v,S1 S = S1∪S′2 ↓0

n1 `let x =spawn e2 in e1 :: 0,h1,0,~s,S

p1:E ` p1〈let x = spawn e1 in e2〉 :: lift(E,~s)

were n1 = |E|. For the configuration after the step, we can derive with rules T-PAR, T-THREAD,
T-LET, and T-NULL:

n1 ` null:: n1,n1,n1, [n1], /0 n1 ` n2,h1,0,~v,S1

p1:E ` p1〈let x = null in e1〉 :: lift(E,~v)

n1 ` e2 :: 0,h2,0,~u,S2

p2:E ` p2〈e2〉 :: lift(E,~u)

p1:E, p2:E ` p1〈let x = null in e1〉 ‖ p2〈e2〉 :: lift(E,~v)⊗ lift(E,~u)

23

where S′2 = S2∪{(n1,h2−n1)}. We need to prove that lift(E,~s) = lift(E,~v)⊗ lift(E,~u). The proof
of this equation follows straightforwardly from Definition 12 of ⊗. Note that the two trees are
both linear and their nodes are labeled by the same labels (cf. the definition of the lift-function).

Case: G-TRANS
We are given p:E ` p〈let x = onacid in e〉=⇒ p:E ′ ` p〈let x = null in e〉. Well-typedness
of the configuration before the step gives:

n1 `onacid:: n1 +1,n1 +1,n1, [n1 +1], /0 n1 +1 ` e :: 0,h,0,~s,S

n1 `let x =onacid in e :: 0,h,0,(s0∨ s1,s2, ...),S

p:E ` p〈let x =onacid in e〉 :: lift(E,(s0∨ s1,s2, ...))

Note that the start(,-,f)unction used in the G-TRANS-step to update the local environment assures
that |E ′|= |E|+1 (cf. Definition 3(3)). Note further that in the application of rule T-LET, we know
that n + 1 ≥ s0, and thus n + 1∨ s0∨ s1 equals to s0∨ s1. For the configuration after the step, we
can derive with T-THREAD, T-LET, and T-NULL

n1 +1 ` null:: n1 +1,n1 +1,n1 +1, [n1 +1], /0 n1 +1 ` e :: 0,h,0,~s,S
T-LET

n1 +1 `let x null in e :: 0,h,0,(s0∨ s1,s2, ...),S

p:E ′ ` p〈let x = null in e〉 :: lift(E,(s0∨ s1,s2, ...))

Case: G-COMM
We are given Γ ` . . . ‖ pi〈let x = commit in ei〉 ‖ . . . =⇒Γ ′ `‖ . . . pi〈let x = null in ei〉 ‖
Well-typedness of the configuration before the step gives for each pi

ni ` commit:: ni−1,ni,ni−1, [ni,ni−1], /0 ni−1 ` ei :: 0,h,0,~ui,S

ni ` let x = commit in ei :: 0,hi,0, [ni,~ui],S

pi:Ei ` pi〈let x =commit in ei〉 :: lift(E, [ni,~ui])

Note that (ni−1∨ui0) = ui0 since ui0 ≥ ni−1 and |~ui|= ni because all the onacids are committed
at the end (cf. T-THREAD). By T-THREAD, T-LET, and T-NULL we can derive

ni−1 `null:: ni−1,ni−1,ni−1, [ni−1], /0 ni−1 ` ei :: 0,hi,0,~ui,S

ni−1 `let x =null in ei :: 0,hi,0,~ui,S

pi:E ′i ` pi〈let x =null in ei〉 :: lift(E ′i ,~ui)

where Ei = E ′i , l:ρ , i.e., |E ′i | = |Ei− 1| and (cf. Definition 3 and rule G-COMM). By Lemma 7,
(lift(E ′i ,~ui) ≤ (lift(Ei, [ni,~ui]), and therefore by monotonicity from Lemma 8,

⊗
i(lift(E ′i ,~ui) ≤

(
⊗

i lift(Ei, [ni,~ui]), as required.

Case: G-COMM-ERROR
Omitted, since the formulation of subject reduction covers only non-erroneous states. A type and
effect system which prevents statically that such erroneous steps (“commit errors”) occur has
been formalized in [19]). ut

The next lemma states a simple property of the initial weight of join-trees.

Lemma 11. |t1⊗ t2|1 = |t1|1 + |t2|1

24

Proof. Straightforward from the definition. ut

The next lemma states a basic correctness property of our analysis, namely that for well-typed
configurations, the actual resource consumption |Γ | is over-approximated via the result |t| of the
analysis. We prove a slightly stronger statement (which also allow an inductive proof) namely
that the actual resource consumption is approximated by the initial weight |t|1.

Lemma 12. If Γ ` P :: t, then |Γ | ≤ |t|1.

Proof. By induction on the derivation of Γ ` P :: t.
Case: T-THREAD
Only one thread, current resource consumption is |E|. The weight estimated by t (which basically
is a sequence) larger than the first element of t (or of s). That’s easy to see by the local typing
rules.
Case: T-PAR
We are given

Γ1 ` P1 :: t1 Γ2 ` P2 :: t2

Γ1,Γ2 ` P1 ‖ P2 :: t1⊗ t2

Using induction on the two sub-goals gives |Γ1| ≤ |t1|1 and |Γ2| ≤ |t2|1 and the result follows by
Lemma 11 and the fact that |Γ1,Γ2|= |Γ1|+ |Γ2|. ut

The final result as corollary of subject reduction and the previous lemma: the statically calcu-
lated result is an over-approximation for all reachable configurations:

Theorem 1 (Correctness). Given an initial configuration Γ0 ` p0〈e0〉 and Γ0 ` p0〈e0〉 :: t (with
Γ0 as empty global context). If Γ0 ` p0〈e0〉=⇒∗ Γ ` P, then |Γ | ≤ |t|.

Proof. An immediate consequence of subject reduction (Lemma 10) and Lemma 12. ut

6 Conclusion

We have formalized a static, compositional effect-based analysis to estimate the resource bounds
for a transactional model with nested and multi-threaded transactions. The analysis focuses on
transactional memory systems where thread-local copies of memory resources (logs) caused by
nested and multi-threaded transactions is our main concern. As usual, the challenge in achieving
a sound static analysis lies in obtaining the following three goals at the same time: 1) compo-
sitionality, 2) precision, and 3) soundness. Without compositionality, the analysis is guaranteed
not to scale for large programs, therefore not usable in practice. Without precision, composi-
tionality and soundness can trivially be achieved by overly abstracting all details and ultimately
rejecting all programs as potentially erroneous. Of course without soundness, it is pointless to
formally analyze programs. Achieving all three goals in a satisfactory manner requires human
ingenuity. In our setting the effect system can, in a compositional way, statically approximate
the maximum number of logs that co-exist at run-time. This allows to infer the memory con-
sumption of the transactional constructs in the program. To achieve a higher degree of precision
in the approximation, it is important to take the underlying concurrency model and its synchro-
nization into account. The main challenge is that the execution model has neither independent

25

parallelism nor full sequentialization. Instead, synchronization is affected by the nesting structure
of the multi-threaded transactions, i.e., the synchronization structure is not syntax-directed, which
complicates the analysis. To our knowledge, this is the first static analysis taking care of mem-
ory resource consumption for such a concurrency model. Abstracting away from the specifics of
memory consumption and the concrete concurrent calculus, the effect system presented here can
be seen as a careful, compositional account of a parallel model based on join-synchronization. It
is promising to use our compositional techniques as explored here also to achieve different pro-
gram analyses in a similar manner for programs based on fork/join parallelism. We expect that
adapting our techniques to a model with explicit join synchronization, as e.g., in Java, leads to a
simplification, as the synchronization is syntactically represented in the program code.

Related work Estimating memory, or more generally, resource usage has been studied, in various
other settings. To specify upper bounds for the memory usage of dynamic, recursive data types,
the notion of sized types have been introduced in [17], originally for a lazy, stream-based func-
tion language, resp. in [16] for a strict functional language, both first-order. The corresponding
static type systems with space effects guarantee that well-typed programs use at most the space
specified by the programmers. Sized types have been used further in [6] and [7]. [10] treat exe-
cution time as resource. Their system, a type and effect system as well, certifies a time limit for
functional (and single-threaded) programs, relying on annotations by the programmer specifying
time limits for each individual function. Hofmann and Jost [14] use a linear type system to com-
pute linear bounds on heap space for a first-order functional language. One significant contribu-
tion of this work is the inference mechanism through linear programming techniques. Extensions
from linear to polynomial resource bounds are presented in [13] and [12]. [24] deals with a first-
order, call-by-value, garbage-collected functional language. Their approach is based on program
analysis and model checking and not type-based. For imperative and object-oriented languages
Wei-Ngan Chin et al. [8] treat explicit memory management in a core object-oriented language.
Programmers have to annotate the memory usage and size relations for methods as well as ex-
plicit de-allocation. In [15], Hofmann and Jost combine amortized analysis, linear programming
and functional programming to calculate the heap space bound as a function of input for an object
oriented language. Their bounds are not precise and can be over-approximated. In [5] the authors
present an algorithm to statically compute memory consumption of a method as a non-linear func-
tion of the method’s parameters. The bounds are not precise. Their work is not type-based and
the language does not include explicit de-allocation. Braberman et al. [3] calculate a non-linear
symbolic approximation of memory bounds for Java-like methods and then apply mathematical
results for optimization problem to find the concrete memory bound. However the bounds are not
easily precise due to various factors. A similar technique is also presented in [?]. For low-level
languages, [4] uses program logics to infer precise memory consumption of sequential byte-code
programs with resource annotation by pre- and post-conditions. The language does not have ex-
plicit de-allocation. In [2], Albert et al. compute memory consumption of a program as a function
of its input data. They also refine program’s functions by using escape analysis [9] to collect ob-
jects that do not escape their scopes. The byte-code language has neither explicit de-allocation nor
scope. Later in [1] they introduce a more powerful method to calculate precise peak heap memory
consumption that take into account implicit de-allocation (garbage collected memory). Pham it et
al. [20] propose a fast algorithm with small memory footprint to statically calculate heap memory
for a class of JavaCard programs. The main difference of our work in comparison to the above
related ones is in that we are dealing not only with a multi-threaded analysis —many of the cited

26

works are restricted to sequential languages— but also the complex and implicit synchronization
structure entailed by the transactional model. The work in [23], as here, provides resource estima-
tions in a concurrent (component-based) setting. The concurrency model in that work, however,
is considerably simpler, as sequential and parallel composition are explicit constructs in the in-
vestigated calculus. Simpler is also the treatment in [25], which presents an analysis which is not
compositional. In that work, the effects do not capture the tree-like join-synchronization as here,
at the expense of compositionality for parallel composition.

Current and future work We formalized the calculus and the type system in the Coq theorem
prover (and using the OTT semantical framework [21]) and are currently working on a formaliza-
tion of the correctness proof with the longer-term goal to use Coq’s program extraction to obtain
a formally correct implementation of the effect type system. Besides that, we plan to refine the
effect system by deriving more detailed information about the logs (e.g. memory cells per log,
or number of variables per log and so on) to infer memory consumption more precisely (which
is an orthogonal problem, as mentioned). That would involve to refine the rules which access the
memory by reading and writing from fields in that they have a non-trivial effect on the memory
consumption; currently their effect is ignored. Refining the rules in that way should largely be
orthogonal, except that in particular the effect of commit will then not just decrease the resource
consumption by 1 as now, but needs to calculate that all the memory for the committed transac-
tion is deallocated. Due to the nested nature of the transactions, that requires a stack-structured
memory estimation as pre- and post-conditions instead of single numbers as now. Furthermore,
a challenging step is to automatically infer interface information concerning the resource con-
sumption for method declarations. Extending the language with exception handling is also one
possibility. The result of our analysis could be an input for a “hybrid” model which can switch
between transaction-based and lock-based modes based on resource consumption.

References

1. E. Albert, S. Genaim, and M. G.-Z. Gil. Live heap space analysis for languages with garbage collection.
In International Symposium on Memory Management, 2009.

2. E. Albert, S. Genaim, and M. Gomez-Zamalloa. Heap space analysis for Java bytecode. In ISMM ’07:
Proceedings of the 6th international symposium on Memory management, pages 105–116, New York,
NY, USA, October 2007. ACM Press.

3. D. Aspinall, R. Atkey, K. MacKenzie, and D. Sannella. Symbolic and analytic techniques for resource
analysis of java bytecode. In M. Wirsing, M. Hofmann, and A. Rauschmayer, editors, TGC’10, number
6084 in Lecture Notes in Computer Science. Springer-Verlag, 2010.

4. G. Barthe, M. Pavlova, and G. Schneider. Precise analysis of memory consumption using program
logics. In SEFM ’05, Washington, DC, USA, 2005. IEEE.

5. V. Braberman, D. Garbervetsky, and S. Yovine. A static analysis for synthesizing parametric specifica-
tions of dynamic memory consumption. Journal of Object Technology, 5(5), 2006.

6. W. N. Chin and S. C. Khoo. Calculating sized types. Higher-Order and Symbolic Computation, 14(2-
3):261–300, 2001.

7. W. N. Chin, S. C. Khoo, S. Qin, C. Popeea, and H. H. Ngyuen. Verifying safety policies with size
properties and alias controls. In International Conference on Software Engineering (ICSE 2005), pages
186–195, 2005.

8. W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory usage verification for OO programs. In
Proceedings of SAS ’05, volume 3672 of Lecture Notes in Computer Science. Springer-Verlag, 2005.

27

9. J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff. Escape analysis for Java. In
Object Oriented Programming: Systems, Languages, and Applications (OOPSLA) ’99, volume 34(10),
pages 1–19. ACM, 1999. In SIGPLAN Notices.

10. K. Crary and S. Weirich. Resource bound certification. In Proceedings of POPL ’00, pages 184–198.
ACM, Jan. 2000.

11. T. Harris, J. R. Larus, and R. Rawja. Transactional Memory. Morgan & Claypool, second edition, 2010.
12. J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource analysis. In Proceedings of

POPL ’11, pages 357–370. ACM, Jan. 2011.
13. J. Hoffmann and M. Hofmann. Amortized resource analysis with polynomial potential. a static inference

of polynomial bounds for functional programs. In Proceedings of ESOP 2010, volume 6012 of Lecture
Notes in Computer Science, pages 287–306. Springer-Verlag, 2010.

14. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. In
Proceedings of POPL ’03. ACM, Jan. 2003.

15. M. Hofmann and S. Jost. Type-based amortised heap-space analysis (for an object-oriented language).
In P. Sestoft, editor, Proceedings of ESOP 2006, volume 3924 of Lecture Notes in Computer Science.
Springer-Verlag, 2006.

16. J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space: Towards embedded
ML programming. SIGPLAN Notices, 34(9), 1999.

17. J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized types. In
Proceedings of POPL ’96, pages 410–423. ACM, Jan. 1996.

18. S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional object calculus. Science of Computer
Programming, 57(2):164–186, Aug. 2005.

19. T. Mai Thuong Tran and M. Steffen. Safe commits for Transactional Featherweight Java. In D. Méry
and S. Merz, editors, Proceedings of the 8th International Conference on Integrated Formal Methods
(iFM 2010), volume 6396 of Lecture Notes in Computer Science, pages 290–304. Springer-Verlag, Oct.
2010. An earlier and longer version has appeared as UiO, Dept. of Informatics Technical Report 392,
Oct. 2009.

20. T.-H. Pham, A.-H. Truong, N.-T. Truong, and W.-N. Chin. A fast algorithm to compute heap memory
bounds of Java Card applets. In SEFM’08, 2008.

21. P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strniša. Ott: Effective tool
support for the working semanticist. Journal of Functional Programming, 20(1):71–122, 2010.

22. N. Shavit and D. Toitu. Software transactional memory. In 22nd Annual Symposium on Principles of
Programming Languages (POPL), pages 204–213. ACM, Jan. 1995.

23. H. Truong and M. Bezem. Finding resource bounds in the presence of explicit deallocation. In IC-
TAC’05, volume 3722 of Lecture Notes in Computer Science, pages 227–241. Springer-Verlag, 2005.

24. L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized live heap bound analysis. In L. D. Zuck,
P. D. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Proceedings of the 4th International Workshop
on Verification, Model Checking, and Abstract Interpretation (VMCAI) 2003, volume 2575 of Lecture
Notes in Computer Science. Springer-Verlag, 2003.

25. T. V. Xuan, H. T. Anh, T. Mai Thuong Tran, and M. Steffen. A type system for finding upper resource
bounds of multi-threaded programs with nested transactions. In ACM Proceedings of the 3rd ACM
International Symposium on Information and Communication Technology SoICT, pages 20–31. ACM,
Aug. 2012.

28

Index

Γ ` P =⇒ Γ ′ ` P′ (global transition), 11
S = {(p0,c0), . . . ,(pk,ck)} (parallel weight), 14
E ` e−→ E ′ ` e′ (local transition), 10
Γ (global environment), 11
Γ ` P (global configuration), 11
Γ ` e : T (typing judgment), 13
par(S, l), 15
S ↓l , 14
seq(S, l), 15
|S|, 14
|S| (resource consumption of S), 14
⊕p, 15
5l , 15
lift (lifting), 18
|t|1 (initial weight of t), 18
|t| (weight of t), 18
p〈e〉 (thread), 8
ρ (log), 10
n1 ` e :: n2,h, l,~t,S (effect judgment), 13
t1⊗ t2 (parallel composition), 18

balance, 13

class definition, 8
compositionality, 5
configuration
– global, 11
constructor, 8

E (local environment), 10
environment
– global, 11
– local, 10
extend, 10

field, 8
fv(e) (free variables), 9

global transition, 11

implicit synchronization, 7
intranse, 12

jc-sequence, 14
– composition, 15
jc-tree
– parallel composition, 18
join, 16
joining commit, 5
joining commit sequence, 14
judgment, 13

l (transaction label), 10
lifting, 18
local environment, 10
local transition, 10

method definition, 8
mtype, 18

nested, 13

onacid, 12
overloading, 9

parallel weight, 14
– associativity, 19

read, 10
resource consumption, 19

sequential composition, 7
sequential composition and let-construct, 9
subject reduction, 22, 23

TFJ, 8
transaction
– multi-threaded, 5
– nested, 5
transaction label, 10
transaction labels, 13
Transactional Featherweight Java, 8

weight, 18
write, 10

	Compositional Static Analysis for Multithreaded Transactions with Join Synchronization
	Introduction
	Compositional analysis of implicit join synchronization
	A transactional calculus
	Syntax
	Semantics

	Effect system
	Correctness
	Conclusion
	References

