
Lock-Polymorphic Behaviour Inference for Deadlock Checking
Ka I Pun, Martin Steffen, Volker Stolz

Department of Informatics, University of Oslo, Norway

Deadlocks are a common problem for concurrent programs with shared resources. According to
the classic characterization from [2], a deadlocked state is marked by a number of processes forming a
cycle where each process, unwilling to release its own resource, is waiting on the resource held by its
neighbor. The inherent non-determinism make deadlocks, as other errors in the presence of concurrency,
hard to detect and to reproduce. We present a static analysis using behavioral effects to detect deadlocks
in a higher-order concurrent calculus. Deadlock freedom, an important safety property for concurrent
programs, is a thread-global property, i.e., the blame for a deadlock in a defective program cannot be put
on a single thread, it is two or more processes that share responsibility; the somewhat atypical situation,
where a process forms a deadlock with itself, cannot occur in our setting, as we assume re-entrant locks.
The approach presented in this paper works in two stages: in a first stage, an effect-type system uses a
static behavioral abstraction of the codes’ behavior, concentrating on the lock interactions. To analyze the
consequences on the global level, in particular for detecting deadlocks, the combined individual abstract
thread behaviors are explored in the second stage.

Two challenges need to be tackled to make such a framework applicable in practice. For the first
stage on the thread local level, the static analysis must be able to derive the abstract behavior, not just
check compliance of the code with a user-provided description. This is the problem of type and effect
inference or reconstruction. As usual, the abstract behavior needs to over-approximate the concrete one
which means, concrete and abstract description are connected by some simulation relation: everything
the concrete system does, the abstract one can do as well (modulo some abstraction function relating
the concrete and abstract states). For the second stage, exploring the (abstract) state space on the global
level, obtaining finite abstractions is crucial. In our setting, there are four principal sources of infinity:
the calculus, 1) allowing recursion, supports 2) dynamic thread creation, 3) dynamic lock creation, and
4) with re-entrant locks, the lock counters are unbounded. Our approach offers sound abstractions for
the mentioned sources of unboundedness, except that we do not have an abstraction usable for deadlock
detection in the presence of dynamic thread creation. We shortly present in a non-technical manner the
ideas behind the abstraction.

Effect inference on the thread local level

As mentioned, in the first stage of the analysis, the analysis uses a behavioral type and effect system to
over-approximate the lock-interactions of a single thread. To force the user to annotate the program with
the expected behavior in the form of effects is impractical, so the type and especially the behavior should
be inferred automatically. Effect inference, including inferring behavioral effects, has been studied earlier
and applied to various settings, including obtaining static over-approximations of behavior for concurrent
languages by Amtoft, Nielson and Nielson [1]. We apply effect inference to deadlock detection and as is
standard (cf. e.g. [8, 11, 1]), the inference system is constraint-based, where the constraints in particular
express an approximate order between behaviors. Besides being able to infer the behavior, it is important
that the static approximation is as precise as possible. Since our calculus supports higher-order functions,
it is thus important that the analysis may distinguish different instances of a function body depending on
their calling context, i.e., the analysis should be polymorphic or context-sensitive. This can be seen as
an extension of let-polymorphism to effects and using constraints. The effect reconstruction resembles
the known type-inference algorithm for let-polymorphism by Damas and Milner [4, 3] and this has been
used for effect-inference in various settings, e.g., in the works mentioned above.

1

http://www.ifi.uio.no
http://www.uio.no

2

Deadlock checking in our earlier work [9] was not polymorphic (and we did not address effect in-
ference). The extension in this paper leads to an increase in precision wrt. checking for deadlocks, as
illustrated by the small example below, where the two lock creation statements are labeled by π1 and π2:

let l1 = newπ1 L in let l2 = newπ2 L in
let f = fn x:L . (x.lock; x.lock)
in spawn(f(l1)); f(l2)

The main thread, after creating two locks and defining function f , spawns a thread, and afterward,
the main thread and the child thread run in parallel, each one executing an instance of f with different
actual lock parameters. In a setting with re-entrant locks, the program is obviously deadlock-free. Part
of the type system of [9] determines the potential origin of locks by data-flow analysis. When analyzing
the body of the function definition, the analysis cannot distinguish the two instances of f (the analysis
is context-insensitive). This inability to distinguish the two call sites —the “context”— forces that the
type of the formal parameter is, at best, L{π1,π2}, which means that the lock-argument of the function
is potentially created at either point. Based on that approximate information, a deadlock looks possible
through a “deadly embrace” [5] where one thread takes first lock π1 and then π2, and the other thread
takes them in reverse order , i.e., the analysis would report a (spurious) deadlock. The context-sensitive
analysis presented here correctly analyzes the example as deadlock-free.

Deadlock preserving abstractions on the global level

Lock abstraction For dynamic data allocation, a standard abstraction is to summarize all data allocated
at a given program point into one abstract representation. In the presence of loops or recursion, the
abstracting function mapping concrete locks to their abstract representation necessarily is non-injective.
For concrete, ordinary programs it is clear that identifying locks may change the behavior of the program.
What makes identification of locks in general tricky, and here in particular connection with deadlocks, is
that, on the one hand. it leads to less steps, in that lock-protected critical sections may become larger, and
on the other hand to more steps at the same time, in that deadlocks may disappear when identifying locks.
That this form of summarizing lock abstraction is problematic when analyzing properties of concurrent
programs has been observed elsewhere as well, cf. e.g. Kidd et al. in [7].

For a sound abstraction for deadlock detection when identifying locks in the described way, one
faces thus the following dilemma: a) the abstract level, using the abstract locks, need to show at least the
behavior of the concrete level, i.e., we expect they are related by a form of simulation. On the other hand,
to preserve not only the possibility of doing steps, but also deadlocks, the opposite must hold sometimes:
a) a concrete program waiting on a lock and unable to make a step thereby, must imply an analogous
situation on the abstract level, lest we should miss deadlocks. Let’s write l, l1, l2, . . . for concrete lock
references and π,π ′, . . . for program points of lock creation, i.e., abstract locks. To satisfy a): when a
concrete program takes a lock, the abstract one must be able to “take” the corresponding abstract lock,
say π . A consequence of a) is that taking an abstract lock is always enabled. That is consistent with
the abstraction as described where the abstract lock π confuses an arbitrary number of concrete locks
including e.g., those freshly created, which may be taken.

Consequently, abstract locks loose their “mutual exclusion” capacity: where a concrete heap is a
mapping which associates to each lock references the number of times at most one process is holding
it, an abstract heap σ̂ then records how many times an abstract lock π is held by the various processes,
e.g. three times by one process and two times by another. The corresponding natural number of the
abstractly represent the sum of the lock values of all concrete locks (per process). Without ever blocking,
the abstraction leads to more possible steps, but to cater for b), the abstraction still needs to appropriately
define, given an abstract heap and an abstract lock π , when a process waits on the abstract lock, as this
may indicate a deadlock. The definition basically has to capture all possibilities of waiting on one of the

REFERENCES 3

corresponding concrete locks. The sketched intuitions to obtain a sound abstract summary representation
for locks and correspondingly for heaps lead also to a corresponding refinement of “over-approximation”
in terms of simulation: not only must the a) positive behavior be preserved as in standard simulation, also
the possibility of waiting on a lock and ultimately possibility of deadlock needs to be preserved. For this
we introduce the notion of deadlock sensitive simulation. The definition is analogous to the one from [9].
However, it takes into account now that the analysis is polymorphic and the definition is no longer based
on an direct operational interpretation of the behavior of the effects. Instead it is based on the behavioral
constraints used in the inference systems.

Counter abstraction and further behavior abstraction Two remaining causes of an infinite state
space are the values of lock counters, which may grow unboundedly and the fact that, for each thread,
the effect behavior represent abstractly the stack of function calls for that thread. With sequential com-
position as construct for abstract behavioral effects allows to represent non-tail-recursive behavior, cor-
responding to the context-free call-and-return behavior of the underlying program. To curb that source
of infinity, we allow to replace the behavior by a tail-recursive over-approximation. The precision of the
approximation can be adapted in choosing the depth of calls after which the call-structure collapses into
arbitrary, chaotic behavior. A finite abstraction for the lock-counters is achieved similarly by imposing
an upper bound on the considered lock counter, beyond which the locks behave non-deterministically.
Again, for both abstractions it is crucial, that the abstraction preserves also deadlocks, which we capture
again using the notion of deadlock-sensitive simulation.

Compared to [9], the paper makes the following contributions: 1) the effect analysis is generalized to
a context-sensitive formulation, using constraint, for which we provide 2) an inference algorithm. Finally,
3) we allow summarizing multiple concrete locks into abstract ones, while still preserving deadlocks. All
technical materials, lemmas and proofs can be found in the technical report [10].

References
[1] T. Amtoft, H. R. Nielson, and F. Nielson. Type and Effect Systems: Behaviours for Concurrency. Imperial

College Press, 1999.
[2] E. G. Coffman Jr., M. Elphick, and A. Shoshani. System deadlocks. Computing Surveys, 3(2), 1971.
[3] L. Damas. Type Assignment in Programming Languages. PhD thesis, Laboratory for Foundations of Com-

puter Science, University of Edinburgh, 1985. CST-33-85.
[4] L. Damas and R. Milner. Principal type-schemes for functional programming languages. In Ninth Annual

Symposium on Principles of Programming Languages (POPL) (Albuquerque, NM), pages 207–212. ACM,
January 1982.

[5] E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123, Technological University,
Eindhoven, 1965. Reprinted in [6].

[6] F. Genyus. Programming Languages. Academic Press, 1968.
[7] N. Kidd, T. W. Reps, J. Dolby, and M. Vaziri. Finding concurrency-related bugs using random isolation.

STTT, 13(6):495–518, 2011.
[8] C. Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU, University of Copenhagen,

Denmark, 1997. Technical Report DIKU-TR-97/1.
[9] K. I. Pun, M. Steffen, and V. Stolz. Deadlock checking by a behavioral effect system for lock handling.

Journal of Logic and Algebraic Programming, 81(3):331–354, 2012. A preliminary version was published
as University of Oslo, Dept. of Computer Science Technical Report 404, March 2011.

[10] K. I. Pun, M. Steffen, and V. Stolz. Lock-polymorphic behaviour inference for deadlock checking. Technical
report 436, University of Oslo, Dept. of Informatics, Sept. 2013. available electronically at http://www.
ifi.uio.no/~msteffen/download/13/lockpolymorphic-rep.pdf.

[11] J.-P. Talpin and P. Jouvelot. Polymorphic Type, Region and Effect Inference. Journal of Functional Pro-
gramming, 2(3):245–271, 1992.

http://www.ifi.uio.no/~msteffen/download/13/lockpolymorphic-rep.pdf
http://www.ifi.uio.no/~msteffen/download/13/lockpolymorphic-rep.pdf

