
Under consideration for publication in Math. Struct. in Comp. Science

Observable interface behavior and
inheritance

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen

Received 29 December 2013

This paper formalizes the observable interface behavior of open systems for a

strongly-typed, concurrent object-oriented language with single-class inheritance. We

formally characterize the observable behavior in terms of interactions at the

program-environment interface. The behavior is given by transitions between contextual

judgments, where the absent environment is represented abstractly as assumption

context. A particular challenge is the fact that, when the system is considered as open,

code from the environment can be inherited to the component and vice versa. This

requires to incorporate an abstract version of the heap into the environment assumptions

when characterizing the interface behavior. We prove the soundness of the abstract

interface description.

Keywords: inheritance, object-oriented languages, formal semantics, concurrency, open

systems, observable behavior

1. Introduction

A component is a part of a larger system, which interacts with its environment, and can
be considered as a black box whose internals are hidden. Such a separation of internal
behavior from externally relevant interface behavior is crucial for compositionality. The
most popular programming paradigm nowadays is object orientation, which in particular
supports interfaces and encapsulation of objects. Another crucial feature in mainstream
object orientation is inheritance, which allows code reuse and is intended to support
incremental program development by gradually extending and specializing an existing
class hierarchy.

In this paper we consider components as sets of classes with an inheritance structure.
As open and being part of a overall program, they they cannot execute on their own, but
only in interaction with their environment. They are furthermore open in that component
classes may inherit from classes specified in the environment and conversely also the
environment may extend component classes using inheritance.

The openness of a system in the presence of inheritance and late binding is problematic.
With a standard behavioral interface specification given as pre- and post-conditions for
the available methods, replacing one super or base class by another satisfying the same
interface description, may break the code of the client of the super class, i.e., change the
behavior of the “environment” of the super class. Consider the following code fragment.

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 2

Listing 1: Fragile base class
class A { class B extends A {

void add () { . . . } void add () {
void add2 () { . . . } s i z e = s i z e + 1 ;
. . . super . add () ; }

} void add2 () {
s i z e = s i z e + 2 ;
super . add2 () ; }

}

The two methods add and add2 are intended to add one resp. two elements to some
container data structure. This completely (albeit informally) describes the intended be-
havior of A’s methods. Class B in addition keeps information about the size of the
container. Due to late-binding, this implementation of B is wrong if the add2-method
of the super-class A is implemented via self -calls using two times the add -method. A
sub-class could observe a difference, namely by overriding the auxiliary method which is
invoked by the inherited method in one situation but not in the other. A similar phe-
nomenon is also described as fragile base class problem (Mikhajlov and Sekerinski [1998],
Stata and Guttag [1995], Snyder [1986], Ruby and Leavens [2000]). Nothing, however, in
the interface distinguishes the two different super-classes: The interface specification is
too weak to allow to consider the super-class as a black box which can be safely substi-
tuted based on its interface specification only, i.e., ignoring this phenomenom results in
a non-compositional semantical description.

The challenge therefore is to give a formal, behavioral interface description which
matches what can be observed by client code in the presence of inheritance and late-
binding. A basic soundness requirement (also known as adequacy) is that two open
systems with the same interface desciption should be safely exchangable for each other
without leading to different outcomes when used in arbitrary contexts. Therefore, ignor-
ing observable details (such as self-calls) in the interface description would lead to an
unsound semantical description. Soundness, however, is not the only desirable property
when characterizing the open semantics. The semantics should not contain unnecessary,
unobservable details and in particular the semantics should only include possible behav-
iors, i.e., behaviors generated by some actual (well-formed, well-typed) program in the
given language. This is related to the notion of definability in fully abstract semantics (cf.
e.g. Curien [2007] for a discussion of definability) where typically the hard part of achiev-
ing full abstraction is to design a semantic domain where each element in the semantics
of an actual (open) program fragment, i.e., the semantic function should be surjective
such that the semantic domain only contains definable elements. For illustration: the
classical example of course is domain theory for functional languages, where programs
are not interpreted over sets of arbitrary functions, but restricted to continuous functions
(in appropriately defined cpo’s) as those are the only functions which are definable, i.e.,
computable. In languages with mutable state, as here, the observable behavior takes the
form of a set of interaction sequences or traces, here consisting of method invocations and
the eventual returning of their results, and we are interested in capturing the interface
traces as precise as possible. A rigorous account of such an interface behavior is impor-
tant also for formal, compositional verification of open programs. In settings with more
complex forms of program composition than plain sequential composition (in particular

Observable interface behavior and inheritance 3

in the presence of concurrency but also for object-oriented languages), a key ingredient
to obtain a modular Hoare-style reasoning system is to record the interacting behavior
appropritately in a logical history variable. Capturing the potentially possible histories
not precisely then leads to incomplete reasoning for verifying an open component indepe-
dent from its environment. Not realizing that no environment exists which able to engage
in a given history or trace, the proof method would work with weaker assumptions than
otherwise possible, potentially unable to prove assertions which actually do hold in all
concrete programs. A precise account of the open semantics is also beneficial for compo-
sitional optimization of components: only when showing the same external behavior one
program can replace another without changing the interaction with any client code, and
being able to ignore traces which cannot actually occur makes programs the observable
equivalence more coarse-grained, thus potentially allowing more optimizations.

This paper formalizes an open semantics for a statically typed object-oriented cal-
culus featuring concurrency, dynamic object creation, mutable heap, and single inheri-
tance. The behavioral interface description is phrased in a typed assumption-commitment
framework. The setting allows that component classes to inherit from environment classes
and vice versa. Thus, the account really captures the observable, behavioral aspects of
class inheritance without restrictions, for instance by allowing inheritance only within
the component. A consequence of that set-up is that a precise charaterization of the
open semantics and of the legal traces needs to take an abstraction of the heap into
account. We prove the soundness of the abstractions. The results here extend previous
work with inheritance, which is a central feature for object-oriented languages. Earlier
we considered the problem of open systems for different choices of language features
(but without inheritance), e.g., for futures and promises (Ábrahám et al. [2009]), for
Java-like monitors (Ábrahám et al. [2006]). Object-connectivity plays a crucial role in
the current work (as in Ábrahám et al. [2005]) but is here a semantical consequence of
inheritance. Including inheritance influences in subtle ways what is observable, e.g., the
observer may override component methods or inherit its own methods to the component
which then are rebound by late binding. Capturing the resulting interface behavior accu-
rately complicates the semantics considerably. As mentioned, we consider a concurrent,
object-oriented calculus, and the model of concurrency used here is based on active ob-
jects using asynchronous method calls and futures. It thus resembles the communication
mechanisms of loosely coupled interacting objects known from Actor-based Agha and
Hewitt [1987] languages such as Erlang Armstrong et al. [1996] and Scala Odersky et al.
[2011]. We stress, however, that the particular choice of the concurrency model is, to a
certain degree, orthogonal to the results; particular details concerning the exact format
of the interface interaction of course depend on the details of the chosen model. But the
core message of the paper, namely that capturing the influence of inheritance requires to
take into account an abstract representation of the heap topology is independent from
the chosen concurrency model.

The paper is organized as follows. We start in Section 2 by explaining the approach
of this paper in more detail, by way of examples. Section 3 presents syntax and static
type system of the calculus. The main contributions (the typed open semantics, the legal

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 4

traces, and the soundness of the abstractions) are presented in Sections 4 and 5. We
conclude in Section 6 discussing related work.

2. Interface behavior, inheritance, and object connectivity

We start by giving more technical intuition to the challenges when defining an open
semantics in our setting. E.g., as self-calls lead to observable differences in the presence
of inheritance, they are part of the observable behavior. On the other hand, behavior
which is impossible should not be included in the open semantics.

2.1. Existential abstraction of the environment

With sets of classes as units of composition, we start by discussing informally what
can be observed from outside a “component” when considering inheritance. Even when
restricting ourselves to run-of-the-mill notion of single-inheritance between classes with
sub-type polymorphism, late-binding, and method overriding, a number of design issues
influence what can be observed from the outside given a set of classes. We discuss some
of the issues using object-oriented pseudo-code for illustration. An interface interaction
happens if a step of the component affects the environment and vice versa. Objects
encapsulate their states, and thus the interaction takes the form of method calls and
returns, where the control changes from executing component code to environment code
(outgoing message) and vice versa (incoming message)†. Thus the interface behavior will
be given in terms of traces of call and return labels exchanged at the interface, where in
our setting component classes can extend those from the environment via inheritance,
and vice versa. Writing C t=⇒ Ć, the t denotes the trace of interface actions by which
component C evolves into Ć, potentially executing internal steps, as well, not recorded in
t. Being open, C does not act in isolation, but interacts with some environment. I.e., we
are interested in traces t where there exists an environment E such that C ‖ E t=⇒̄

t
Ć ‖ É

by which we mean: component C produces the trace t and E produces the dual trace t̄,
both together “canceling out” to internal steps. Our goal is an open semantics with the
environment existentially abstracted away. With infinitely many possible environments E,
the challenge is to capture what is common to all those environments. This will be done
in form of assumptions about the environment: the operational semantics specifies the
behavior of C under certain assumptions ΞE about the environment. Following standard
notation from logics, we do not write ΞE ‖ C, but rather ΞE ` C. Reductions thus will
look like‡

ΞE ` C
t=⇒ Ξ́E ` Ć . (1)

Such a characterization of the abstract interface behavior is relevant and useful for

† Note in passing: if the language allowed shared variables, an interface interaction would not necessarily

mean that the control flow passes in the interface step from component to environment or vice versa.
‡ To avoid later confusion: The ΞE as used in the semantics later does not only formalize assumptions

about the environment, but also commitments of the component, to make the setting symmetric.

Also, the notation ΞE will not be used later, it is used only here for explanatory reasons.

Observable interface behavior and inheritance 5

the following reasons. Firstly: the set of traces according to Equation (1) is in general
more restricted than the one obtained when ignoring the environments altogether. This
means, when reasoning about the behavior of C based on the traces, e.g., for the purpose
of verification, the more precise knowledge of the possible traces allows to carry out
stronger arguments about C. Secondly, an application for a trace description is black-
box testing, in that one describes the behavior of a component in terms of the interface
traces and then synthesize appropriate test drivers from it. Obviously it makes no sense to
specify interface behavior which is not possible, since in this case one could not generate
a corresponding tester. Finally, and not as the least gain, the formulation gives insight
into the inherent semantical nature of the language, as the assumptions ΞE capture the
existentially abstracted environment behavior.

Similarly to the representation of the environment by an assumption context in Equa-
tion (1), one can additionally abstract away from any concrete component C and replace
it by a commitment context, obtaining a formalization of possible interface interaction in
the language which we call legal traces. The following two sections explain two important
(and technically challenging) consequences of inheritance and late-binding for the observ-
able behavior: one showing that self-calls may be observable and thus need to be included
in the traces and secondly that one needs an abstract existential over-approximation of
the heap structure to avoid “illegal” traces. In the technical part afterwards, the seman-
tics in the form of (1) is given in Section 4 and Section 5 presents possible interface
behavior in the form of legal traces.

2.2. Self-calls and cross-border inheritance

Assume two classes, CC as a component class implementing a method mC , and CE in
the environment providing a method mE. Figure 1a illustrates the situation where an
instance oC of the component class executes mC and calls the method mE on an instance
oE of the environment class, represented by the outgoing call oE.mE! which crosses the
interface. In general, we use ! to denote outgoing communication from the perspective of
the component and ? for incoming communication. Even if both caller and callee objects
are instances of the component class CC , the call from mC to mE still crosses the border,
provided mC is implemented in CC and mE is inherited from class CE to CC (cf. Figure
1b and Listing 2). Especially, if caller and callee are the same object, i.e., if mC calls
the (inherited) mE via a self-call, it is still an interface interaction, as the code of mE is
given by the environment (Figure 1c).

Listing 2: Late binding
class CE { class CC extends CE {

.
public void mE () { . . . } . . public void mC () { . . . x .mE . . . }

} }

Likewise in the inverse situation in Listing 3, which illustrates late-binding and overrid-
ing: the self-call in method m1 is a component-internal call when executed in an instance
of CC , but an interface call when m1 is an (inherited) method of an instance of CE. The

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 6

Comp. Env.
CC CE

mC

mE

oE.mE !

(a)

Comp. Env.

CC

CEextends

mC

mE

oE.mE !

(b)

Comp. Env.

CC

CEextends

mC

mE

mE

self.mE !

(c)

Fig. 1: Calls across the interface

call from the inherited m1 to the overridden m2 is also called a downcall (Ruby and
Leavens [2000]) which can be seen as a special form of a call-back.

Listing 3: Overriding
class CC { class CE extends CC {

.
public void m1 () { . . . s e l f .m2 . . .} public void m2 () { . . . }
public void m2 () { . . . } . . .

} }

2.3. Dynamic type and overriding

As in Java, we assume that classes, besides being generators of objects, play the role of
types as well, and that inheritance implies subtyping. The type system is thus nominal
and supports nominal subtyping. A question is, whether in the presence of subtyping,
the dynamic type of an object is observable. More concretely, assuming two classes CC

and CE, with CE a subclass of CC , does it make a difference to have an instance of CC

or of CE? Consider the following two expressions:

letx:CC = new CC in t and letx:CC = new CE in t . (2)

In the first case, the dynamic type of the instance is CC , in the second case it’s the
subclass/subtype CE. Can one distinguish the two situations? If the super-class CC is
a component class and CE is an observer class, the two situations of Equation (2) are
distinguishable: by overriding a method of CC in CE, the behavior of instances of CC

differs from instances of CE. An illustrative example is given by the Java-code in Listing
4, which shows the situation where an instance of the sub-class is created.§

§ Since the observer class Dynamictypeobs1 literally mentions new CC() resp. new CE(), one might

argue that just by that fact it can see a difference. The point, however, is the change in behavior, and
this would also be observable if the observer would not itself create the instance with static type CE ,

but it would receive it as handed over from the environment, for instance as return value of a method

call.

Observable interface behavior and inheritance 7

Listing 4: Dynamic type
pub l i c c l a s s Dynamictypeobs1 {

pub l i c s t a t i c void main (St r ing [] a rgs){
CE c = new CC () ;
c .m() ;

}
}

c l a s s CC {
void m () {System . out . p r i n t (”C C ”) ;}

}

c l a s s CE extends CC {
void m () {System . out . p r i n t (”C E ”) ; } ;

}

Also in the inverse situation that CE is component class and CC a class of the environ-
ment, the two situations of Equation (2) are distinguishable.

2.4. Connectivity as abstract heap representation in the interface

Objects encapsulate their instance states such that fields of an object cannot be accessed
from outside the instance, i.e. the field can be referenced only via the this-identifier
(when following Java-like notation). This is slightly stronger than the restriction for
private fields in Java, which allow access among instances of the same class. In par-
ticular, each method can access only the fields of the class that the method is defined
in. In the presence of inheritance between component and environment, each object may
contain fields defined by the component and fields defined by the environment. Since
fields are private (per instance), component fields are manipulated only by component
methods, and dually for environment fields. If the component instantiates a new object,
fields from the component class CC belong to the component part of the heap and fields
from CE to the environment part (cf. Figure 2a, where the environment part, coming
from the abstract environment, is grayed out).

In Figure 2b, the component creates two instances of CC , say o1 and o2. Directly
after creation, the fields of o1 and o2 are undefined (in absence of constructors) and in
particular, o1 and o2 are surely unconnected (i.e., their fields do not refer to each other).

The creator of the two objects on the component-side could call a set-method on o1

with parameter o2 to set one of the fields of o1 to point to o2. If the set method is
defined in the component class CC , then it may access only fields defined in CC . Thus
the call is internal and not visible at the interface, as indicated in Figure 2c. However,
if the set-method is inherited from CE, then the call executes a method specified by
the environment and modifies fields in the environment part of o1. Therefore, the call
is a visible interface interaction (Figure 2d). This fact should be reflected in the open
semantics.

In general, we can see an instance to be split into two halves, one containing the
component fields and methods and the other the ones provided by the environment. The
environment part of the objects created by the component is unconnected unless brought
in connection by (outgoing) communication, sending some object identities as parameter
or return values across the border. In the above example, if the set-method is defined in

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 8

Comp. Env.

CC

CE
extends

newCC

CC fields CE fields

(a)

Comp. Env.

CC

CE
extends

newCC

newCC

o1

o2

(b)

Comp. Env.

CC

CE
extends

o1.set(o2)

o1

o2

(c)

Comp. Env.

CC

CE
extends

o1.set(o2)

o1

o2

(d)

Fig. 2: Heap structure and connectivity

the environment, then after the creator calls the set-method of o1 with parameter o2, the
environment part of o1 has a reference to o2 (Figure 2d). Now o1 may call a method of
o2 and pass on its own identity as a parameter, such that o1 and o2 both “know” about
each other, i.e., they are fully connected.

The situation concerning component and environment is completely symmetric. The
environment part of objects created by the environment can be connected among each
other without being observable at the interface. The environment may connect the com-
ponent part of those objects via (from the component view) incoming communication.

To describe the possible interface behavior, where all possible environments are repre-
sented abstractly by assumption contexts, the potential connectivity of the environment
is important. E.g., an incoming call of the form o1.m(o2)? is impossible if, judging from
the earlier interaction history, o1 and o2 cannot be in connection in the environment
(i.e., the environment parts of o1 and o2 do not have any references to each other).
Besides checking that incoming communication is consistent with the assumptions con-
cerning the heap structure (“connectivity”), the values communicated over the interface
update those connectivity assumptions, e.g., an outgoing communication o1.m(o2)! adds
the knowledge to the assumption that after the step, (the environment part of) o1 may
now be in connection with o2. As via environment-internal communication, o1 may com-
municate with o2 and with all other objects it may know, the assumed connectivity is
taken as a reflexive, transitive, and symmetric relation, i.e., an equivalence relation. We
call the equivalence classes of objects that may be connected with each other cliques of
objects. The operational semantics in Section 4 formalizes these intuitions.

3. Calculus

This section presents the calculus, its syntax and operational semantics. It is a concurrent
variant of an imperative, object-calculus in the style of the calculi from Abadi and Cardelli
[1996] with asynchronous method calls. Unlike in de Boer et al. [2007], Ábrahám et al.
[2009], we omit the treatment of first-class futures, which can be seen as a generalization
of asynchronous method calls, to simplify the presentation. We start with the abstract
syntax in Section 3.1 and present the type system in Section 3.2.

Observable interface behavior and inheritance 9

bi
C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[O,L] | n〈t〉 component

O ::= n,M,F object

M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields

m ::= ς(n:T).λ(x:T, . . . , x:T).t method

f ::= v | ⊥n field
t ::= v | stop | letx:T = e in t thread

e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.

| n@l(~v) | v.l() | v.l() := v
| newn | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values

L ::= ⊥ | > lock status

Table 1: Abstract syntax

3.1. Syntax

The abstract syntax is given in Table 1. It distinguishes between user syntax and run-time
syntax (the latter underlined). The user syntax contains the phrases in which programs
are written; the run-time syntax contains syntactic constituents additionally needed to
express the behavior of the executing program in the operational semantics.

The basic syntactic category of names n, which count among the values v, represents
references to classes, to objects, and to threads. To facilitate reading, we allow ourselves
to write o and its syntactic variants for names referring to objects, c for classes, and
p for threads (“processes”). Technically, the disambiguation between the different roles
of the names is done by the type system and the abstract syntax of Table 1 uses the
non-specific n for names. The unit value is represented by () and x stands for variables,
i.e., local variables and formal parameters, but not instance variables.

A component C is a collection of classes, objects, and (named) threads, with 0 rep-
resenting the empty component. The sub-entities of a component are composed using
the parallel-construct ‖. The entities executing in parallel are the named threads p〈t〉,
where t is the code being executed and p the name of the thread. A class c[(c′,M, F)]
carries a name c, it references its immediate superclass c′ and defines its methods and
fields in M and F . An object o[c,M,F, L] with identity o keeps a reference to the class
c it instantiates, contains the embedded methods from its class, stores the current value
F of its fields, and maintains a binary lock L indicating whether any code is currently
active inside the object (in which case the lock is taken indicated by >) or not (in which
case the lock is free indicated by ⊥). From the three kinds of entities at component level
—threads p〈t〉, classes c[(c′,M, F)], and objects o[c,M,F, L]— only the threads are ac-
tive, executing entities, being the target of the reduction rules. The objects, in contrast,
store the embedded methods implemented by their classes and the state in their fields
or instance variables, whereas the classes are constant entities specifying the methods.

The named threads p〈t〉 are incarnations of method bodies “in execution”. Incarna-
tions insofar, as the formal parameters have been replaced by actual ones, especially the
method’s self-parameter has been replaced by the identity of the target object of the

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 10

method call. The term t is basically a sequence of expressions, where the let-construct
is used for sequencing and for local declarations; in an expression letx:T = e in t, the
letx acts as a binder for occurrences of x in t. As usual, sequential composition t1; t2
abbreviates letx:T = t1 in t2, where x does not occur free in t2. During execution, p〈t〉
contains in t the currently running code of a method body. When evaluated, the thread
is of the form p〈v〉 and the value can be accessed via p, the future reference, or future
for short.

Each thread belongs to one specific object “inside” which it executes, i.e., whose in-
stance variables it has access to. Object locks are used to rule out unprotected concurrent
access to the object states: Though each object may have more than one method body
incarnation partially evaluated, at each time point at most one of those bodies (the
lock owner) can be active inside the object. In the terminology of Java, all methods are
implicitly considered “synchronized”. The final construct at the component level is the
ν-operator for hiding and dynamic scoping, as known from the π-calculus. In a compo-
nent C = ν(n:T).C ′, the scope of the name n (of type T) is restricted to C ′ and unknown
outside C. ν-binders are introduced when dynamically creating new named entities, i.e.,
when instantiating new objects or new threads. The scope is dynamic, i.e., when the
name is communicated by message passing, it is enlarged.

Besides components, the grammar specifies the lower level syntactic constructs, in par-
ticular, methods, expressions, and (unnamed) threads, which are basically sequences of
expressions. A method ς(n:T).λ(x1:T1, . . . xk:Tk).t provides the method body t abstracted
over the ς-bound “self” parameter, here n, and the formal parameters x1, . . . , xk. For
fields, they are either a value or yet undefined. In freshly created objects, the lock is free,
and all class-typed fields carry undefined references ⊥c, where class name c is the type of
the field. For basic types such as integers, booleans, etc. fields carry concrete values like
true, false, 0, 1, . . . of appropriate types as initial values; in the theoretical development,
any built-in basic types, their values, and appropriate operations do not play a role and
left out mostly; for instance, we don’t formalize well-typedness conditions for those basic
types and values. We allow, however, to use of them in illustrative examples.

We use f for instance variables or fields and l = v, resp. l = ⊥c for field variable
definition. Field access is written as v.l() and field update as v′.l() := v. Note that
the construct v.l() is used for field access only, but not for method invocation. Note
further that the syntax does not allow to set a field back to undefined. Direct access
(read or write) to fields of objects other than oneself is forbidden by convention, i.e., it is
forbidden that a method ever executes o.f() resp. o.l() := v for an object different from
“self”. More precisely, we assume that field accesses v.l() and field updates v.l() := v

in the static code, i.e., in the method bodies, can use the ς-bound self-parameter as v,
only; the parameter corresponds to the reserved word this in Java. In connection with
inheritance, there are two further restrictions we assume for the field access: A method
defined in a subclass is not allowed to directly access fields that are defined in the super-
class, neither by using the keyword super (which we omitted anyhow), nor by accessing
the variable via self, when the field is inherited. In Java, that would correspond to private
fields, as they cannot be accessed by subclasses. These design choices will have quite some
impact on what is observable at the interface. Intuitively, the more liberal the language

Observable interface behavior and inheritance 11

is wrt. field access, the more details about instances become observable. Instantiation of
a new object from class c is denoted by new c.

Method calls are written o@l(~v), where the call to l with callee o is sent asynchronously
and not, as in for instance in Java, synchronously where the caller blocks for the return
of the result. The further expressions claim, get, suspend, grab, and release deal with
communication and synchronization. As mentioned, objects come equipped with binary
locks, responsible for mutual exclusion. The two basic, complementary operations on a
lock are grab and release. The first allows an activity to acquire access in case the lock
is free (⊥), thereby setting it to >, and release(o) conversely relinquishes the lock of
the object o, giving other threads the chance to be executed in its stead. The user is
not allowed to directly manipulate the object locks. Thus, both expressions belong to
the run-time syntax. Instead of using directly grab and release, the lock-handling is done
automatically when executing a method body: before starting to execute the method, the
lock has to be acquired and upon termination, the lock is released again. Besides that,
lock-handling is involved also when futures are claimed, i.e., when a client code executing
in an object, say o, intends to read the result of a future. The expression claim@(p, o) is the
attempt to obtain the result of a method call from the future p while in possession of the
lock of object o. There are two possibilities in that situation: either the value of the future
has already been determined, i.e., the method calculating the result has terminated, in
which case the client just obtains the value without losing its own lock. In the alternative
case, where the value is not yet determined, the client trying to read the value gives
up its lock via release and continues executing only after the requested value has been
determined (using get to read it) and after it has re-acquired the lock. Unlike claim, the
get-operation is not part of the user-syntax. Both expressions are used to read back the
value from a future, the difference in behavior is that get unconditionally attempts to
get the value, i.e., blocks until the value has arrived, whereas claim gives up the lock
temporarily, if the value has not yet arrived, as explained. Finally, executing suspend(o)
causes the activity to relinquish and re-grab the lock of the object o. We assume by
convention that when appearing in methods of classes, the claim- and the suspend-
commands only refer to the self-parameter self , i.e., they are written claim@(p, self) and
suspend(self).

3.2. Type system

The language is typed and the available types are given in the following grammar:

T ::= B | Unit | 〈T 〉 | [S] | [(S)] | n types
U ::= T × . . .× T → T member types
S ::= l:U, . . . , (l):U, . . . , l:T signatures

Besides base types B (left unspecified; typical examples are booleans, integers, etc.),
Unit is the type of the unit value (). Type 〈T 〉 represents a reference to a future which
will return a value of type T , in case it eventually terminates. The name of a class serves
as the type for its instances. The member types U serve to give types for methods and
fields in classes. As auxiliary type constructions (i.e., not as part of the user syntax,

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 12

but to formulate the type system) we need the type or interface of unnamed objects,
written [S], and the interface type for classes, written [(S)], where S is the signature.
The signature contain the labels l of the available members together with the expected
types. Furthermore, we distinguish whether a member labelled l is actually implemented
by the class (in which case we write l:U), or whether it is provided, but inherited from
a super-class (in which case we write (l):U). For a given signature, we write S.l to mean
that S contains a member labelled l and that S.l denotes its type. Fields, also labelled
by labels l, are of types T . We allow ourselves to write ~T for T1 × . . . × Tk etc. where
we assume that the number of arguments matches in the rules, and write Unit → T for
T1 × . . .× Tk → T when k = 0.

We are interested in the behavior of well-typed programs, only, and the section presents
the type system to characterize those. As the operational rules later, the derivation rules
for typing are grouped into two sets: one for typing at the level of components, i.e., global
configurations, and one for their syntactic sub-constituents.

Table 2 defines the typing on the level of global configurations, i.e., for “sets” of objects,
classes, and named threads. On that level, the typing judgments are of the form

∆ ` C : Θ , (3)

where ∆ and Θ are name contexts, i.e., finite mappings from names (of classes, objects,
and threads) to types. In the judgment, ∆ plays the role of the typing assumptions about
the environment, and Θ of the commitments of the component, i.e., the names offered
to the environment. Sometimes, the words required and provided interface are used to
describe their dual roles. ∆ must contain at least all external names referenced by C and
dually Θ mentions the names offered by C.

The empty configuration 0 is well-typed in any context and exports no names (cf. rule
T-Empty). Two configurations in parallel can refer mutually to each other’s commit-
ments and together offer the (disjoint) union of their names (cf. rule T-Par). It will be an
invariant of the operational semantics that the identities of parallel entities are disjoint
wrt. the mentioned names.¶ Therefore, Θ1 and Θ2 in the rule for parallel composition
are merged disjointly, indicated by writing Θ1,Θ2 (analogously for the assumption con-
texts). In general, C1 and C2 can rely on the same assumptions that also C1 ‖ C2 in the
conclusion uses, as it represents the environment common to C1 ‖ C2.

The ν-binder hides object names and future/thread names inside the component (cf.
rule T-Nu). In the T-Nu-rule, we assume that the bound name n is new to ∆ and
Θ. Object names created by new and thread/future names created by asynchronous
method calls are heap allocated and thus checked in a “parallel” context (cf. again the
assumption-commitment rule T-Par). The rule for named classes introduces the name
of the class and its type into the commitment (cf. T-NClass). The code [(O)] of the
class c[(O)] is checked in an assumption context where the name of the class is available.
Note also that the premise of T-NClass (like those of T-NObj and T-NThread) is
not covered by the rules for type checking at the component level, but by the rules

¶ In the open semantics later, the ∆ and the Θ contexts will not be disjoint wrt. object names.

Observable interface behavior and inheritance 13

T-Empty
∆ ` 0 : ()

∆1,Θ2 ` C1 : Θ1 ∆2,Θ1 ` C2 : Θ2
T-Par

∆1,∆2 ` C1 ‖ C2 : Θ1,Θ2

∆ ` C : Θ, n:T
T-Nu

∆ ` ν(n:T).C : Θ

•; ∆, c:[(S)] ` [(O)] : c
T-NClass

∆ ` c[(O)] : (c:[(S)])

•; ∆ ` c : [(S)] •; ∆, o:c ` [O,L] : c
T-NObj

∆ ` o[O,L] : (o:c)

•; ∆, p:〈T 〉 ` t : T
T-NThread

∆ ` p〈t〉 : (p:〈T 〉)
∆′ ≤ ∆ Θ ≤ Θ′ ∆ ` C : Θ

T-Sub
∆′ ` C : Θ′

Table 2: Typing (component level)

for the lower level entities (in this particular case, by rule T-Obj from Table 3). The
judgments use as assumption not just a name context, but additionally a stack-organized
context Γ in order to handle the let-bound variables. So in general, the assumption
context at that level is of the form Γ; ∆. The premise of T-NClass starts, however,
with Γ being empty, i.e., with no assumptions about the type of local variables. This
is written in the premise as •; ∆, c:[(S)] ` [(O)] : c; similar for the premises of T-NObj

and T-NThread. An instantiated object will be available in the exported context Θ
by rule T-NObj. Threads p〈t〉 are treated by rule T-NThread, where the type 〈T 〉 of
the future reference p is matched against the result type T of thread t. The last rule is
a rule of subsumption, expressing a simple form of subtyping: we allow that an object
respectively a class contains at least the members which are required by the interface.
This corresponds to width subtyping.

Next we formalize the typing for objects and threads and their syntactic sub-constitu-
ents. The judgments are of the form

Γ; ∆ ` e : T (4)

(and analogously m, [(O)], etc. instead of e). The typing is given in Tables 3 and 4.
Besides assumptions about the provided names of the environment kept in ∆, the typing
is done relative to assumptions about occurring free variables. They are kept separately
in a variable context Γ, a finite mapping from variables to types.

Rule T-Class type-checks classes [(c2,~lf = ~f,~l = ~m)], “called” in the premise of rule
T-NClass from Table 2 for named classes on the global level, where c1 in the conclusion
of T-Class is the class/type of [(c2,~lf = ~f,~l = ~m)] and c2 its direct super-class. The
name of the class c1 is used in the first premise to determine its interface type, which lists
the types of the class members. For the methods, ~l:~U specifies the type of the method
directly implemented by c1 and (~l′):~U ′ those inherited from c2 (i.e., implemented by c2
or further inherited by a class higher up in the hierarchy). The premises Γ; ∆ ` fi : Ti
and Γ; ∆ ` mj : Uj check the well-typedness of all implemented members of the class.
We silently assume that fi ranges over all fields and mj over all methods implemented
by the class and mentioned in ~lf resp. in ~l of the signature. That also implies that the
class does not provide code for methods with labels from (~l′). The inherited methods

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 14

are dealt with in the last premise Γ; ∆ ` c2.l′j′ : U ′j′ . The c2.l′j′ : U ′j′ is a short-hand for
looking up the type of l′j′ from the interface information of c2, i.e., for Γ; ∆ ` c2 : [(S2)]
where S2 = . . . l′j′ :Uj′ . . . or S2 = . . . (l′j′):Uj′ I.e., the type of l′j′ is checked to coincide
with the interface information of c1 independent of whether the super-class implements
l′j′ directly or whether it’s inherited. Typing for objects in rule T-Obj works similarly,
where c is the class the object instantiates. As the implementation of objects embeds the
implementation of methods into the object, we need to check both fields and methods
here, against the interface type of class c. The rest of the rules are straightforward,
including the ones for expressions from Table 4.

Γ; ∆ ` c1 : [(~lf :~T ,~l:~U, (~l′):~U ′)] Γ; ∆ ` fi : Ti

Γ; ∆ ` mj : Uj mj = ς(sj :c1).λ(~xj :~Tj).tj Γ; ∆ ` c2.l′j′ : U ′
j′

T-Class
Γ; ∆ ` [(c2,~lf = ~f,~l = ~m)] : c1

Γ ` c.li : Ti Γ ` c.l′j : U ′j Γ; ∆ ` fi : Ti Γ; ∆ ` mj : U ′j
T-Obj

Γ; ∆ ` [l1 = f1, . . . , lk = fk, l
′
1 = m1, . . . , l

′
n = mn, L] : c

Γ, ~x:~T ; ∆, s:c ` t : T ′

T-Memb
Γ; ∆ ` ς(s:c).λ(~x:~T).t : ~T → T

′

Γ; ∆ ` c : [(S)]
T-Undef

Γ; ∆ ` ⊥c : c

Γ; ∆ ` v : c Γ; ∆ ` c : [(S)] Γ; ∆ ` v′ : S.l
T-FUpdate

Γ; ∆ ` v.l := v
′

: c

Γ; ∆ ` c : [(S)]
T-NewC

Γ; ∆ ` new c : c

Γ; ∆ ` e : T1 Γ, x:T1; ∆ ` t : T2
T-Let

Γ; ∆ ` let x:T1 = e in t : T2

Γ; ∆ ` v1 : T1 Γ; ∆ ` v2 : T1 Γ; ∆ ` e1 : T2 Γ; ∆ ` e2 : T2
T-Cond

Γ; ∆ ` if v1 = v2 then e1 else e2 : T2

Γ; ∆ ` v : c Γ; ∆ ` c : [(. . . , l:T, . . .)] Γ; ∆ ` e1 : T2 Γ; ∆ ` e2 : T2
T-Cond⊥

Γ; ∆ ` if undef(v.l()) then e1 else e2 : T2

T-Stop
Γ; ∆ ` stop : T

T-Unit
Γ; ∆ ` () : Unit

Table 3: Typing (1)

The next example illustrates the type system, in particular the type checking of classes
and the role of the interfaces.

Example 1 (Type checking of classes). Assume two classes c1 and c2, where c2
extends c1. Assume further that c2 implements the two methods labelled l1 and l3, and
that the super-class c1 implements l1 and l2. The expected interfaces for the two classes
are therefore

[(S1)] = [(l1:U1, l2:U2)] and [(S2)] = [(l1:U1, (l2):U2, l3:U3)] (5)

Observable interface behavior and inheritance 15

Γ; ∆ ` p : 〈T 〉 Γ; ∆ ` o:c
T-Claim

Γ; ∆ ` claim@(p, o) : T

Γ; ∆ ` p : 〈T 〉
T-Get

Γ; ∆ ` get@p : T

Γ(x) = T
T-Var

Γ; ∆ ` x : T

∆(n) = T
T-Name

Γ; ∆ ` n : T

∆ ` o : c
T-Suspend

Γ; ∆ ` suspend(o) : Unit

∆ ` o : c
T-Grab

Γ; ∆ ` grab(o) : Unit

∆ ` o : c
T-Release

Γ; ∆ ` release(o) : Unit

Γ; ∆ ` v : c Γ; ∆ ` c.l : ~T → T Γ; ∆ ` vi : Ti

T-Call
Γ; ∆ ` v@l(~v) : T

Γ; ∆ ` t : T ∆ ` T ≤ T ′
T-Sub

Γ; ∆ ` t : T
′

Table 4: Typing (2)

for c1 and c2 respectively. As seen in the (right-hand) interface of Equation (5), the
available methods of instances of c2 are l1 (implemented by c2, and overriding the corre-
sponding method of c1), l2 (which is not implemented by c2 but inherited), and l3, which
again is implemented by c2. The derivation for both classes ends with an instance of rule
T-Par:

∆2 ` c1[(l1 = m1, l2 = m2)] : (c1:[(S1)]) ∆1 ` c2[(c1, l1 = m′
1, l3 = m3)] : (c2:[(S2)])

T-Par
∆0 ` c1[(l1 = m1, l2 = m2)] ‖ c2[(c1, l1 = m′

1, l3 = m3)] : (c1:[(S1)], c2:[(S2)])
(6)

Note that the interface [(S1)] for c1 is used as assumption to type-check c2 and vice versa.
In the derivation, we use the following abbreviations:

∆3 , ∆1, c2:[(S2)]
∆2 , ∆0, c2:[(S2)]
∆1 , ∆0, c1:[(S1)]

(7)

The second premise of Equation (6) gives rise to the following sub-derivation:

∆3 ` c2 : [(S2)] ∆3 ` m′
1 : U1 ∆3 ` m3 : U3 ∆3 ` c1.l2 : U2

T-Class
∆3 ` [(c1, l1 = m′

1, l3 = m3)] : c2
T-NClass

∆1 ` c2[(c1, l1 = m′
1, l3 = m3)] : (c2:[(S2)])

(8)

The type-check of the second premise of Equation (6) works similarly. ut

4. Typed operational semantics for open systems

The operational semantics is given in two stages, component internal steps and external
ones, where the latter describe the interaction at the interface. Section 4.1 starts with
component-internal steps, i.e., those definable without reference to the environment. In
particular, those steps have no externally observable effect. The external semantics, pre-
sented afterwards in Section 4.2, define the interaction between component and environ-
ment. They are defined in reference to assumption and commitment contexts.

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 16

4.1. Internal semantics

The internal steps rewrite components as given in the abstract grammar from Table 1.
In the configurations, one can distinguish two parts, a “mutable” and a fixed one. The
parts that change are the threads, which are being executed, and the objects which form
the mutable heap. Immutable are the classes which are referenced when doing method
look-up and which are arranged in the inheritance hierarchy. To simplify the writing of
the operational rules, we factor out the immutable class hierarchy. A configuration of the
closed semantics is then of the form

Γc ` C , (9)

where C contains the parallel composition of all instantiated objects and all running
threads and the class table Γc contains all class definitions. To stress the distinction be-
tween the mutable and the immutable part, we use ` as separator (and not the parallel
composition, as in the abstract syntax). With the classes being immutable, the opera-
tional steps do not change Γc and are thus of the form

Γc ` C −→ Γc ` C ′ . (10)

In the semantics later, we will distinguish confluent steps and non-confluent ones τ−→;
when being unspecific we simply write −→ for internal transition relation. Actually, the
information in Γc is needed only at one point, namely when binding a method call resp.
a field access to the corresponding code resp. to the data location. In the embedding
representation, this binding is established when a new object is instantiated (cf. rule
NewO and Definition 2 below); no other (internal) step actually refers to Γc; in the
rules of Table 6, we omit mentioning Γc, except in the rule NewO for instantiation
where it is needed.

The internal semantics describes the operational behavior of a closed system, not
interacting with an environment. The corresponding reduction steps are shown in Table 6,
distinguishing between confluent steps and other internal transitions τ−→, both invisible
at the interface. The -steps, on the one hand, do not access the instance state of the
objects. They are free of side effects and race conditions, and hence confluent. The τ−→-
steps, in contrast, access the instance state, either by reading or by writing it, and may
thus lead to race conditions.

The first seven rules deal with the basic sequential constructs, all as -steps. The
basic evaluation mechanism is substitution (cf. rule Red). Note that the rule requires
that the leading let-bound variable is replaced only by values v. In the rule Let dealing
with nested let-constructs, the variable x1 is assumed not to occur free in t. The opera-
tional behavior of the two forms of conditionals are axiomatized by the four Cond-rules.
Depending on the result of the comparison in the first pair of rules, resp., the result of
checking for definedness in the second pair, either the then- or the else-branch is taken.
Evaluating stop terminates the thread for good, i.e., the rest of the thread will never be
executed as there is no reduction rule for p〈stop〉 (cf. rule Stop).

For accessing the fields of an object (to update the field or to read it), the object

Observable interface behavior and inheritance 17

containing the field is consulted.‖ Remember further that we assume that fields are
never accessed directly but only via corresponding accessor methods (“get” and “set”)
and that we interpret the notations x.l() and v.l() := v to represent those accessor
methods. Rule FGet deals with field look-up. In the rule, F.l stands for ⊥c, resp., for v,
where o[M,F,L] = o[. . . , l = ⊥c, . . . , L], if the field is yet undefined, resp., o[M,F,L] =
o[M, . . . , l = v, . . . , L]. In rule FSet, the meta-mathematical notation F.l := v stands
for (. . . , l = v, . . .), when F = (. . . , l = v′, . . .). Rule NewT captures the execution of
an asynchronous method call o@l(~v); the step creates a new thread p which at the same
time serves are future reference to the later result. As the identity is fresh and not (yet)
known to threads other than the creating one, the configuration is enclosed inside a ν-
scope. The expression p〈call o.l(~v):T 〉! describes the message for the method call. The
expression run-time syntax and additional to the grammar of Table 1), as part of the
productions for C.

Rule Call deals with receiving an internal method call of method l with object o as the
callee. Being an internal method call means that the code of the method is implemented
by the component and not the environment. In our semantic representation based on
embedding, the question whether the method labelled l in object o is implemented by the
component or by the environment is already resolved (see the rule for object instantiation
below). In the configuration after the reduction step, the meta-mathematical notation
M.l(o)(~v) stands for t[o/s][~v/~x], when the method suite M contains a method definition
of the form l = ς(s:T).λ(~x:~T).t, which in this case is unique.

In the embedding representation of objects, the point in time where the binding is
resolved is when instantiating a new object (cf. rule NewO). To determine which fields
and methods are meant in a call is formalized in the function members from Definition
2. The function uses the class hierarchy and implements the search through the class
hierarchy collecting the members supported by an instance of the given class. We have to
distinguish between fields and methods. Methods are late-bound and thus, the method
nearest in the class hierarchy reachable is the one supported by an instance. To model
private methods (not directly supported by the abstract syntax), one could assume that
all private methods are named differently, i.e., a private method in a class is named
differently from all other (private or public methods).†† Fields are considered private and
thus subject to the same naming convention as the one for private methods. Of course,
renaming a field or method does not per se render it private, since being private means
some access restrictions, as well. Especially, a private method or field cannot be accessed
from a subclass. But those restrictions are captured by the type system. We insist that
for each pair of get/set accessor methods, either both are considered private or both
public.

For the method to implement the embedding in Definition 2, Rule M-Top deals with
a class without super-class (which corresponds to Object in Java), in which case the

‖ In the current semantics, the object contains all fields; in the open semantics later, the object members,
i.e., the fields and the methods are distributed over the component and the environment, and only

the fields of the object implemented by the component show up in the (internal) rules.
†† We furthermore do not consider overloading here.

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 18

fields and methods available are simply the ones as defined in the class. Sub-classing is
covered by rule M-Inh. Methods from an instance of the subclass c1 of c2 are taken from
c1 and c2, with those of c1 taking priority, i.e., one takes only those methods available
at c2, which are not provided directly from c1, written M2 \M1. For fields, we do not
need to ignore fields from c2, since all fields are considered being named differently, so no
confusion can arise. That we copy in fields also from the super-classes does not imply that
they are actually accessible in the corresponding instance. Privacy restrictions, however,
are dealt with not by the members-function, but statically by the type system. The public
availability of methods for instances of a class is determined by the signature of the class
and subtyping via subsumption allows to hide methods and make them thus unavailable.

Definition 2 (Embedding). Given a class hierarchy Γc and a class name c, then the
function members is given inductively in Table 5:

Γc ` c = [(⊥,M, F)]
M-Top

Γc ` members(c) = M,F

Γc ` c1 = [(c2,M1, F1)] M = M1,M2 \M1

F = F1, F2 Γc ` members(c2) = M2, F2

M-Inh
Γc ` members(c1) = M,F

Table 5: Members

With this definition, the instantiation of rule NewO is rather straightforward. The
new-statement creates a new instance with a fresh name, o in the rule. Since the reference
is fresh, it appears under the ν-binder in the post-configuration.

Example 3. Assume two classes

Γc ` circle1=[(⊥, setCenterX = ς(s:circle1).λ(x:float). s.centerX() := x,

setCenterY = ς(s:circle1).λ(x:float). s.centerY() := x,

setRadius = ς(s:circle1).λ(x:float). s.radius1() := x,

centerX = 0.0, centerY = 0.0, radius1 = 0.0)]
Γc ` circle2=[(circle1, setRadius = ς(s:circle2).λ(x:float). s.radius2():=x; s.A():=x∗x∗pi,

radius2 = 0.0, A = 0.0, pi = 3.14)] .

Then

Γc ` members(circle2) =
setRadius = ς(s:circle2).λ(x:float). s.radius2():=x; s.A():=x∗x∗pi,
setCenterX = ς(s:circle1).λ(x:float). s.centerX() := x,

setCenterY = ς(s:circle1).λ(x:float). s.centerY() := x,

radius2 = 0.0, A = 0.0, pi = 3.14, centerX = 0.0, centerY = 0.0, radius1 = 0.0 .

Note that though the field radius1 is contained in instances of circle2, this field is not
accessible.

Claiming as well as executing the get-expression fetches the value of a future reference.

Observable interface behavior and inheritance 19

p〈letx:T = v in t〉 p〈t[v/x]〉 Red

p〈letx2:T2 = (letx1:T1 = e1 in e) in t〉 p〈letx1:T1 = e1 in (letx2:T2 = e in t)〉 Let

p〈letx:T = (if v = v then e1 else e2) in t〉 p〈letx:T = e1 in t〉 Cond1

p〈letx:T = (if v1 = v2 then e1 else e2) in t〉 p〈letx:T = e2 in t〉 where v1 6= v2 Cond2

p〈letx:T = (if undef(⊥c) then e1 else e2) in t〉 p〈letx:T = e1 in t〉 Cond⊥1

p〈letx:T = (if undef(v) then e1 else e2) in t〉 p〈letx:T = e2 in t〉 Cond⊥2

p〈letx:T = stop in t〉 p〈stop〉 Stop

o[c,M,F, L] ‖ p〈letx:T = o.l() in t〉 τ−→ o[c,M,F, L] ‖ p〈letx:T = F.l in t〉 FGet

o[c,M,F, L] ‖ p〈letx:T = o.l() := v in t〉 τ−→ o[c,M,F.l := v, L] ‖ p〈letx:T = o in t〉 FSet

p′〈letx:〈T 〉 = o@l(~v) in t〉 ν(p:〈T 〉).(p′〈letx:〈T 〉 = p in t〉 ‖ p〈call o.l(~v):T 〉!) NewT

o[c,M, F,⊥] ‖ p〈call o.l(~v):T 〉! τ−→ o[c,M, F,>] ‖ p〈letx:T = M.l(o)(~v) in release(o);x〉 Call

Γc ` members(c) = M,F
NewO

Γc ` p〈letx:T = new c in t〉 Γc ` ν(o:c).(o[c,M, F,⊥] ‖ p〈letx:T = o in t〉)
p1〈letx : T = claim@(p2, o) in t〉 ‖ p2〈v〉 p1〈letx : T = v in t〉 Claim1

t2 6= v
Claim2

p1〈letx : T = claim@(p2, o) in t1〉 ‖ p2〈t2〉

p1〈letx : T = release(o)〉; get@p2 in grab(o); t1 ‖ p2〈t2〉

p1〈letx : T = get@p2 in t〉 ‖ p2〈v〉 p1〈letx : T = v in t〉 Get

p〈suspend(o); t〉 p〈release(o); grab(o); t〉 Suspend

o[c,M,F,⊥] ‖ p〈grab(o); t〉 τ−→ o[c,M,F,>] ‖ p〈t〉 Grab

o[c,M,F,>] ‖ p〈release(o); t〉 τ−→ o[c,M,F,⊥] ‖ p〈t〉 Release

Table 6: Internal steps

The two expressions differ, however, whether or not the lock may be released in case the
requested future is not yet evaluated. Claiming a future fetches the value without releasing
the lock, if the value is already availabe (cf. rule Claim1), and works in that situation
identical to getting the value in rule Get. If the value is not yet there, Claim2 releases
the lock temporarily, i.e., the thread attempts to re-acquire it immediately afterward.
There is no rule corresponding to Claim2 for get, i.e., trying to dereference a future
reference via get blocks without releasing the lock. Release and grab are dual and set the
lock to free resp. set it to the state > of “taken”. Both operations are not user syntax.
The expression suspend, finally, introduces a scheduling point by temporarily releasing
and then trying to re-acquire the lock.

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 20

Example 4 (Internal semantics). Assume that the class circle2 from Example 3 is
defined in the component. Then calling the method setCenterX of an instance o of circle2
is an internal call. Its execution creates a fresh thead (rule NewT) that grabs the object’s
lock and executes the method call (rule Call). The method sets the value of a field (rule
FSet) and, after a reduction (rule Let), releases the lock (rule Release).

o[circle2, centerX = 0.0, . . .,⊥] ‖ p′〈letx:〈circle2〉 = o@setCenterX(5.0) in t〉
 o[circle2, centerX = 0.0, . . .,⊥] ‖ ν(p:〈circle2〉).(p′〈letx:〈circle2〉 = p in t〉 ‖

p〈call o.setCenterX(5.0):circle2〉!))
τ−→ o[circle2, centerX = 0.0, . . .,>] ‖ ν(p:〈circle2〉).(p′〈letx:〈circle2〉 = p in t〉 ‖

p〈letx:circle2 = o.centerX() := 5.0 in release(o);x〉)
τ−→ o[circle2, centerX = 5.0, . . .,>] ‖ ν(p:〈circle2〉).(p′〈letx:〈circle2〉 = p in t〉 ‖

p〈letx:circle2 = o in release(o);x〉)
 o[circle2, centerX = 5.0, . . .,>] ‖ ν(p:〈circle2〉).(p′〈letx:〈circle2〉 = p in t〉 ‖

p〈release(o); o〉)
τ−→ o[circle2, centerX = 5.0, . . .,⊥] ‖ ν(p:〈circle2〉).(p′〈letx:〈circle2〉 = p in t〉 ‖

p〈o〉)

The above reduction relations are used modulo structural congruence, which captures
the algebraic properties of parallel composition and the hiding operator. The basic axioms
for ≡ are shown in Table 7 where in the fourth axiom, n does not occur free in C1. The
congruence relation is imported into the reduction relations in Table 8. Note that all
syntactic entities are always tacitly understood modulo α-conversion.

0 ‖ C ≡ C C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 7: Structural congruence

4.2. External semantics

In the external semantics, a component exchanges information via method calls and when
getting back the result of a method call (cf. Table 9), i.e., via call and get labels (by

C ≡ ≡ C′

C C′

C C′

C ‖ C′′ C′ ‖ C′′
C C′

ν(n:T).C ν(n:T).C′

C ≡ τ−→ ≡ C′

C
τ−→ C′

C
τ−→ C′

C ‖ C′′ τ−→ C′ ‖ C′′
C

τ−→ C′

ν(n:T).C
τ−→ ν(n:T).C′

Table 8: Reduction modulo congruence

Observable interface behavior and inheritance 21

γ ::= p〈call o.l(~v):T 〉 | p〈get(v)〉 | ν(n:T)o basic labels
a ::= γ? | γ! receive and send labels

Table 9: Labels

convention, referred to as γc and γg, for short). Interaction is either incoming (?) or
outgoing (!). In the labels, p is the identifier of the thread carrying out the call resp. of
being queried via claim or get. Scope extrusion of fresh names across the interface is
indicated by the ν-binder. In ν(n:T)o, the o represents the identity of the object that
creates the thread or object n.

4.2.1. Connectivity contexts and cliques An important condition for the open semantics
concerns which combinations of names can occur in communications. A well-typed com-
ponent thus takes into account the relation of objects from the assumption context ∆
among each other, and the knowledge of objects from ∆ about those exported by the
component, i.e., those from Θ. The connectivity contexts E∆ and EΘ over-approximate
the heap structure, i.e., the pointer structure of the objects among each other, divided
into the component part and the environment part. See the discussion related to Figure
2 for an illustration of connectivity as heap abstraction.

Definition 5 (Name contexts). ∆ and Θ are the assumption and commitment con-
texts containing name bindings of the form n:T . More precisely, bindings o:c for object
names and p:〈T 〉 for future references/thread names. Additionally, we use � to represent
the initial activity/initial clique. The pair of ∆ and Θ satisfies the following invariants.
The � is contained in either ∆ or in Θ (indicating where the initial activity at the pro-
gram start is located). Furthermore, if ∆ ` o:c1 and Θ ` o:c2, then c1 = c2. Wrt. future
references, the domains of ∆ and Θ are disjoint, i.e., if ∆ ` p : 〈T 〉, then Θ 6` p : 〈T 〉, and
conversely. We write ∆,Θ for the “union” of both bindings, i.e., ∆,Θ ` n : T if ∆ ` n : T
or Θ ` n : T .

To facilitate the following notationally, we use the following conventions.

Notation 6 (Contexts). We abbreviate the pair ∆;E∆ and Θ;EΘ of both assumption
and commitment context by Ξ, i.e., we write for instance Ξ ` C for ∆;E∆ ` C : Θ;EΘ.
The Ξ∆ refers to the assumption context ∆;E∆, and ΞΘ to Θ;EΘ. Furthermore we
understand Ξ́ as consisting of ∆́; É∆ and Θ́; ÉΘ, etc.

Definition 7 (Connectivity contexts). The semantics is given by labeled transitions
between judgments of the form ∆;E∆ ` C : Θ;EΘ, where ∆ and Θ are name contexts (cf.
Definition 5). The assumption connectivity context is a binary relation of the following
form, where ∆o refers to the object identities of ∆, Θp to the thread identities of Θ, etc.:

E∆ ⊆ (∆o ×∆o) + (∆o × Ξp) + (∆p ×∆o) (11)

and dually EΘ ⊆ (Θo×Θo) + (Θo×Ξp) + (Θp×Θo). We write n1 ↪→ n2 (“n1 may know
n2”) for pairs from these relations.

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 22

In analogy to the name contexts ∆, connectivity contexts E∆ express assumptions
about the environment, and EΘ commitments of the component.

Remark 8 (Invariant). The connectivity context of Equation (11) consists of three
“parts”. The part from ∆o ×∆o over-approximates which environment fields of objects
may know which objects. Similarly a pair o ↪→ p from ∆o × Ξp indicates that the (envi-
ronment half of) object o may know future p. Since we do not support first-class futures,
which means, future references cannot be passed around as arguments, there is exactly
one object with o ↪→ p, which is the creator of that future. In our setting that is the caller
of the corresponding method. The intuition for the pair of the form p ↪→ o is slightly
different; it means that thread p is executing inside object o (and thus “knows” o via the
self-parameter). More precisely, the thread has started executing in o by acquiring the
lock, but so far the result has not been obtained via executing get, so the thread p is not
yet garbage collected. As an invariant of the semantics, there is at most one object such
that p ↪→ o.

There is a further invariant, concerning o1 ↪→ p and p ↪→ o2: if o1 and p are both on
“the same side”, say ∆ ` o1 and ∆ ` p, then there exists no o2 such that E∆ ` p ↪→ o2

or EΘ ` p ↪→ o2. And conversely: If E∆ ` p ↪→ o2 (i.e., p executes in an environment
object o2), then EΘ ` o1 ↪→ p for some o1 with Θ ` o1 (i.e., the caller o1 is active in Θ
and its component fields know the thread/future p). ut

As mentioned, the component has to over-approximate via E∆ which environment parts
of the objects are potentially connected, and, symmetrically, for the own part of the heap
via EΘ. The worst case concerning possible connections is represented by the reflexive,
transitive, and symmetric closure of the ↪→-relation:

Definition 9 (Acquaintance). Given ∆ and E∆, we write � for the reflexive, transi-
tive, and symmetric closure of the ↪→-pairs of objects from the domain of ∆, i.e.,

� , (↪→↓∆o×∆o ∪ ←↩↓∆o×∆o)∗ ⊆ ∆o ×∆o . (12)

Note that we close the ↪→-relation concerning the environment-part of the heap, only.
As judgment, we use

∆;E∆ ` o1 � o2 (13)

For Θ and EΘ, the definitions are applied dually. Furthermore we write ∆;E∆ ` o ↪→ p

if o ↪→ p ∈ E∆, and analogously ∆;E∆ ` p ↪→ o. Note that we use the transitive and
reflexive closure for the connectivity among object identities, only.

4.2.2. Typed configurations The assumption contexts are an abstraction of the (absent)
environment, consulted to check whether an incoming action is currently possible, and
updated in an outgoing communication. The commitments play a dual role, i.e., they
are updated in incoming communication. With the code of the component present, the
commitment contexts are not used for checks for outgoing communication. Part of the
check concerns type checking, i.e., basically whether the values transmitted in a label

Observable interface behavior and inheritance 23

correspond to the declared types for the corresponding method. This is covered in the
following two definitions, where the first one searches the class hierarchy to determine
the class that implements a given member.

Definition 10 (Find). Given ∆,Θ, the function find takes a class name and a member
label l and returns the class which implements the member. The function is inductively
given in Table 10.

∆,Θ ` c : [(~l:~U, (~l′):~U ′)] l ∈ ~l
Find1

∆,Θ ` find(c, l) = c

∆,Θ ` c1 : [(~l:~U, (~l′):~U ′)] l /∈ ~l ∆,Θ ` c1 ≤1 c2 ∆,Θ ` find(c2, l) = c3
Find2

∆,Θ ` find(c1, l) = c3

Table 10: Binding

The rules for the find function of Table 10 work straightforwardly, determining the class
a member is defined in. Unlike the members function from Definition 2, the functions
here uses the interface information to find the class. The members function from Table 5
for the closed semantics consults the class table to do the same. This is no longer possible,
as we do not have the complete class table at hand in the open semantics.

Basically, the function searches the class hierarchy starting from c and moving to the
super-classes and returns the first class that implements the member labeled l. In the base
case of rule Find1, the member l is found in the current class c: the signature [~l:~U, (~l′):~U ′]
indicates that the member l is implemented by c as opposed to being inherited from a
super-class. If c does not implement the member in that l /∈ ~l (cf. rule Find2), the function
continues the search recursively with the immediate super-class c2 of c1, as stipulated by
the premise ∆,Θ ` c1 ≤1 c2. Note that the implementing class is found based on the
interface information ∆,Θ, only.

Definition 11 (Well-typedness). Let a be an incoming communication label. The
assertion

Ξ ` a (14)

(“under the context Ξ, label a is well-typed”) is given by the rules of Table 11. For
outgoing communication, the definition is dual.

For an incoming call to be well-typed (cf. rule LT-CallI), the callee name o and fu-
ture/thread name p must already be known at the interface (as required by the first and
the last premise). To be an interface interaction —here an incoming call from the envi-
ronment to the component— the code of the method l must be located at the component
side. This is assured by the second and third premise: The find-function determines the
class c′ where the method is implemented and ΓcΘ ` c′ assures that the class is part of
the component, as in the open semantics, only the class table ΓcΘ of the component is

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 24

available. Finally, the declared type ~T → T of the method is checked against the com-
municated values ~v and the future reference p, which is to reference the method’s return
value, must be of the matching type 〈T 〉. Note that the last premise requires that the p
is part of the assumption environment ∆. Well-typedness for get-labels used to fetch the
result from an asynchronous method calls is covered by rule LT-GetI, basically requiring
that type 〈T 〉 of p corresponds to the type T of the value v the name p references. Rule
LT-NewI finally deals with incoming communication of a fresh name n, either an object
reference or a future reference. The requirement is that the name is indeed fresh, and
that the type mentioned in the label is actually a type (stipulated by Ξ ` T). Besides
that, the name creation must come from an execution in an object on the environment
side, stipulated by the second premise.

The interface interaction provides also information that updates the contexts.

Definition 12 (Name context update). Let Ξ be a context and a an incoming label,
with Ξ ` a (cf. Definition 11) with incoming label a. The updated context Ξ́ = Ξ + a is
defined as follows (dually for outgoing communication):

1 a = ν(n:T)o′?, then ∆́ = ∆, n:T and Θ́ = Θ.
2 If a = p〈call o.l(~v):T 〉?, then ∆́ = ∆ \ p and Θ́ = Θ, p:〈T 〉 ∪ (o:c,~v:~T), where ∆ `

p : 〈T 〉 and where the types ~T resp. c of the arguments ~v resp. of o are given by
∆ ` vi : Ti, resp. ∆ ` o : c.

3 If a = p〈get(v)〉?, then ∆́ = ∆ \ p and Θ́ = Θ ∪ v:T , where ∆ ` p : 〈T 〉.

Part 1 covers communication of a fresh identity n where the assumption context ∆ is
extended by the type information for the new identifier n; the commitment context Θ is
left unchanged. If n represents a future reference, (assumed to be) freshly created by the
environment, the update from ∆ to ∆́ captures the intuition that the new thread/future
reference is issued by an asynchronous call from (another) thread in the environment, and
that initially, before actually grabbing the lock, the activity resides in the environment.
If n represents a reference to an object instantiated by the environment, the intuition is
as follows. As mentioned, the instance state of an object in the open semantics is split
into two halves, one implemented by the component and one by the environment, which
therefore is not represented in the open configuration. At the time when an object is
instantiated by the environment (which is the situation for incoming communication),
the new object identifier is communicated at the interface through the ν-label, and the
half of the object belonging to the environment is already instantiated, i.e., its fields

Ξ ` o : c Ξ ` find(c, l) = c′ Γc
Θ ` c

′ Ξ ` c′ : [(. . . , l:~T → T, . . .)] Ξ ` ~v : ~T ∆ ` p : 〈T 〉
LT-CallI

Ξ ` p〈call o.l(~v):T 〉?

∆ ` p : 〈T 〉 Ξ ` v : T
LT-GetI

Ξ ` p〈get(v)〉?

Ξ 6` n ∆ ` o:c Ξ ` T
LT-NewI

Ξ ` ν(n:T)o?

Table 11: Checking static assumptions

Observable interface behavior and inheritance 25

Ξ ` ν(n:T)o?

∆ ` o′ : c E∆ ` o′ ↪→ p E∆ ` o′ � o, ~v

Ξ ` p〈call o.l(~v):T 〉?

EΘ ` o′ ↪→ p E∆ ` p ↪→ o� v

Ξ ` p〈get(v)〉?

Table 12: Connectivity check

and methods are (assumed to be) embedded. The members of the component, however,
are not yet embedded, i.e., after the fresh object identifier has been communicated, only
one half of the object is instantiated, namely the half at the side, which executed the
instantiation command; in the case of incoming communication, that is the environment.
Remember from the conditions on ∆ and Θ from Definition 5 that a binding o:c for an
object identifier can be contained in ∆ or Θ or in both (in the latter case with the same
type c). After ν(o:c)o′?, the o is given a type in the environment context, only.

That changes in part 2 which deals with incoming call labels. The communication of
the call label at the interface represents the moment where the method actually grabs the
lock of the callee, o in this case. At that point, the thread p changes from the side of the
caller to the side where the method body is implemented. This means, the corresponding
binding p:〈T 〉 is removed from ∆ and added to Θ. That preserves the invariant from
Definition 5, that future/thread names are either bound in ∆ or in Θ but not in both.
Part 2 updates Θ also wrt. the callee identity o. Remember from the discussion in part
1 that in the communication step ν(o:c)o′?, the corresponding binding o:c is added to
∆, only. In the call-step now, also Θ is extended by that binding. Part 3 finally updates
the name contexts in case of an incoming get-communication. As our language does not
support first-class futures, each future is referenced at most once; afterwards it can be
garbage collected. This is reflected in the update, in that we remove the binding from
the corresponding context, here ∆.

The checks of the connectivity assumptions are formalized as follows:

Definition 13 (Connectivity context check). Let Ξ be a context and a be an incom-
ing communication label. Overloading the notation from Definition 11, we write Ξ ` a
if the conditions of Table 12 are met. For outgoing communication, the definition works
dually.

In the semantical rules, Ξ ` a means that both typing and connectivity are checked.

For incoming ν-labels, the connectivity is not checked. Remember from rule LT-NewI,
that for well-typedness, the environment on the other side needs to contain at least one
object, required by ∆ ` o:c in the premise of the rule. For incoming method calls, the
caller, o′ in the rule is the object that issued the asynchronous method call, checked by
o′ ↪→ p, where p is the thread to execute the method body and furthermore o′ must be
contained in the environment (by ∆ ` o′). For fetching the result of a method call via
get, the caller o′ must know the thread/future reference p, and since it is an incoming
communication, the acquaintance must follow from the commitment context EΘ which
implies that the call had been issued by the half of o′ contained in the component,
not the environment. Note further that the well-typedness assumption for incoming get-

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 26

communication requires (by the premise ∆ ` p : 〈T 〉), that the thread is actually on the
environment side, not the component side. The last two conditions assure that that prior
call had been issued already (as an outgoing call from the component to the environment)
and that the thread p is not just been created without actually having started executing.
The remaining premises in the rules for calls, resp. for get-labels require that the “sender”
of the information know the transmitted arguments. In the case of incoming calls, the
sender is the caller, o′ in the rules. That it knows the arguments and caller o is required
by E∆ ` o′ � o,~v. For the incoming get-label, the sender of the information is the callee
o, which is required to know the argument v. In the premise E∆ ` p ↪→ o� v, the part
E∆ ` p ↪→ o determines o as the caller; in the connectivity update later, by adding a
pair p ↪→ o for method calls, the caller is remembered.

For updating connectivity, communication may bring objects in connection which had
been separate before. For an incoming call, this can be directly formulated by adding
the fact that the receiver of the communication now is acquainted with all transmitted
arguments. As far as the thread p is concerned: the fact that p starts executing in the
callee o after the call is remembered by adding p ↪→ o to the commitment connectivity.
See part 2 of Definition 14 below. Similarly in part 3 for incoming get information:
the object o dereferencing the future p now knows the value v communicated in the
communication. The object o is determined by the condition EΘ ` o ↪→ p. Since the
future reference/thread is garbage collected after dereferencing, the connection o ↪→ p is
removed from the connectivity context, as well. Furthermore removed is the pair p ↪→ o′,
where o′ indicates the object that has executed the method body leading to the result
v. As mentioned, the incoming information updates basically the connectivity for the
commitment, but that is the case only for the two cases 2 and 3 just discussed. For
incoming fresh identifiers in case 1, the assumed connectivity of the environment is
updated, namely by the assumption that the originator o′ of the new identifier n knows
it.

Definition 14 (Connectivity context update). Assume Ξ ` a. The update of the
connectivity contexts Ξ́ = Ξ + a is defined as follows. (The definition for outgoing com-
munication is dual.)

1 If a = ν(n:T)o′?, then É∆ = E∆, o
′ ↪→ n.

2 If a = p〈call o.l(~v):T 〉?, then ÉΘ = EΘ, o ↪→ ~v, p ↪→ o.
3 If a = p〈get(v)〉?, then ÉΘ = (EΘ, o ↪→ v) \(o ↪→ p), where EΘ ` (o ↪→ p), and

É∆ = E∆ \(p ↪→ o′) (where E∆ ` p ↪→ o′).

The situation of the connectivity context update is also illustrated in Figure 2 in Sec-
tion 2.4. In Figures 2a and 2b, the component on the left-hand side creates two objects
o1 and o2. Assume that component thread executing in object o issues the two object-
creation statements The two interface communications are thus labeled by ν(o1:CC)o!
and ν(o2:CC)o!. According to the dual situation of part 1 of Definition 14, the assump-
tion context ÉΘ after the two steps contains o ↪→ o1 and o ↪→ o2 and, via transitivity,
reflexivity, and symmetry, also ÉΘ ` o1 � o2. This reflects that fact, that the sender o1

and o2 may know each other without further interface interaction. That is illustrated in

Observable interface behavior and inheritance 27

a step to Figure 2c, when an call to the component-internal set-method sets a compo-
nent field of o1 to point to o2 (depicted by the corresponding bold arrow in the figure).
However, the assumption context É∆ after the steps is unchanged compared to the sit-
uation E∆ before the steps, which means that É∆ 6` o1 � o2, since o1 and o2 are two
(different) fresh identifiers. In that situation, for instance no incoming call of the form
p′′〈call o′.l(o1, o2):T 〉? would be possible, since the connectivity check from Definition 13
would fail for incoming communication. Using a set-method which is implemented by the
environment instead, the situation changes, which is illustrated in the step from Figure
2b to 2d: In this situation, the method call to the set method is an external communica-
tion, labeled p〈call o1.set(o2):Unit〉!. According to the dual situation of Definition 14(2),
ÉΘ is further updated to contain o1 ↪→ o2, which is shown by the bold arrow in Figure
2d (we ignore the role of the thread identifier in the example).

4.2.3. External steps The semantics is given as labeled transitions between typing judg-
ments of the form

∆;E∆ ` C : ΓcΘ,Θ;EΘ . (15)

Note that only the class table ΓcΘ of class definitions of the component is available, the
environment classes are missing. As ΓcΘ does not change during execution, we assume it
is given implicitly. As before, we abbreviate the judgment of Equation (15) as Ξ ` C (cf.
Notation 6). The steps of the external semantics are of the form

Ξ ` C a−→ Ξ́ ` Ć . (16)

Based on the previous definitions to check and update the context information, the
typed operational rules of the external semantics are given in Table 13. Conceptually,
the rules fall into two groups, namely those for incoming communication and those for
outgoing communication (plus a few internal ones).

As shown in Equation (15) also the class table Γc is split into an assumption and a
commitment half (Γc∆ and ΓcΘ). As the environment part Γc∆ is not available, instantiation
can embed only those members of a new object which are actually provided by ΓcΘ. We
have to adapt Definition 2 for embedding fields and methods during instantiation to
deal with the fact that the whole class table is no longer available. Given a class table
ΓcΘ plus the interface information, which in particular contains information about the
class hierarchy, the function members looks up the implementation of the members of an
instance of class c.

Definition 15. Let ∆,Θ be a well-formed typing context, ΓcΘ the component half of
the class table, and c a class name. Given ∆,Θ and ΓcΘ, the function members on class
names c is defined as follows:

members(c) = {R.l | ∆,Θ ` find(c, l) = c′ and ΓcΘ = c′[(R)],Γc′Θ }. (17)

The definition for Γc∆ works dually.

Using the find -function from Definition 10, the function members finds the implementa-
tion for all (public) component members of a class c. As the function returns the code,

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 28

the interface information ∆,Θ alone is not good enough, we need the class table. Once,
find has determined the (name of the) class, the class table ΓcΘ is consulted to extract the
methods and fields of the class, from which R.l selects the intended one. For instance, in
the situation of Listing 2 in the informal exposition of Section 2, invoking members on the
subclass in the component will give back only method mC , since only this method, unlike
mE of the super-class is actually implemented by the component itself. Assuming classes
as given in Listing 3, where here CE is assumed to be an component class (in contrast to
the discussion in Section 2), invoking members on the subclass CE gives back implemen-
tations CE ’s implementation for m2 independent of the fact whether CC is a component
or an environment class, since the method is overridden in CE . Whether members also
contains the method m1 depends on whether the super-class is a component class, as
well, or not.

Now to the operational rules of the open semantics. The first four rules of Table 13
deal with exchange of “new” information, i.e., with identifiers created at one side and
communicated to the other. In rule NewOO, the component instantiates a new object.
Executing the new c-expression creates o as a fresh identifier and the component heap is
extended by the new object instance o[c,M,F,⊥]. In our semantics, that object repre-
sents only one half of the global view on the object, namely the half which contains the
record M,F of those members (methods and fields) actually implemented by component
classes. The function members determines that record and embeds it into o, consulting
the interface information ∆ and Θ (as part of Ξ) and the component half of the class-
table ΓcΘ. Immediately after instantiation, the lock is free, represented by ⊥. The step of
the component is labeled by ν(o:c)o′ !, which is used to update the interface information
in Ξ to Ξ́ = Ξ + a. Part of the label is the creating object o′ whose identity is deter-
mined by the premise EΘ ` p ↪→ o′. The second part of the context information which
is updated by Ξ + a is the connectivity. In case of NewOO, the label communicates
information about a new identity and it is the sender’s connectivity information which is
updated, which means for outgoing communication, the connectivity of the component
side. For the receiving, environment side, the object o is not yet added to the correspond-
ing context ∆ (see Definition 12(1)). For the communication labels later, which do not
deal with transmitting fresh information, the situation is dual: sending information from
the component to the environment updates the environment information (especially con-
nectivity), not the component information. Rule NewOI is dual to NewOO and deals
with the situation that a new object identity is transmitted from the environment to the
component, indicated by a label of the form ν(o:c)o′?. The premises Ξ ` a and Ξ́ = Ξ+a

check whether the communication is possible, resp., update the context appropriately.
The premise Ξ ` a for checking whether the interaction a is possible as a next step has
not been present (in dual form) in NewOO: For steps initiated by the component, such
as creating a new object and publishing its identity at the interface, it is not necessary
whether the step is actually possible: the fact that the code executes the state shows that
it is possible. Note that unlike in rule NewOO, no object half is actually instantiated
in step. Outgoing calls are dealt with by the rules NewTO and CallO. In NewTO,
the component executes the expression o@l(~v) for asynchronous method calls, creating a
new process (and future reference) p and a message p〈call o.l(~v):T 〉!. The step does not

Observable interface behavior and inheritance 29

distinguish between internal and external method calls. The fresh identity p of the new
thread is immediately communicated to the environment by the label ν(p:〈T 〉)o′ !, and
the contexts Ξ is updated to Ξ́ appropriately (the creator o′ of the thread is determined
in the same way as in rule NewOO). Rule NewTI deals with the dual situation. As
in general for steps of the environment, we need to check whether the step is possible,
which is done by the premise Ξ ` a.

The message for an outgoing call is communicated at the interface in rule CallO,
i.e., the rule describes a situation continuing from a configuration after a NewTO-step.
To be an external call requires that the callee object o does not implement the called
method l (formulated by the premise M.l = ⊥). Since M.l = ⊥ and since we assume
all programs to be well-typed, the method must be implemented by the environment
and thus is assumed to be embedded in the environment part of the object. Another
pre-condition for the step concerns the lock of the object. Note that we assume that
the interface interaction representing an outgoing call atomically captures the step when
the lock is actually taken. Since in the configuration, we conceptually represent only the
perspective of the component on the “shared” lock, we require that, from the perspective
of the component, it is free by requiring that the object is of the form o[c,M,F,⊥]. Even
if we don’t know whether the environment has “actually” taken the lock or not, the
CallO-step is enabled based on that fact that the component does not hold the lock.
Having abstracted away from the environment, it is enough to know that there exists an
environment that currently does not hold the lock, in other words, that the lock may be
free. Note further that after the CallO-step, the lock, as represented in the semantics,
is free still! Even if the interface step is understood as atomically taking the lock, it is
unobservable when it frees it again, so in absence of an environment and in absence of
interference, it is possible that the lock is free again next time the component does a step,
so the semantics might as well not take the lock at all. In other words: whether or not
the environment is in possession of the lock or not is unobservable for the component.

The CallI-rules are dual to CallO and deal with incoming calls. As objects created
by the environment are instantiated at the component only when they are called for the
first time, we distinguish two situations: the object half is not yet instantiated or it is
already (rules CallI1 and CallI2). In the first case, the new object needs to be instan-
tiated, using the members-function analogously to the instantiation in rule NewOO to
embed the members of the object. After the instantiation, the lock is taken, since the
communication step corresponds to the point in time where the method actually starts
executing. In case of CallI2, the callee object is already present in the component. The
same is done for all object reference arguments from the actual parameters ~v; we simply
write C(~v) to denote the corresponding newly instantiated object-halves. To be able to
accept the incoming call, the lock must be free before the step, and is it taken afterwards.
Again, by writing M.l(o)(~v) we mean especially, that the methods M of the callee o actu-
ally contain the method labeled l and hence it is an incoming call from the environment
to the component. In both CallI rules, the well-typedness and connectivity is checked
in the premises, and the contexts updated appropriately.

The ClaimI- and GetI-rules all deal with the component receiving the result of a
method call by referencing the corresponding future reference, p′ in the rules. Remember

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 30

that there are two constructs with which to obtain the return value of a method call:
claim and get. Both have the same “functional” behavior but behave differently as far
as the lock-handling is concerned (cf. also the rules of the internal semantics of Table
6). That means that the checks for well-formedness, typing, and connectivity coincide
for both kinds of interactions. The same applies for the context updates. When claiming
a future, there are two possible reactions of the thread executing the claim: either the
claim is immediately successful (in rule ClaimI1) and the value is imported, or the future
is not yet evaluated in which case claiming thread releases the lock temporarily in an
internal step (cf. rule ClaimI2). In both cases, the future is located in the environment,
as requested by ∆ ` p′; in case of ClaimI1, that is part of the check Ξ ` a. An outgoing
get-communication in rule GetO simply updates the contexts and removes the consumed
future from the component.

a = ν(o:c)o′ ! EΘ ` p ↪→ o′ ∆,Θ; ΓΘ ` members(c) = M,F Ξ́ = Ξ + a
NewOO

Ξ ` C ‖ p〈let x:c
′

= new c in t〉 a−→ Ξ́ ` C ‖ p〈let x:c
′

= o in t〉 ‖ o[c,M, F,⊥]

a = ν(o:c)o′? Ξ ` a Ξ́ = Ξ + a
NewOI

Ξ ` C a−→ Ξ́ ` C

a = ν(p:〈T 〉)o′? Ξ ` a Ξ́ = Ξ + a
NewTI

Ξ ` C a−→ Ξ́ ` C

a = ν(p:〈T 〉)o′ ! EΘ ` p′ ↪→ o′ Ξ́ = Ξ + a
NewTO

Ξ ` C ‖ p′〈let x:〈T 〉 = o@l(~v) in t〉 a−→ Ξ́ ` C ‖ p′〈let x:〈T 〉 = p in t〉 ‖ p〈call o.l(~v):T 〉!

a = p〈call o.l(~v):T 〉! C = C′ ‖ o[c,M, F,⊥] M.l = ⊥ Ξ́ = Ξ + a
CallO

Ξ ` C ‖ a a−→ Ξ́ ` C

a = p〈call o.l(~v):T 〉? Ξ ` a Ξ́ = Ξ + a Θ 6` o ∆ ` o:c ∆,Θ; ΓΘ ` members(c) = M,F
CallI1

Ξ ` C a−→ Ξ́ ` C ‖ p〈let x:T = M.l(o)(~v) in release(o); x〉 ‖ o[c,M, F,>] ‖ C(~v)

a = p〈call o.l(~v):T 〉? Ξ ` a Ξ́ = Ξ + a
CallI2

Ξ ` C ‖ o[c,M, F,⊥]
a−→ Ξ́ ` C ‖ p〈let x:T = M.l(o)(~v) in release(o); x〉 ‖ o[c,M, F,>] ‖ C(~v)

a = p′〈get(v)〉? Ξ ` a Ξ́ = Ξ + a
ClaimI1

Ξ ` C ‖ p〈let x:T = claim@(p′,) in t〉 a−→ Ξ́ ` C ‖ p〈let x:T = v in t〉 ‖ C(v)

∆ ` p′
ClaimI2

Ξ ` C ‖ p〈let x:T = claim@(p′, o) in t〉 Ξ ` C ‖ p〈release(o); let x:T = get@p′ in grab(o); t〉 ‖ C(v)

a = p′〈get(v)〉? Ξ ` a Ξ́ = Ξ + a
GetI

Ξ ` C ‖ p〈let x:T = get@p′ in t〉 a−→ Ξ́ ` C ‖ p〈let x:T = v in t〉 ‖ C(v)

a = p〈get(v)〉! Ξ́ = Ξ + a
GetO

Ξ ` C ‖ p〈v〉 a−→ Ξ́ ` C

Table 13: External steps

Observable interface behavior and inheritance 31

The following example illustrates the interface behavior and the role of the assumption
and commitment context on a small example involving inheritance.

Example 16 (Observable trace). Assume class c′ extends c, inheriting a method m

from c and containing a method m′ which is sketched in Listing 5. Assume further, that
c′ is a component class and c is a class from the environment.

Listing 5: Observable trace and cross-border inheritance

T m′ () {
l e t x2 : c = new c ()
in l e t y1:c′′ = t h i s .m()
in l e t y2:c′′ = x2 .m()
in t

}

In the above code, the method-call notation x.m() abbreviates an asynchronous call to
m followed immediately by the corresponding get-operation on the corresponding future,
i.e., let y:T = x.m() in t abbreviates let y:T = (let y′:〈T 〉 = x@m() in get@y′) in t. Further-
more, we use the more conventional this instead of the ς-bound self-parameter of the
formal calculus. Assuming that method m′ is being invoked on an object o1 (meaning
that this is substituted by o1 in the running code), one possible trace, using the opera-
tional rules of Table 6 and 13, looks as follows:

p〈call o1.m
′():T 〉?.ν(o2:c)o1 !.

ν(p1:〈c′′〉)o1 !.p1〈call o1.m():c′′〉!.p1〈get(o′1)〉?.
ν(p2:〈c′′〉)o1 !.p2〈call o2.m():c′′〉!.p2〈get(o′2)〉?

(18)

After invocation of m′, the method creates a new object o2, indicated by the outgoing
ν-label. The remaining 6 labels represent the two method calls with o1, resp. o2 as callee
(the call to o1 is a direct self-call), and the corresponding communication of the results
back to the caller, represented by the two get-labels. Due to the asynchronous nature of
communication, that trace is only one possible behavior, e.g., alternatively the order of
the outgoing calls may be swapped.

The change of the assumption and commitment contexts during the execution is shown
in equation (19). The second column contains the respective communication labels, the
last 4 columns contain the corresponding contexts after executing the label; in case the
step leaves the context unchanged, we leave the corresponding entry empty. For the
contexts Θ and ∆, we elide the typing information. Furthermore, the super-scripts refer
to the line in the table and the contexts without grave-accent to the state before the
step. For example, in the first line, the entry ∆0 \ p represents the assumption context
∆́0 after the incoming call, relating it to the assumption context ∆0 before that initial
call.

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 32

label ÉΘ Θ́ ∆́ É∆

0 p〈call o1.m′():T 〉? E0
Θ, p↪→o1 Θ0, p, o1 ∆0 \ p

1 ν(o2:c)o1 !. E1
Θ, o1↪→o2 Θ1, o2

2 ν(p1:〈c′′〉)o1 ! E2
Θ, o1↪→p1 Θ2, p1

3 p1〈call o1.m():c′′〉! Θ3 \ p1 ∆3, p1, o1 E3
∆, p1↪→o1

4 p1〈get(o′1)〉? (E4
Θ \ o1↪→p1), o1↪→o′1 ∆4 \ p1 E4

∆ \ p1↪→o1

5 ν(p2:〈c′′〉)o1 ! E5
Θ, o1↪→p2 Θ5, p2

6 p2〈call o2.m():c′′〉! Θ6 \ p2 ∆6, p2, o2 E6
∆, p2↪→o2

7 p2〈get(o′2)〉? (E7
Θ \ o1↪→p2), o1↪→o′2 ∆7 \ p2 E7

∆ \ p2↪→o2

(19)

The table represents the context updates for the various steps from Definition 12 and
14. The checks for well-typedness and connectivity from Definitions 11 and 13 are given
in (20). As mentioned, for outgoing communication, well-typedness and connectivity of
the interaction label are not checked by the premises of the rules of Table 13, as their
satisfaction is maintained by the steps of the semantics. The table from (20) list the
checks (which are the exact duals of their counter-parts for incoming communication)
nonetheless. When considering the trace of (18) in isolation, i.e., not as observable behav-
ior of the concrete program from Listing 5, then the checks for incoming and outgoing
communications would validate that the trace is the behavior of a arbitrary program
with the statically given classes c and c′ and their inheritance structure. In the table of
(20), the inheritance structure is used in the call-steps, where Ξ ` find(c′,m′) = c′, and
Ξ ` find(c′,m) = c determine c′ resp. c implementing the corresponding method body,
and ΓcΘ ` c′ resp. Γc∆ ` c determine that c′ is a component class and c a class of the
environment.

label typing connectivity

0 p〈call o1.m′():T 〉? Ξ ` o1:c′,
Ξ ` find(c′,m′) = c′,
ΓcΘ ` c

′

Ξ ` c′:[(m′:Unit→ T, . . .)],

∆ ` p:〈T 〉

∆ ` o:c̃, E∆ ` o↪→p,E∆ ` o�o1

1 ν(o2:c)o1 !. Ξ 6` o2,Θ ` o1:c′,Ξ ` c
2 ν(p1:〈c′′〉)o1 ! Ξ 6` p1,Θ ` o1:c′,Ξ ` 〈c′′〉
3 p1〈call o1.m():c′′〉! Ξ ` o1:c′,

Ξ ` find(c′,m) = c,

Γc∆ ` c
′,

Ξ ` c : [(m:Unit→ c′′, . . .)],
Θ ` p1:〈c′′〉

Θ ` o1:c′, EΘ ` o1↪→p1, EΘ ` o1�o1

4 p1〈get(o′1)〉? ∆ ` p1:〈c′′〉,Ξ ` o′1:c′′ E∆ ` p1↪→o1�o′1, EΘ ` o1↪→p1

5 ν(p2:〈c′′〉)o1 ! Ξ 6` p2,Θ ` o1:c′,Ξ ` 〈c′′〉
6 p2〈call o2.m():c′′〉! Ξ ` o2:c,

Ξ ` find(c,m) = c
Γc∆ ` c,
Ξ ` c : [(m:Unit→ c′′, . . .)],
Θ ` p2:〈c′′〉

Θ ` o1:c′, EΘ ` o1↪→p2, EΘ ` o1�o2

7 p2〈get(o′2)〉? ∆ ` p2:〈c′′〉,Ξ ` o′2:c′′ E∆ ` p2↪→o2�o′2, EΘ ` o1↪→p2

(20)

Two points are worth noting: the requirement Ξ 6` o2 expressing that o2 is fresh in
line 1 of (20) ultimately entails that after line 6, object o2 cannot be connected to o′1,

Observable interface behavior and inheritance 33

i.e. E7
∆ 6` o2 � o′1. In other words, due to the connectivity check in line 7 of (20), the

last incoming communication p2〈get(o′2)〉? of the program is impossible if o′2 = o′1, and
the corresponding trace would be illegal, and the assertion y1 6= y2 as pre-condition to t
in Listing 5 would be provable. The information that y1 and y2 are no aliases (at that
point) can be used to show that when replacing the rest of the method t by an alternative
t′ where subsequent sequential accesses to y1 and y2 are executed in parallel instead is
an observably equivalent variation of t. Without the open semantics keeping track of the
potential connectivity of objects, such an optimization would not be possible.

Furthermore note that for the calls, the type information is used to determine where the
code of the method resides. That is done with the help of the find -function (cf. Definition
10). E.g., in line 0 of (20), method m′ is implemented in class c′, and in lines 3 resp. 6,
find establishes the environment class c to contain m. E.g., for the outgoing call of the
self-call, the condition Γc∆ ` c′ asserts that c′ (which implements m) is an environment
class, and therefore the self-call is an interface interaction; if ΓcΘ ` c′ instead, the call
would be a component-internal step.

Finally consider a restricted set-up, where, unlike as in the example here, component
code can neither instantiate an environment class nor where a component class can
inherit methods from environment classes. In that situation, outgoing communication
labels of the form ν(o:c)o! (as in line 1) would not occur, and as a consequence, for
incoming communication, negative connectivity assertions such as E7

∆ 6` o2 � o′1 from
above would never be derived. The restricted set-up corresponds roughly to the use of
class libraries: the client code using the library of course can instantiate library classes or
extend them via inheritance, but the converse direction is not possible. In that setting, the
semantics simplifies considerably as the connectivity can be ignored to obtain a precise
open semantics. Furthermore, self-calls of a library component are always internal. ut

Remark 17 (Interface information). The interface information, as far as typing is
concerned, is kept in ∆ and Θ and contains the names of the (publicly available) interface
types, i.e., their signature. Furthermore, the class hierarchy is part of the interface infor-
mation, i.e., which class extends which one. A final piece of information relevant at the
interface is not only to mention the available methods, but also, whether a method needs
actually to be implemented by the class, or whether it is inherited from a super-class.

The last piece of information is typically not part of an interface description; interfaces
in Java, for instance, do not specify that. There is a good reason why it is included in
our representation, namely: whether or not a class overrides a method or inherits it is
observable from the outside. ut

Remark 18 (Lock). The state of an object, i.e., its fields, are represented in the open
semantics split : only the fields pertaining the component are represented, those of the
environment are not. The lock can be seen as part of the instance state, but it does not
belong exclusively to one of the two sides, it is shared. In a configuration of the open
semantics, each object represented therefore contains “one half” of its lock, interpreted as
follows. A lock taken > represents the situation that a component thread is in possession
of the lock. A free lock ⊥ means the opposite: no component thread currently holds the
lock. This, however, does not represent information about the status of the lock as far

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 34

as the environment is concerned. A lock status ⊥ means that the environment may or
may not currently hold the lock. Due to the asynchronous nature of communication and
(related to that) due to the absence of re-entrant threading, a lock status of ⊥ from the
perspective of the component has no implications about whether the environment holds
the lock or not. Even if the component has issued a call to an environment method, which
during execution holds the lock, the component does not know whether the execution
has not yet started, is under way, or is already finished. The latter case, that a particular
method that has been called by the component and executed by the environment has
finished can be “observed” by the fact that the methods return value is available. But
then again, the way to “observe” that is via claim or get, which do not allow to observe the
negative fact that the value is not yet there and that consequently the particular method
has not yet given back that lock. And after the value is available, it is unobservable from
the perspective of the component, whether or not another thread has taken the lock
again in the meantime. In summary: if, from the perspective of the component, the lock
is free, the component can never be sure about the lock-status as far as the environment
is concerned. In that sense, the component and the environment are decoupled. In a
Java-like setting with synchronous method calls and re-entrant monitors, this is not the
case and complicates matters considerably (cf. Ábrahám et al. [2008], which deals with
re-entrant monitor behavior). ut

Remark 19 (Concurrency model). The results of this paper are formulated for a
concurrent, object-oriented language based on active objects and asynchronous method
calls. The concurrency model is thus different from the concurrency model based on
multi-threading used in languages as Java and C]. As far as the inheritance is concerned,
the situation in our calculus resembles closely to the one in those mentioned languages,
representing the mainstream of object-oriented languages: late-bound methods and a
single-inheritance class-hierarchy.

This means that in principle the results of this work apply to a multi-threaded setting,
as well, namely that inheritance makes self-calls observable, and that approximation of
the heap structure is relevant interface information. Concerning the details, using a lan-
guage based on multi-threading, re-entrant monitors, and inheritance, would considerably
complicate the interface behavior. One reason is that for a precise characterization, one
would need to characterize the re-entrant behavior of threads: the future references here
would be interpreted as thread identifiers and for each thread identifier, the trace must
be a (prefix of) a context-free language of matching calls and returns. That corresponds
to well-bracketed strategies in game theory (cf. e.g. Abramsky and McCusker [1997]).

One reason is that the presence of the synchronized keyword as in Java complicates
the setting in at least one of the following two ways, depending on which decision is taken
wrt. whether being synchronized or not is public interface information.

If the question of being synchronized is part of the interface information of a method,
the interaction trace reveals in many cases information, that the re-entrant lock of a given
object is definitely taken, and that information must be taken into account. In our set-
ting here, the information that a lock is taken is not part of the interface information
which simplifies the treatment considerably. The consequences of multi-threading with

Observable interface behavior and inheritance 35

Ξ ` ε : trace L-Empty

a = ν(n:c)o′? Ξ ` a Ξ́ = Ξ + a Ξ́ ` s : trace
L-NewI

Ξ ` a s : trace

a = p〈call o.l(~v):T 〉? Ξ ` a Ξ́ = Ξ + a Ξ́ ` s : trace
L-CallI

Ξ ` a s : trace

a = p′〈get(v)〉? Ξ ` a Ξ́ = Ξ + a Ξ́ ` s : trace
L-GetI

Ξ ` a s : trace

Table 14: Legal traces (dual rules omitted)

re-entrant locks are explored in Ábrahám et al. [2006], but without inheritance. If, alter-
natively, the decision is taken that synchronized is not part of the interface information,
a synchronized method does not really provide protection against interference, especially
if an unsynchronized method is inherited.

We consider these (considerable) complications as a serious counter-argument against
the multi-threading concurrency model. ut

5. Interface behavior and legal traces

Next we characterize the possible (“legal”) interface behavior as interaction traces be-
tween component and environment. Half of the work has been done already in the careful
definition of the external steps in Table 13: For incoming communication, for which the
environment is responsible, the assumption contexts are consulted to check whether the
communication originates from a realizable environment. Concerning the reaction of the
component, no such checks were necessary. To characterize when a given trace is legal,
the behavior of the component side, i.e., the outgoing communication, must adhere to
the dual discipline we imposed on the environment for the open semantics. This means,
we analogously abstract away from the program code, rendering the situation symmetric.
The rules of Table 14 specify legality of traces. We use the same conventions and nota-
tions as for the operational semantics (cf. Notation 6). The judgments in the derivation
system are of the form

Ξ ` s : trace . (21)

We write Ξ ` s : trace, if there exists a derivation according to the rules of Table 14.
The empty trace is always legal (cf. rule L-Empty), and distinguishing according to
the first action a of the trace, the rules check whether a is possible. Furthermore, the
contexts are updated appropriately, and the rules recur checking the tail of the trace.
With the connectivity contexts E∆ and EΘ as part of the judgment, we must still clarify
what it “means”, i.e., when does Ξ ` C hold? Besides the typing part, this concerns
the commitment part EΘ. The relation EΘ asserts about the component C that the
connectivity of (mainly) the objects halves from the component is not larger than the

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 36

connectivity entailed by EΘ, i.e., EΘ is a conservative over-approximation of the com-
ponent connectivity. Given a component C and two names o from Θ and n from Θ,∆,
we write C ` o ↪→ n, if C ≡ C ′ ‖ o[. . . , f = n, . . .], i.e., o contains in one of its fields a
reference to n. Furthermore, for a thread name p in Θ, we write C ` p ↪→ o, if either
C ≡ C ′ ‖ p〈. . . release(o); v〉 or p〈v〉. We can thus define:

Definition 20. The judgment Ξ ` C holds, if

1 ∆ ` C : Θ (well-typedness)
2 Connectivity:

(a) C ` o1 ↪→ o2 implies EΘ ` o1 � o2.

(b)C ` o ↪→ p implies EΘ ` o ↪→ p.

(c) C ` p ↪→ o implies EΘ ` p ↪→ o.

We simply write Ξ ` C to assert that the judgment is satisfied. Note that references
mentioned in threads do not “count” as acquaintance.

We need to show that the behavioral description of Table 14, actually does what it
claims to do, to characterize the possible interface behavior. We show the soundness of
this abstraction plus the necessary ancillary lemmas such as subject reduction. Subject
reduction means, preservation of well-typedness under reduction.

Lemma 21 (Subject reduction). Assume Ξ ` C.

1 (a) If C ≡ Ć, then Ξ ` Ć.

(b) If C Ć, then Ξ ` Ć.

(c) If C τ−→ Ć, then Ξ ` Ć.
2 If Ξ ` C a−→ Ξ́ ` Ć, then Ξ́ ` Ć.

Proof. All parts by induction on the derivation for different reduction relations resp.
equivalence relation. For all parts, we are given Ξ ` C, (see Definition 20). The assertion
Ξ ` C consists of a typing part and a part asserting that the actual connectivity of C is
over-approximated by the commitments EΘ of Ξ.

We start by proving preservation of the well-typedness part. For part 1a, assume C ≡
Ć. The equivalence relation is given in Table 7 as the reflexive, transitive, and symmetric
closure of the rules shown. Reflexivity is trivial, transitivity follows by induction in the
number of ≡-steps. For C = 0 ‖ C ′, assume Ξ ` 0 ‖ C ′. For the typing part, it means
∆1,∆1 ` 0 ‖ C ′ : Θ1,Θ2 with ∆1,Θ2 ` 0 : Θ1 and ∆2,Θ1 ` C ′ : Θ2 by sub-derivation
(as premises of T-Par). Since 0 contains no objects, Θ1 must be empty, too. Note that
the subsumption rule T-Sub does not allow to remove or add objects identities. Hence,
Θ2 = Θ which means ∆1 ` C ′ : Θ. Weakening the environment assumptions ∆1 to
∆1,∆2 gives ∆ ` C ′ : Θ, as required. The inverse direction, given Ξ ` C ′, is simpler
since Ξ ` C ′ ‖ 0 follows by parallel composition and the fact that 0 is well-typed under
any assumptions (and with empty commitments). Symmetry in the second rule of Table
7 is straightforward, as the treatment of typing is defined symmetrically wrt. ‖. For
associativity, the typing part follows by inversion/application of the rule T-Par. The

Observable interface behavior and inheritance 37

cases for ν-binders are straightforward (observing that for the forth equation, n does not
occur free in C1, as mentioned in the text).

The preservation for reduction modulo congruence from Table 8 (for C τ−→ Ć and
C Ć follows from part 1a for ≡, induction, and preservation for basic τ−→-steps resp.
 -steps. For steps of the form τ−→, the basic steps are defined in Table 6 and “embedded”
into a larger context by the 5th and 6th rule of Table 8. Those basic steps are proven by
case distinction on the respective rules of Table 6:

Case: Red: p〈letx:T = v in t〉 p〈t[v/x]〉
The well-typedness assumption Ξ ` C implies ∆′ ` p〈letx:T = v in t〉 : (p:〈T ′〉) for some
name context ∆′ and some type T ′ and furthermore, by inverting rules T-NThread

(from Table 2), T-Let (from Table 3), •; ∆′, p:〈T ′〉 ` v : T and x:T ; ∆′, p:〈T ′〉 ` t : T ′.
Hence, by a (standard) substitution lemma, i.e., preservation of typing under substitu-
tion, •; ∆′, p:〈T ′〉 ` t[v/x] : T ′, and the result follows by T-NThread.

Case: NewO: p〈letx:T = new c in t〉 ν(o:c).(o[c,M,F,⊥] ‖ p〈letx:T = o in t〉)
relative to the class table Γc and where Γc ` members(c) = M,F . Remember, that in the
operational semantics, we group all class definitions together into Γc as class table. The
well-typedness assumption Ξ ` p〈letx:T = new c in t〉 means ∆ ` p〈letx:T = new c in t〉 :
Θ. Inverting T-NThread and the rule for the let-construct gives

•; ∆, p:〈T ′〉 ` new c : T x:T ; ∆, p:〈T ′〉 ` t : T ′
T-Let

•; ∆, p:〈T ′〉 ` letx:T = new c in t : T ′
T-NThread

∆ ` p〈letx:T = new c in t〉 : Θ

(22)

where Θ = p:〈T ′〉. The left-most premise •; ∆, p:〈T ′〉 ` new c : T is justified by a sequence
of instances of the subsumption rule T-Sub and one instance of T-New, which implies
that type T = c′ for some class name c′ and ∆, p:〈T ′〉 ` c ≤ c′.

The configuration after the step can be derived as follows (abbreviating ∆, p:〈T ′〉 as
∆′):

∆,Θ ` o[c,M,F,⊥] : o:c

•; ∆′, o:c ` o : c ∆′, o:c ` c ≤ c′

•; ∆′, o:c ` o : c′ x:c′; ∆′, o:c ` t : T ′

•; ∆′, o:c ` letx:c′ = o in t : T ′

∆, o:c ` p〈letx:c′ = o in t〉 : Θ

∆ ` o[c,M,F,⊥] ‖ p〈letx:c′ = o in t〉 : Θ, o:c

∆ ` ν(o:c).(o[c,M,F,⊥] ‖ p〈letx:c′ = o in t〉) : Θ

The premise ∆′, o:c ` c ≤ c′ follows from ∆, o:c ` c ≤ c′ by weakening ∆′ = ∆, p:〈T ′〉
to ∆′, o:c. Likewise by weakening, the premise x:c′; ∆′, o:c ` t : T ′ follows from the cor-
responding premise in the derivation in (22). The left-most premise follows by T-NObj.
The remaining rules for as well as for τ−→ work similarly.

Case: CallI1 with a = p〈call o.l(~v):T 〉?

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 38

We are given

Ξ ` a Ξ́ = Ξ + a Θ 6` o ∆ ` o:c ∆,Θ; ΓΘ ` members(c) = M,F

Ξ ` C a−→ Ξ́ ` C ‖ p〈letx:T = M.l(o)(~v) in release(o);x〉 ‖ o[c,M,F,>] ‖ C(~v)

The well-typedness assumption Ξ ` C before the step can be written as ∆ ` C : Θ.
To be well-typed after the reduction step requires that all four components are well-
typed. The update of the context from Ξ to Ξ́, as far as the typing is concerned, is given
in Definition 12, for this case, in part 2 of the definition. The commitment part Θ is
updated to Θ́ = Θ, p:〈T 〉, o:c,~v:~T , the assumption context ∆ remains unchanged in the
step. Let’s abbreviate p:〈T 〉 as Θp and the bindings o:c,~v:~T as Θo. The (unchanged)
part C is well-typed in the context ∆,Θp,Θo ` C : Θ (by weakening). For ∆,Θ,Θo `
p〈letx:T = M.l(o)(~v) in release(o);x〉 : Θp follows by T-NThread, two times T-Let,
T-Release, and T-Var. The premise Ξ ` a checks well-typedness of the incoming
label a = p〈call o.l(~v):T 〉? (cf. Definition 11, resp. rule LT-CallI from Table 11). In
particular, the premise assures that the types of the parameters match the declared ones
for the method labeled l and that the return type equally corresponds to the one declared
in the signature of the class implementing l. Note also that T is the type as declared
for the local variable x which ultimately will contain the future value, and hence the
the future reference is typed by 〈T 〉 (as stipulated by Θp). The corresponding method
body, say M.l = m = ς(s:c′).λ(~x:~T ′).t is assured to be well-typed correspondingly (by
rule T-Class, which checks member implementations (methods and fields) against their
type as declared in the class signature). I.e., the method implementation m is of type
~T → T , in particular also ∆,Θ,Θp ` m : ~T → T . By preservation of well-typedness
under substitution, that implies ∆,Θ,Θp ` M.l(o)(~v) : ~T → T , as well; remember that
M.l(o)(~v) abbreviates t[o/s][~v/~x], i.e., the substitution of the formal parameters by the
actual ones in the body t of the method m labeled l of the method suite M). The
remaining parts of the post-configuration, the newly instantiated objects o[c,M,F,>]
and C(~v), are well-typed by T-NObj and the fact that the corresponding classes they
instantiate are assumed well-typed before the step. The well-typedness of the overall
post-configuration follows then by instances of T-Par.

The remaining cases for preserving well-typedness work similarly.
Concerning preservation of the connectivity part of Ξ ` C, i.e., part 2 of Definition 20:

we need to prove that the connectivity commitment context correctly over-approximates
the actual connectivity as reflected in the fields of the objects and as captured by the
notation C ` o1 ↪→ o2 in Definition 20. For the proof of subject reduction, we weaken the
formulation of the correctness invariant of Definition 2 slightly. We write C
 o1 ↪→ o2 if

1 C ` o1 ↪→ o2 or
2 C = C ′ ‖ p〈t〉 where t is a method body of object o1 and contains o2, or
3 C = C ′ ‖ p〈call o1.l(~v):T 〉! and where o2 is contained in ~v.

So instead of proving part 2 of Definition 20 directly we use the weaker C
 o1 ↪→ o2 as
invariant instead. The result for the original, stronger formulation follows directly since
object fields, being instance private, can be changed only by threads executing inside
that object.

Observable interface behavior and inheritance 39

Now preservation of this relaxed invariant is straightforward: for C ≡ Ć, preservation
is trivial, since ≡ only rearranges the representation of the component without changing
the contents of the fields nor changing the code of the thread. For the confluent steps
of the form C Ć, note that no fields of objects are read or updated, those steps
work solely in a thread-local manner. Since Eθ does not change in the step (and threads
may only “forget” references), the preservation is likewise straightforward. In case of
NewT, issuing a method call, the step looks as follows: p′〈letx:〈T 〉 = o2@l(~v) in t〉
ν(p:〈T 〉).(p′〈letx:〈T 〉 = p in t〉 ‖ p〈call o2.l(~v):T 〉!). Assuming that the thread p′ issuing
the call executes a method body inside object o1, we have by assumption C
 o1 ↪→ o2

and C
 o1 ↪→ vi for all arguments (by clause 2 of the definition of the weakened
invariant). After the step, C
 o1 ↪→ o2 and C
 o1 ↪→ vi by clause 3 and potentially less
actually connectivity by thread p′. The case for receiving a method call for role Call

works similarly, the remaining cases are simpler. For non-confluent steps, one interesting
case is FSet, which updates a field of an object:

o[c,M,F, L] ‖ p〈letx:T = o.l() := v in t〉 τ−→ o[c,M,F.l := v, L] ‖ p〈letx:T = o in t〉 . (23)

Since fields are instance-local, thread p executes “inside” o, i.e., C
 o ↪→ v before the
step (due to clause 2 of the weakened invariant) and likewise for the configuration after
the step, with the updated field, due to clause 1.

The external steps Ξ ` C a−→ Ξ́ ` for part 2 of the lemma are immediate. For incom-
ing calls where ap〈call o.l(~v):T 〉? (by rule CallI1 resp. CallI2), C
 o ↪→ vi for all
arguments by clause 2. By part 2 of Definition 14 EΘ is updated by all pairs o ↪→ ~v,
i.e., ÉΘ ` o � vi for all arguments vi, by reflexivity of �. The case for incoming get-
labels works similarly. For incoming ν-labels in case 1 of Definition 14, corresponding
to an instance of rule NewOI for object references resp. of rule NewTI for thread-
identifiers/future references, the case is immediate, as only the assumption context E∆

changes. Note that in both cases, the component C itself is unchanged, i.e., Ć = C. The
cases for outgoing communication work similarly: we show the case for GetO where the
step is of the form Ξ ` C ‖ p〈v〉 a−→ Ξ́ ` C and where a = p〈get(v)〉!. Before the step, we
are given E∆ ` o ↪→ p (and E∆
 o ↪→ p) indicating that object o references the future
p, which indicates that o is the caller of the component-side method which has resulted
in the evaluated future p〈v〉. Furthermore we have EΘ ` p ↪→ o′ which represents that
the future has been evaluated in callee o′. After the step GetO, the future p〈v〉 is re-
moved from the component; analogously, in (the dual formulation of) part 1 of Definition
14, that is reflected by ÉΘ = EΘ \ p ↪→ o′. Since all other parts of the component are
unchanged, É∆ ` C : ÉΘ, as required.

Lemma 22 (Subject reduction). Ξ ` C and Ξ ` C s=⇒ Ξ́ ` Ć imply Ξ́ ` Ć.

Proof. By induction on the number of steps, using preservation under single steps from
Lemma 21.

An interesting invariant concerns the connectivity of names transmitted boundedly.
Incoming communication, e.g., not only updates the commitment contexts —something
one would expect— but also the assumption contexts. The fact that no new information

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 40

is learned about already known objects (“no surprise”) in the assumptions can be phrased
using the notion of conservative extension.

Definition 23 (Conservative extension). Given two contexts Ξ∆ and Ξ́∆ where ∆́
is an extension of ∆. Then we write Ξ∆ ` Ξ́∆ if Ξ́∆ ` n1 � n2 implies Ξ∆ ` n1 � n2,
for all n1, n2 with ∆ ` n1, n2.

Lemma 24 (No surprise). Let Ξ ` C a−→ Ξ́ ` Ć for some incoming label a. Then
Ξ ` Ξ́. For outgoing steps, the situation is dual.

Proof. By definition of the incoming steps from Table 13, using the context update
from Definition 12 and 14.

Finally to the proof of soundness, that the open semantics is over-approximated by the
legal traces. The proof is rather straightforward and the result may seem unsurprising as
such, because the premises that governs the steps of the open semantics are partly re-used
in the formalization of the legal traces. The reason why the legal traces and the open
semantics fit together well and lead thus to a clean proof, however, rests on the careful
“assumption-commitment” design of the steps of semantics: incoming steps depends only
on assumptions about the environment and dually outgoing steps depend only on the
given component (resp. on the commitment context for the legal traces). This clear
dualism and separation of concern allows now a clean proof. Another important aspect in
that context is that the legal traces (as a “symmetric abstraction” of the open semantics)
are not just a sound over-approximation. Even without taking the connectivity (or well-
typedness or all the other conditions into account) they would over-approximate the
semantics. Important is, that when considering these conditions, in particular, restricting
the traces by considering connectivity, the legal traces are still sound.

Theorem 25 (Soundness). If Ξ0 ` C and Ξ0 ` C
s=⇒, then Ξ0 ` s : trace.

Proof. By induction on the number of steps in s=⇒. The base case of zero steps (which
implies s = ε) is immediate, using L-Empty. The induction for internal steps of the
form Ξ ` C =⇒ Ξ ` Ć follow by subject reduction for internal steps from Lemma 22;
in particular, internal steps do not change the context Ξ. Remain the external steps of
Table 13. First note the contexts Ξ are updated by each external step to Ξ́ the same way
as the contexts are updated in the legal trace system.

The cases for incoming communication are checked straightforwardly, as the opera-
tional rules check incoming communication already, i.e., the premises of the operational
rules have their counterparts in the rules for legal traces.

Case: NewOI

Immediate, as the premises of L-NewI coincide with the ones of NewOI; note that the
name n included object names o. The case for NewTI works analogously.

Case: CallI1 and CallI2

Both cases are covered immediately by L-CallI. The cases for incoming get labels are
likewise immediate.

The cases for outgoing communication are slightly more complex, as the label in the

Observable interface behavior and inheritance 41

operational rule is not type-checked or checked for well-connectedness as for incoming
communication and as is done in the rules for legality. For all cases of outgoing commu-
nication we need therefore to check that the condition Ξ ` a, stating that the (legal)
trace can be extended by label a is actually satisfied. We concentrate in the argument
on the connectivity part, as the typing part is checked straightforwardly. Cf. Table 12.
Case: NewOO with a = ν(o:c)o′ !
The connectivity part of Ξ ` a for a ν-label is empty. Concerning typing: As for
LT-NewO of Table 11, the premise Θ ` o′ follows from the premise EΘ ` p ↪→ o′.
Case: CallO with a = p〈call o.l(~v):T 〉!
The open semantics specifies, that a CallO-step (sending the call message) must be
preceded by a NewTO-step, which creates the new future/thread reference, p in this
case. The premise of NewTO implies ẼΘ ` p′ ↪→ o′ (where ẼΘ is the connectivity context
before that step, o′ is the creating object and p′ the spawning thread). Furthermore, the
update premise Ξ̃′ = Ξ̃ + ν(p:〈T̃ 〉)o′ ! of the NewTO-step implies for the connectivity
after that step: Ẽ′Θ ` o′ ↪→ p. Since no information is ever forgotten, also EΘ ` o′ ↪→ p

and Θ ` o′:c. Finally, EΘ ` o′ ↪→ o,~v, since we have Ξ ` C before the step (by subject
reduction), i.e., EΘ is a sound over-approximation of the connectivity of C.

The remaining cases work similarly.

6. Conclusion

This paper formally investigates the interface behavior of a typed, object-oriented lan-
guage with inheritance. The interface behavior is characterized in the form of a typed
operational semantics of an open system, consisting of a set of classes. The semantics is
formalized in the form of commitments of the component and in particular assumptions
about the environment. The fact that the components are open wrt. inheritance, i.e., a
component can inherit from the environment and vice versa, has as a consequence that
the assumptions and commitments need contain an abstraction of the heap topology,
keeping track of which object may be in connection with other objects. We show the
soundness of the abstractions.

Related work Denotational semantics are inherently defined in a compositional man-
ner. For class-based, object-oriented languages for instance Cook [1989] develops such
a semantics for a calculus with inheritance, based on fix-points, closures, and semantic
domains; a similar approach is presented in Reddy [1988]. Another early denotational
semantics of inheritance for a subsect of Smalltalk-80 is presented in Kamin [1988]. The
semantics makes use of a global fixpoint with all classes present, which makes the seman-
tics non-compositional.

Banerjee and Naumann [2005] are concerned with observable equivalence of classes
resp. objects and substitutability in a setting of a class-based, object-oriented language
with inheritance. Different from our approach, where objects are inherently concurrent,
they are focusing on the “data” aspect of object-oriented languages, i.e., they are inter-
ested in whether two class-based implementations of some data structure are indistin-
guishable by any observer or context. To capture observable equivalence they use the

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 42

well-known notion of representation independence Haynes [1984] (cf. also Mitchell [1986]
Donahue [1979] Reynolds [1974] Reynolds [1983]). It is a formal definition of when the
representation of a data type does not influence the rest of the program and thus it is
a contextual characterization of encapsulation. Technically, representation independence
is defined as follows: the internal states of the two data types are related by a simula-
tion relation, called local coupling relation in Banerjee and Naumann [2005], and the two
implementations are representation independent if the two locally coupled internal repre-
sentations do not lead to an observable difference in the global system, which is formalized
by stating that the two global systems are connected by a global (or induced) coupling
relation. While in our setting we aim for a behavioral interface description ensuring sub-
stitutability, representation independence, e.g. in Banerjee and Naumann [2005], defines
criteria on the internal representation of a data type to assure that two “components”
with the same static interface (the method signature) have the same “dynamic” inter-
face behavior. Those criteria boil down to the following: Encapsulation or confinement of
the representation assures representation independence and thus observable equivalence.
Encapsulation is ensured statically in Banerjee and Naumann [2005] by ownership re-
strictions. In contrast, our behavioral interface description takes a “black-box” view and
considers two systems to be equivalent, if they exhibit the same traces at the interface.
Also Poetzsch-Heffter and Schäfer [2007] uses the notion of representation independence
as a criterion of what is a good description of an interface behavior. In the tradition of
Featherweight Java and related proposals, the language they study is an object-oriented
calculus similar to the one we use with mainly two differences: their language is sequen-
tial (and thus deterministic) and they do not use an unstructured heap. Instead, inspired
by ownership concepts, the heap is hierarchically structured into nested “boxes”. Each
object belongs to exactly one (directly surrounding) box. Important for the question of
interface behavior is that the boxes form one basis for their notion of run-time com-
ponent. Statically and as in our framework, a component consists of a set of classes.
There is, however, an important restriction in Poetzsch-Heffter and Schäfer [2007]: to
form a component, the corresponding set of classes must be “closed” in that all classes,
methods, etc. used in the code of the component are actually defined in the component
itself (which is “declaration complete” in the terminology of Poetzsch-Heffter and Schäfer
[2007]; in our notation, the component C is defined with an empty assumption context,
i.e., • ` C : Θ). Hence a component cannot instantiate classes of the environment nor can
it inherit from environment classes. Note that dually the environment needs not to be
declaration complete: The environment can mention component classes and methods, but
not vice versa. Conceptually, one can think of a definition complete component as a form
of library, where the program can refer to the library, but not vice versa. Technically that
restriction implies that when describing the possible interface behavior of a component,
connectivity is irrelevant, as the component can neither instantiate classes outside the
component nor can it inherit methods from outside. In our setting, a component is not
definition complete. However, the environment is represented abstractly as assumption
(and the component announces its classes and methods in the form of commitments), i.e.,
the assumption-commitment formulation allows to avoid the (severe) restriction requiring
declaration completeness.

Observable interface behavior and inheritance 43

Similarly as in our work, Poetzsch-Heffter and Schäfer [2007] need to characterize
allowed interactions at the interface of the component or box, in their case to be able
to define properly their “behavior semantics” and representation independence. This
involves answering the question when given a trace (called history in Poetzsch-Heffter
and Schäfer [2007]), what is the reaction of the component. Such a reaction is defined only
when the history is actually well-formed, which basically corresponds conceptually to our
formalization of legal traces. Again, however, connectivity does not play a role due to
their restrictions. Similarly in the more recent Welsch and Poetzsch-Heffter [2013], which
develops a full-abstract trace semantics for a class-based object-oriented calculus, again
under the restriction of definition-completeness. In that work, the trace semantics is also
used as formal basis for a verification method, using appropriate simulation relations.

Similarly, in the context of observable equivalence and a fully abstract semantics based
on interface traces, Jeffrey and Rathke [2005] and Jeffrey and Rathke [2002] do not need
to consider connectivity: in Jeffrey and Rathke [2002], because the language is object-
based, i.e., without classes at all. Jeffrey and Rathke [2005], in contrast, avoids considering
connectivity by introducing “packages” as units of composition, which, in the terminol-
ogy of Poetzsch-Heffter and Schäfer [2007] are definition complete. Also Viswanathan
[1998] consider an object-based setting. In absence of class inheritance and method over-
riding, object-based languages (or proto-type based languages) typically support method
update, i.e., the replacement of methods at run-time. Apart from the technical results
in the paper, which is not a trace based formulation of the semantics but the observable
equivalence between an object-oriented program and its translation into a lower level
representation (translational full abstraction), their results show that self-calls become
observable when considering late-binding and method update. This is similar to the ob-
servable semantics here which shows that with late-binding and method overriding, self-
calls must be considered in the interface behavior. Compared to our setting, the calculus
is simpler in that it does not have pointers at all (hence the question of connectivity does
not arise in the first place). Neither do they consider concurrency. The enhanced “distin-
guishing power” when adding inheritance is also relevant proof-theoretically, i.e., when
trying to verify object-oriented programs and design proof systems for that. Koutavas
and Wand [2007] develop a proof technique based on bisimulations to capture contextual
equivalence for a class-based language (without and with inheritance). Besides obser-
vational equivalences based on traces, also bisimulation has been used, e.g., in Gordon
and Rees [1996] for a functional first-order variant of Abadi and Cardelli’s object caluli
Abadi and Cardelli [1996] with subtyping. Similarly in Gordon et al. [1997], considering
imperative objects; in the proto-type based setting object cloning is used instead of class
inheritance. Breazu-Tannen et al. [1990] present a denotational semantics in the presence
of subtyping (“coercions”) achieving computational adequacy wrt. a given opertational
semantics.

In the context of Java and JML, Ruby and Leavens [2000] are concerned with which
interface information is needed to allow safe inheritance of methods (which they call
the semantic fragile subclassing problem). In particular downcalls are problematic, i.e.,
the situation when a inherited method calls via a self-call the method of the sub-class
overriding the corresponding method from the super-class.

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 44

The results here extends our previous work namely with inheritance. Earlier we consid-
ered the problem of characterizing the interface behavior of an open system for different
choices of language features (but without inheritance). E.g., Ábrahám et al. [2009] deals
with futures and promises, i.e., using a similar concurrency model than the one here. One
of the challenges there was to capture the influence of promises by a “resource aware”
type and effect system as promises can be “fulfilled”, i.e., bound to code, only once.
Ábrahám et al. [2006] investigates the influence of locks and monitors on the interface
behavior. Again, the results reported therein are rather similar as far as the goals and
general setting is concerned. Unlike here, the calculus is inspired by Java’s model of con-
currency, i.e., based on multi-threading and re-entrant locks, whereas here we are basing
our study on active objects. The seemingly innocent change of the communication and
synchronization model (from rpc or remote method call communication to asynchronous
method calls, from re-entrant locks to binary locks) leads to a quite more complicated
interface behavior for Java-like monitors. Ultimately, the reason for that complication
can be attributed to the more tighter coupling of objects in the multi-threaded setting.
The general common-sense observation that loosely coupled systems entail a more com-
positional system description and especially simplify reasoning in a modular fashion is
also expoited in Ahrendt and Dylla [2012], Din et al. [2012], Kurnia and Poetzsch-Heffter
[2013] in the context of Hoare-style proof systems.

References

Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer-Verlag, 1996.

Erika Ábrahám, Frank S. de Boer, Marcello M. Bonsangue, Andreas Grüner, and Martin
Steffen. Observability, connectivity, and replay in a sequential calculus of classes. In
Marcello Bonsangue, Frank S. de Boer, Willem-Paul de Roever, and Susanne Graf,
editors, Proceedings of the Third International Symposium on Formal Methods for
Components and Objects (FMCO 2004), volume 3657 of Lecture Notes in Computer
Science, pages 296–316 (21 pages). Springer-Verlag, 2005. URL http://www.ifi.uio.

no/~msteffen/download/fa-fmco.pdf.
Erika Ábrahám, Andreas Grüner, and Martin Steffen. Abstract interface behavior of

object-oriented languages with monitors. In Roberto Gorrieri and Heike Wehrheim, ed-
itors, FMOODS ’06, volume 4037 of Lecture Notes in Computer Science, pages 218–232
(15 pages). Springer-Verlag, 2006. . URL http://www.springerlink.com/content/

3365g26781740807.
Erika Ábrahám, Andreas Grüner, and Martin Steffen. Abstract interface behavior of

object-oriented languages with monitors. Theory of Computing Systems, 43(3-4):
322–361 (40 pages), December 2008. . URL http://www.ifi.uio.no/~msteffen/

download/07/monitors-tocs.pdf.
Erika Ábrahám, Immo Grabe, Andreas Grüner, and Martin Steffen. Behavioral inter-

face description of an object-oriented language with futures and promises. Jour-
nal of Logic and Algebraic Programming, 78(7):491–518 (28 pages), 2009. . URL
http://www.ifi.uio.no/~msteffen/download/09/futures.pdf. Special issue with

http://www.ifi.uio.no/~msteffen/download/fa-fmco.pdf
http://www.ifi.uio.no/~msteffen/download/fa-fmco.pdf
http://www.springerlink.com/content/3365g26781740807
http://www.springerlink.com/content/3365g26781740807
http://www.ifi.uio.no/~msteffen/download/07/monitors-tocs.pdf
http://www.ifi.uio.no/~msteffen/download/07/monitors-tocs.pdf
http://www.ifi.uio.no/~msteffen/download/09/futures.pdf

Observable interface behavior and inheritance 45

selected contributions of NWPT’07. The paper is a reworked version of an earlier UiO
Technical Report TR-364, Oct. 2007.

Samson Abramsky and Guy McCusker. Linearity, sharing, and state: a fully abstract
game semantics for Idealized Algol with active expressions (extended abstract). vol-
ume 2. Birkhäuser, two volumes, 1997. Reprint of the paper which appeared in the
Proceedings of the 1996 Workshop on Linear Logic, Vol. 3 of Electronic Notes in The-
oretical Computer Science, 1996.

G. Agha and C. Hewitt. Concurrent programming using actors. In Object-Oriented
Concurrent Programming, pages 37–53. MIT Press, 1987.

Wolfgang Ahrendt and Maximilian Dylla. A system for compositional verification of
asynchronous objects. Science of Computer Programming, 77(12):1289 – 1309, 2012.
ISSN 0167-6423. . URL http://www.sciencedirect.com/science/article/pii/

S0167642310001553.
J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Programming in

Erlang. Prentice Hall Europe, Hemel Hempstead, Hertfordshire, 2nd edition, 1996.
Anindya Banerjee and David A. Naumann. Ownership confinement ensures representa-

tion independence for object-oriented programs. Journal of the ACM, 52(6):894–960,
2005. ISSN 0004-5411. .

Val Breazu-Tannen, , Carl A. Gunter, and André Ščedrov. Computing with coercions.
In Proceedings of the ACM Conference on Lisp and Functional Programming, pages
44–61, 1990.

William Cook. A Denotational Model of Inheritance. PhD thesis, Brown University,
1989.

Pierre-Louis Curien. Definability and full abstraction. Electronic Notes in Theoretical
Computer Science, 172:301–310, April 2007. ISSN 1571-0661. . URL http://dx.doi.

org/10.1016/j.entcs.2007.02.011.
Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the

future. In R. de Nicola, editor, Proceedings of Programming Languages and Systems,
16th European Symposium on Programming, ESOP 2007, Vienna, Austria., volume
4421 of Lecture Notes in Computer Science, pages 316–330. Springer-Verlag, 2007.

Crystal Chang Din, Johan Dovland, and Olaf Owe. Compositional reasoning about
shared futures. In Proceedings of SEFM’12, volume 7504 of Lecture Notes in Computer
Science, pages 94–108. Springer-Verlag, 2012. ISBN 978-3-642-33825-0.

J. Donahue. On the semantics of data type. SIAM J. Computing, 8:546–560, 1979.
Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-order calculus of objects

with subtyping. In Proceedings of POPL ’96, pages 386–395. ACM, January 1996.
Full version available as Technical Report 386, Computer Laboratory, University of
Cambridge, January 1996.

Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen. Compilation and equivalence
of imperative objects. In S. Ramesh and G. Sivakumar, editors, Proceedings of FSTTCS
’97, volume 1346 of Lecture Notes in Computer Science, pages 74–87. Springer-Verlag,
December 1997. Full version available as Technical Report 429, University of Cam-
bridge Computer Laboratory, June 1997.

C.T̃. Haynes. A theory of data type representation independence. In Gilles Kahn, David

http://www.sciencedirect.com/science/article/pii/S0167642310001553
http://www.sciencedirect.com/science/article/pii/S0167642310001553
http://dx.doi.org/10.1016/j.entcs.2007.02.011
http://dx.doi.org/10.1016/j.entcs.2007.02.011

Erika Ábrahám and Thi Mai Thuong Tran and Martin Steffen 46

MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, volume 173 of
Lecture Notes in Computer Science, pages 157–176. Springer-Verlag, 1984.

Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings of LICS ’02, pages 101–112. IEEE, Computer Society Press,
July 2002.

Alan Jeffrey and Julian Rathke. Java Jr.: A fully abstract trace semantics for a core Java
language. In Mooly Sagiv, editor, Proceedings of ESOP 2005, volume 3444 of Lecture
Notes in Computer Science, pages 423–438. Springer-Verlag, 2005.

Samuel Kamin. Inheritance in Smalltalk-80: A denotational definition. In ACM Confer-
ence on Programming Language Design and Implementation (PLDI) (Atlanta, GA).
ACM, June 1988. In SIGPLAN Notices 23(7).

Vasileios Koutavas and Mitchell Wand. Reasoning about class behavior. In Informal
Workshop Record of FOOL 2007, January 2007.

Ilham W. Kurnia and Arnd Poetzsch-Heffter. Verification of open concurrent object
systems. In Frank S. de Boer, Marcello M. Bonsangue, Elena Giachino, and Reiner
Hähnle, editors, Proceedings of the 11th International Symposium on Formal Methods
for Components and Objects, FMCO 2012, volume 7866 of Lecture Notes in Computer
Science. Springer-Verlag, 2013.

Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem.
In Proceedings of the 12th European Conference on Object-Oriented Programming
(ECOOP’98), Brussels, Belgium, volume 1445 of Lecture Notes in Computer Science,
pages 355–354. Springer-Verlag, 1998.

John C. Mitchell. Representation independence and data abstraction. In Thirteenth
Annual Symposium on Principles of Programming Languages (POPL) (St. Peterburg
Beach, FL), pages 263–276. ACM, January 1986.

M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima Series. Ar-
tima Press, 2011. ISBN 9780981531649. URL http://books.google.no/books?id=

ZNo8cAAACAAJ.
Arnd Poetzsch-Heffter and Jan Schäfer. A representation-independent behavioral se-

mantics for object-oriented components. In Marcello M. Bonsangue and Einar Broch
Johnsen, editors, FMOODS ’07, volume 4468 of Lecture Notes in Computer Science,
pages 157–173. Springer-Verlag, June 2007.

Uday S. Reddy. Objects as closures: Abstract semantics of object-oriented languages.
In Symposium on lisp and Functional Programming (Snowbird, UT), pages 289–297.
ACM, July 1988.

John Reynolds. Towards a theory of type structure. In B. Robinet, editor, Colloque sur
la programmation (Paris, France), volume 19 of Lecture Notes in Computer Science,
pages 408–425. Springer-Verlag, 1974.

John Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A. Mason,
editor, Information Processing 83, pages 513–523. IFIP, North-Holland, 1983.

Clyde Ruby and Gary T. Leavens. Safely creating correct subclasses without seeing su-
perclass code. In Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA) ’00, pages 208–228. ACM, 2000. In SIGPLAN Notices.

Alan Snyder. Encapsulation and inheritance in object-oriented programming languages.

http://books.google.no/books?id=ZNo8cAAACAAJ
http://books.google.no/books?id=ZNo8cAAACAAJ

Observable interface behavior and inheritance 47

In Object Oriented Programming: Systems, Languages, and Applications (OOPSLA)
’86 (Portland, Oregon), pages 38–45. ACM, 1986. In SIGPLAN Notices 21(11).

Raymie Stata and John. V. Guttag. Modular reasoning in the presence of subclassing.
In Object Oriented Programming: Systems, Languages, and Applications (OOPSLA)
’95, pages 200–214. ACM, 1995. In SIGPLAN Notices) 30(10).

Ramesh Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.

Yannik Welsch and Arnd Poetzsch-Heffter. A fully abstract trace-based semantics for
reasoning about backward compatibility of class libraries. Science of Computer Pro-
gramming, October 2013. ISSN 0167-6423. . URL http://www.sciencedirect.com/

science/article/pii/S0167642313002529. Article in press. Available online 25. Oc-
tober 2013.

http://www.sciencedirect.com/science/article/pii/S0167642313002529
http://www.sciencedirect.com/science/article/pii/S0167642313002529

	Introduction
	Interface behavior, inheritance, and object connectivity
	Existential abstraction of the environment
	Self-calls and cross-border inheritance
	Dynamic type and overriding
	Connectivity as abstract heap representation in the interface

	Calculus
	Syntax
	Type system

	Typed operational semantics for open systems
	Internal semantics
	External semantics
	Connectivity contexts and cliques
	Typed configurations
	External steps

	Interface behavior and legal traces

	Conclusion
	References

