
UNIVERSITY OF OSLO
Department of Informatics

Lock-Polymorphic
Behaviour Inference
for Deadlock
Checking
September 2013

Research Report No.
436

Ka I Pun, Martin
Steffen, and Volker
Stolz

ISBN 82-7368-398-2
ISSN 0806-3036

September 2013

Lock-Polymorphic Behaviour Inference
for Deadlock Checking

Ka I Pun, Martin Steffen, and Volker Stolz

University of Oslo, Department of Informatics

Abstract. We present a constraint-based effect inference algorithm for deadlock
checking. The static analysis is developed for a concurrent calculus with higher-
order functions and dynamic lock creation. The analysis is context-sensitive and
locks are summarized based on their creation-site. The resulting effects can be
checked for deadlocks using state space exploration. We use a specific deadlock-
sensitive simulation relation to show that the effects soundly over-approximate
the behavior of a program, in particular that deadlocks in the program are pre-
served in the effects.

1 Introduction

Deadlocks are a common problem for concurrent programs with shared resources. Ac-
cording to the classic characterization from [4], a deadlocked state is marked by a num-
ber of processes forming a cycle where each process, unwilling to release its own re-
source, is waiting on the resource held by its neighbor. The inherent non-determinism
make deadlocks, as other errors in the presence of concurrency, hard to detect and to
reproduce. We present a static analysis using behavioral effects to detect deadlocks in a
higher-order concurrent calculus.

Deadlock freedom, an important safety property for concurrent programs, is a thread-
global property, i.e., the blame for a deadlock in a defective program cannot be put on
a single thread, it is two or more processes that share responsibility; the somewhat
atypical situation, where a process forms a deadlock with itself, cannot occur in our set-
ting, as we assume re-entrant locks. The approach presented in this paper works in two
stages: in a first stage, an effect-type system uses a static behavioral abstraction of the
codes’ behavior, concentrating on the lock interactions. To analyze the consequences on
the global level, in particular for detecting deadlocks, the combined individual abstract
thread behaviors are explored in the second stage.

Two challenges need to be tackled to make such a framework applicable in practice.
For the first stage on the thread local level, the static analysis must be able to derive the
abstract behavior, not just check compliance of the code with a user-provided descrip-
tion. This is the problem of type and effect inference or reconstruction. As usual, the
abstract behavior needs to over-approximate the concrete one which means, concrete
and abstract description are connected by some simulation relation: everything the con-
crete system does, the abstract one can do as well (modulo some abstraction function
relating the concrete and abstract states).

For the second stage, exploring the (abstract) state space on the global level, ob-
taining finite abstractions is crucial. In our setting, there are four principal sources of

infinity: the calculus, 1) allowing recursion, supports 2) dynamic thread creation, 3)
dynamic lock creation, and 4) with re-entrant locks, the lock counters are unbounded.
Our approach offers sound abstractions for the mentioned sources of unboundedness,
except that we do not have an abstraction usable for deadlock detection in the presence
of dynamic thread creation.

We shortly present in a non-technical manner the ideas behind the abstraction.

1.1 Effect inference on the thread local level

As mentioned, in the first stage of the analysis, the analysis uses a behavioral type
and effect system to over-approximate the lock-interactions of a single thread. To force
the user to annotate the program with the expected behavior in the form of effects is
impractical, so the type and especially the behavior should be inferred automatically.
Effect inference, including inferring behavioral effects, has been studied earlier and
applied to various settings, including obtaining static over-approximations of behavior
for concurrent languages by Amtoft, Nielson and Nielson [2]. We apply effect infer-
ence to deadlock detection and as is standard (cf. e.g. [12,17,2]), the inference system
is constraint-based, where the constraints in particular express an approximate order
between behaviors.

Besides being able to infer the behavior, it is important that the static approxima-
tion is as precise as possible. Since our calculus supports higher-order functions, it is
thus important that the analysis may distinguish different instances of a function body
depending on their calling context, i.e., the analysis should be polymorphic or context-
sensitive. This can be seen as an extension of let-polymorphism to effects and using
constraints. The effect reconstruction resembles the known type-inference algorithm
for let-polymorphism by Damas and Milner [6,5] and this has been used for effect-
inference in various settings, e.g., in the works mentioned above.

Deadlock checking in our earlier work [14] was not polymorphic (and we did not
address effect inference). The extension in this paper leads to an increase in precision
wrt. checking for deadlocks, as illustrated by the small example below, where the two
lock creation statements are labeled by π1 and π2:

let l1 = newπ1 L in let l2 = newπ2 L in

let f = fn x:L . (x.lock; x.lock)

in spawn(f(l1)); f(l2)

The main thread, after creating two locks and defining function f , spawns a thread,
and afterward, the main thread and the child thread run in parallel, each one executing
an instance of f with different actual lock parameters. In a setting with re-entrant locks,
the program is obviously deadlock-free. Part of the type system of [14] determines the
potential origin of locks by data-flow analysis. When analyzing the body of the function
definition, the analysis cannot distinguish the two instances of f (the analysis is context-
insensitive). This inability to distinguish the two call sites —the “context”— forces that
the type of the formal parameter is, at best, L{π1,π2}, which means that the lock-argument
of the function is potentially created at either point. Based on that approximate infor-
mation, a deadlock looks possible through a “deadly embrace” [7] where one thread

2

takes first lock π1 and then π2, and the other thread takes them in reverse order , i.e., the
analysis would report a (spurious) deadlock. The context-sensitive analysis presented
here correctly analyzes the example as deadlock-free.

1.2 Deadlock preserving abstractions on the global level

Lock abstraction For dynamic data allocation, a standard abstraction is to summa-
rize all data allocated at a given program point into one abstract representation. In the
presence of loops or recursion, the abstracting function mapping concrete locks to their
abstract representation necessarily is non-injective. For concrete, ordinary programs it is
clear that identifying locks may change the behavior of the program. What makes iden-
tification of locks in general tricky, and here in particular connection with deadlocks, is
that, on the one hand. it leads to less steps, in that lock-protected critical sections may
become larger, and on the other hand to more steps at the same time, in that deadlocks
may disappear when identifying locks. That this form of summarizing lock abstraction
is problematic when analyzing properties of concurrent programs has been observed
elsewhere as well, cf. e.g. Kidd et al. in [10].

For a sound abstraction for deadlock detection when identifying locks in the de-
scribed way, one faces thus the following dilemma: a) the abstract level, using the ab-
stract locks, need to show at least the behavior of the concrete level, i.e., we expect they
are related by a form of simulation. On the other hand, to preserve not only the possibil-
ity of doing steps, but also deadlocks, the opposite must hold sometimes: a) a concrete
program waiting on a lock and unable to make a step thereby, must imply an analogous
situation on the abstract level, lest we should miss deadlocks. Let’s write l, l1, l2, . . . for
concrete lock references and π,π ′, . . . for program points of lock creation, i.e., abstract
locks. To satisfy a): when a concrete program takes a lock, the abstract one must be
able to “take” the corresponding abstract lock, say π . A consequence of a) is that taking
an abstract lock is always enabled. That is consistent with the abstraction as described
where the abstract lock π confuses an arbitrary number of concrete locks including e.g.,
those freshly created, which may be taken.

Consequently, abstract locks loose their “mutual exclusion” capacity: where a con-
crete heap is a mapping which associates to each lock references the number of times
at most one process is holding it, an abstract heap σ̂ then records how many times an
abstract lock π is held by the various processes, e.g. three times by one process and
two times by another. The corresponding natural number of the abstractly represent the
sum of the lock values of all concrete locks (per process). Without ever blocking, the
abstraction leads to more possible steps, but to cater for b), the abstraction still needs
to appropriately define, given an abstract heap and an abstract lock π , when a process
waits on the abstract lock, as this may indicate a deadlock. The definition basically has
to capture all possibilities of waiting on one of the corresponding concrete locks (see
Definition 8 later). The sketched intuitions to obtain a sound abstract summary represen-
tation for locks and correspondingly for heaps lead also to a corresponding refinement
of “over-approximation” in terms of simulation: not only must the a) positive behavior
be preserved as in standard simulation, also the possibility of waiting on a lock and ul-
timately possibility of deadlock needs to be preserved. For this we introduce the notion
of deadlock sensitive simulation (see Definition 11). The definition is analogous to the

3

one from [14]. However, it takes into account now that the analysis is polymorphic and
the definition is no longer based on an direct operational interpretation of the behavior
of the effects. Instead it is based on the behavioral constraints used in the inference
systems.

The points discussed are illustrated in Fig. 1, where the left diagram Fig. 1a depicts
two threads running in parallel and trying to take two concrete locks, l1 and l2 while Fig.
1b illustrates an abstraction of the left one where the two concrete locks are summarized
by the abstract lock π (typically because being created at the same program point). The
concrete program obviously may run into a deadlock by reaching commonly the states
q01 and q11, where the first process is waiting on l2 and the second process on l1. With
the abstraction sketched above, the abstract behavior, having reached the corresponding
states q̂01 and q̂11, can proceed (in two steps) to the common states q̂02 and q̂12, reaching
an abstract heap where the abstract lock π is “held” two times by each process. In the
state q̂01 and q̂11, however, the analysis will correctly detect that, with the given lock
abstraction, the first process may actually wait on π , resp. on one of its concretizations,
and dually for the second process, thereby detecting the deadly embrace.

Allowing this form of abstraction, summarizing concrete locks into an abstract one,
improves on our earlier analysis [14], which could therefore deal only with a static
number of locks.

p0

q00start

q01

q02

p1

q10start

q11

q12

l1.lock

l2.lock

l2.lock

l1.lock

(a) Concrete

p0

q̂00start

q̂01

q̂02

p1

q̂10start

q̂11

q̂12

π.lock

π.lock

π.lock

π.lock

(b) Abstract

Fig. 1: Lock abstraction

Counter abstraction and further behavior abstraction Two remaining causes of
an infinite state space are the values of lock counters, which may grow unboundedly
and the fact that, for each thread, the effect behavior represent abstractly the stack of
function calls for that thread. With sequential composition as construct for abstract be-
havioral effects allows to represent non-tail-recursive behavior, corresponding to the
context-free call-and-return behavior of the underlying program. To curb that source of
infinity, we allow to replace the behavior by a tail-recursive over-approximation. The
precision of the approximation can be adapted in choosing the depth of calls after which

4

the call-structure collapses into arbitrary, chaotic behavior. A finite abstraction for the
lock-counters is achieved similarly by imposing an upper bound on the considered lock
counter, beyond which the locks behave non-deterministically. Again, for both abstrac-
tions it is crucial, that the abstraction preserves also deadlocks, which we capture again
using the notion of deadlock-sensitive simulation.

To summarize, compared to [14], the paper makes the following contributions: 1)
the effect analysis is generalized to a context-sensitive formulation, using constraint, for
which we provide 2) an inference algorithm. Finally, 3) we allow summarizing multiple
concrete locks into abstract ones, while still preserving deadlocks.

The rest of the paper is organized as follows. After presenting syntax and seman-
tics of the concurrent calculus in Section 2, the behavioral type system is presented in
Section 3, which also includes the soundness result in the form of subject reduction.
The conclusion in Section 4 discusses related and future work. Additional technical
material, lemmas and proofs can be found in the appendix (Appendix A).

2 Calculus

This section presents the syntax and semantics for our calculus with higher-order func-
tions for lock-based concurrency. The abstract syntax is given in Table 1 (the types T
will be covered in more detail in Section 3). A program P consists of processes p〈t〉
running in parallel, where p is a process identifier and t is a thread, i.e., the code be-
ing executed. The empty program is represented by /0. We assume, as usual, parallel
composition ‖ to be associative and commutative. The code is categorized as threads
t and expressions e, where t is either a value v or a sequential composition written as
let x:T = e in t, where the let-construct binds the local variable x in t. Expressions
include function application, conditionals, and thread creation. For lock manipulation,
new L yields the reference to a newly created lock (initially free), and the operations
v. lock and v. unlock deal with acquiring and releasing a lock. Values which are eval-
uated expressions are variables, lock references and, function abstractions.

P ::= /0 | p〈t〉 | P ‖ P program
t ::= v | let x:T = e in t thread
e ::= t | v v | if v then e else e | spawn t | new L | v. lock | v. unlock expr.
v ::= x | l | true | false | fn x:T.t | fun f :T.x:T.t values

Table 1: Abstract syntax

Semantics

The small-step operational semantics, presented next, distinguishes between local and
global steps (cf. Table 2 and 3). Rule R-RED is the basic evaluation step, replacing in

5

the continuation thread t the local variable by the value v (where [v/x] is understood as
capture-avoiding substitution). Rule R-LET restructures a nested let-construct. As the
let-construct generalizes sequential composition, the rule expresses associativity of that
construct. Thus it corresponds to transforming (e1; t1); t2 into e1;(t1; t2). Together with
the rest of the rules, which perform a case distinction on the first basic expression in
a let construct, that assures a deterministic left-to-right evaluation within each thread.
The two R-IF-rules cover the two branches of the conditional and the R-APP-rules
deals with function application, of non-recursive, resp., recursive functions.

let x:T = v in t −→ t[v/x] R-RED

let x2:T2 = (let x1:T1 = e1 in t1) in t2 −→let x1:T1 = e1 in (let x2:T2 = t1 in t2) R-LET

let x:T = if true then e1 else e2 in t −→let x:T = e1 in t R-IF1

let x:T = if false then e1 else e2 in t −→let x:T = e2 in t R-IF2

let x:T = (fn x′:T ′.t ′) v in t −→let x:T = t ′[v/x′] in t R-APP1

let x:T = (fun f :T1.x′:T2.t ′) v in t −→let x:T = t ′[v/x′][fun f :T1.x′:T2.t ′/ f] in t R-APP2

Table 2: Local steps

Global configurations are of the form σ ` P where P is a program and the heap σ

is a finite mapping from lock identifiers to the status of each lock, which can be either
free or a tuple indicating the number of times a lock has been taken by a thread. For the
analysis later, we allow ourselves also to write σ(l, p) = n + 1 if σ(l) = p(n + 1) and
σ(l, p) = 0 otherwise.

The global steps are given as transitions between global configurations. It will be
handy later to assume the transitions appropriately labeled (cf. Table 3). Thread-local
transition steps are lifted to the global level by rule R-LIFT. A global step is a thread-
local step made by one of the individual threads sharing the same σ (cf. rule R-PAR).
R-SPAWN creates a new thread with a fresh identity running in parallel with the parent
thread. All the identities are unique at the global level. Creating a new lock, which is
initially free, allocates a fresh lock reference l in the heap (cf. rule R-NEWL). The
locking step (cf. rule R-LOCK) takes a lock when it is either free or already being
held by the requesting process. To update the heap, we define: If σ(l) = free, then
σ +p l = σ [l 7→ p(1)] and if σ(l) = p(n), then σ +p l = σ [l 7→ p(n+1)]. Dually σ −p l
is defined as follows: if σ(l) = p(n+1), then σ−p l = σ [l 7→ p(n)], and if σ(l) = p(1),
then σ −p l = σ [l 7→ free]. Unlocking works correspondingly, i.e., it sets the lock as
being free resp. decreases the lock count by one (cf. rule R-UNLOCK).

The notion of (resource) deadlock used in the analysis is rather standard, where
a number of processes waiting for each other’s locks in a cyclic manner constitute a
deadlock (see also [14]). In our setting with re-entrant locks, a process cannot deadlock
“on itself”.

6

t1 −→ t2
R-LIFT

σ ` p〈t1〉 −→ σ ` p〈t2〉

σ ` P1 −→ σ ′ ` P′1
R-PAR

σ ` P1 ‖ P2 −→ σ
′ ` P′1 ‖ P2

σ ` p1〈let x:T = spawn t2 in t1〉 −→ σ ` p1〈let x:T = () in t1〉 ‖ p2〈t2〉 R-SPAWN

σ ′ = σ [l 7→ free] l is fresh
R-NEWL

σ ` p〈let x:T = newLin t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = free∨σ(l) = p(n) σ ′ = σ +p l
R-LOCK

σ ` p〈let x:T = l. lock in t〉 p〈l.lock〉−−−−−→ σ
′ ` p〈let x:T = l in t〉

σ(l) = p(n) σ ′ = σ −p l
R-UNLOCK

σ ` p〈let x:T = l. unlock in t〉 p〈l.unlock〉−−−−−−→ σ
′ ` p〈let x:T = l in t〉

Table 3: Global steps

Definition 1 (Waiting for a lock). Given a configuration σ ` P, a process p waits for
a lock l in σ ` P, written as waits(σ ` P, p, l), if it is not the case that σ ` P

p〈l.lock〉−−−−→,

and furthermore there exists a σ ′ s.t. σ ′ ` P
p〈l.lock〉−−−−→ σ ′′ ` P′.

Definition 2 (Deadlock). A configuration σ ` P is deadlocked if σ(li) = pi(ni) and
furthermore waits(σ ` P, pi, li+k1) (where k ≥ 2 and for all 0 ≤ i ≤ k− 1). The +k is
meant as addition modulo k. A configuration σ `P contains a deadlock, if, starting from
σ `P, a deadlocked configuration is reachable; otherwise the configuration is deadlock
free.

3 Type system

Next we present an effect type system to derive behavioral information which is used, in
a second step, to detect potential deadlocks. The type system derives flow information
about which locks may be used at various points in the program. Additionally, it derives
an abstract, i.e., approximate representation of the code’s behavior. The representation
extends our earlier system [14] by making the analysis context-sensitive and further-
more by supporting effect type inference, both important from a practical point of view.
Being context-sensitive, making the effect system polymorphic, increases the precision
of the analysis. Furthermore, inference removes the burden from the programmer to
annotate the program appropriately to allow checking for potential deadlock. These ex-
tensions follow standard techniques for behavior inference, see for instance Amtoft,
Nielson, and Nielson [2] and type-based flow analysis, see e.g. Mossin [12]. Unlike
the presentation in [14], and following the mentioned standard techniques, the system
here makes use of explicit constraints. Type systems are, most commonly, formulated
in a syntax-directed manner, i.e., analyzing the program code in a divide-and-conquer

7

manner. That obviously results in an efficient analysis of the code. However, a syntax-
directed formulation of the deduction rules of the type system, which forces to analyze
the code following the syntactic structure of the program, may have disadvantages,
as well. Using constraints in a type system decouples the syntax-directed phase of the
analysis, which collects the constraints, from the task of actually solving the constraints.
Formulations of type systems without relying on constraints can be seen as solving the
underlying constraints “on-the-fly”, while recurring through the structure of the code.
For illustration: in connection with (conventional) unification-based type inference, in-
stead of integrating unification into the rule system, as is often done for instance in pre-
sentations of the most well-known type-inference algorithm of Hindley-Milner-Damas
[6,5,9,11], one may collect the need to unify types as a set of unification constraints left
to be solved later.

3.1 Types, effects, and constraints

The analysis performs a data flow analysis to track the usage of locks. For that purpose,
the lock creation statements are equipped with labels, writing newπ L, where π is taken
from a countably infinite set of labels. As usual, the labels π are assumed unique in a
given program. The grammar for annotations, types, and effects is given in Table 4 and
5. As said, the annotation π is used to label program points where locks are created, r
denotes sets of πs with ρ is a corresponding variable. Types includes basic types such
as the unit type Unit, booleans, integers, etc., functional types with latent effect ϕ , and
lock types Lr where the annotation r are the flow information about the potential places
where the lock is created. This information will be reconstructed, and the user uses
types without annotations (the “underlying” types) in the program. We write T as meta-
variables for the underlying types, and T̂ and its syntactic variants for the annotated
types, as given in the grammar.

Whereas the type of an expression captures the results of the computations of the
expression if it terminates, the effect captures the behavior during the computations.
For the deadlock analysis we capture the lock interactions as effects, i.e., which locks
are accessed during execution and in which order. The effects (cf. Table 5) are split be-
tween a (thread-) local level ϕ and a global level Φ . The empty effect is denoted by ε ,
representing behavior without lock operations. Sequential composition is represented
by ϕ1;ϕ2. The choice between two effects ϕ1 + ϕ2 and recursive effects recX .ϕ are
actually not generated by the algorithm; they would show up when solving the con-
straints generated by the algorithm. We included their syntax for completeness. Note

Y ::= ρ | X type-level variables
r ::= ρ | {π} | rt r lock/label sets

T̂ ::= B | Lr | T̂
ϕ−→ T̂ types

Ŝ ::= ∀~Y :C. T̂ type schemes
C ::= /0 | ρ w r,C | X w ϕ,C constraints

Table 4: Types and type schemes

8

Φ ::= 0 | p〈ϕ〉 | Φ ‖Φ effects (global)
ϕ ::= ε | ϕ;ϕ | ϕ +ϕ | α | X | recX .ϕ effects (local)
a ::= spawn ϕ | r.lock | r.unlock labels/basic effects
α ::= a | τ transition labels

Table 5: Effects

also, that recursion is not polymorphic. Labels a capture the three basic effects: spawn-
ing a new process with behavior ϕ is represented by spawn ϕ . The basic effects r.lock
and r.unlock respectively capture lock manipulations, acquiring and releasing a lock,
where r is referring to the possible point of creation. Silent transitions are represented
by τ . Note that lock-creation has not effect and will be represented by a τ-transition.

Constraints C finally are finite sets of in-equations of the form ρ w r or of X w ϕ ,
where ρ is, as mentioned, a flow variable and X an effect or behavior variable. To allow
polymorphism we use type schemes Ŝ, i.e., prefix-quantified types of the form ∀~Y :C. T̂ ,
where Y are variables ρ or X . The qualifying constraints C in the type scheme impose
restrictions on the bound variables. The type and effect system presented in this paper
uses a constraint-based flow analysis as proposed by Mossin [12] for lock information.
Likewise, the effects captured as a sequence of behavior is formulated using constraints.

3.2 Type inference

Next we present a type inference algorithm which derives types and effects and gen-
erating corresponding constraints (see Table 7 below). It is formulated in a rule-based
manner, with judgments of the following form

Γ ` e : T̂ :: ϕ;C , (1)

meaning that under the context Γ and the constraints C, expression e has type T̂ and
effect ϕ; The system will be syntax-directed, i.e., algorithmic, where Γ and e are con-
sidered as “input”, and the annotated type T̂ , the effect ϕ , and the set of constraints C
as “output”. Concentrating on the flow information and the effect part, expressions e, in
particular the let-expression and function definitions, are type-annotated with the under-
lying types, as given in the grammar of Table 1. In contrast, e contains no flow or effect
annotations; those are derived by the algorithmic type system. It would be straightfor-
ward to omit the underlying types and have them reconstructed as well, using standard
type inference à la Hindley/Milner/Damas [6,5,9]. For simplicity, we concentrate on the
type annotations and the effect part.

The intended meaning of the judgment from (1) is that, relative to a given typing
context Γ and for the given expression e: if evaluating e terminates, the corresponding
values are elements of the domain represented by T̂ (more precisely by the underlying
type T). For locks, the flow annotation over-approximates the point of lock creation,
and finally, ϕ over-approximates the lock-interactions while evaluating e. As usual, the
behavioral over-approximation is a form of simulation. For our purpose, we will define a

9

particular, deadlock-sensitive form of simulation. These intended over-approximations
are understood relative to the generated constraints C, i.e., all solutions of C give rise to
a sound over-approximation in the mentioned sense. Solutions to a constraint set C are
ground substitutions θ , assigning label sets to flow variables ρ and effect variables. We
write θ |= C if θ is a solution to C.

Ultimately, one is interested in the minimal solution of the constraints, as it provides
the most precise flow and effect information. Solving the constraints is done after the
algorithmic type system, but to allow for the most precise solution afterward, each rule
should generate the most general constraint set, i.e., the one which allows the maximal
set of solutions. This is achieved using fresh variables for each additional constraint.

In the system below, new constraints are generated from requesting that types are
in “subtype” relationship. Without subtyping on the underlying types, e.g., stipulating
relationships between basic types such as Int ≤ Real, “subtyping” here concerns the
flow annotations on the lock types and the latent effects on function types. Instead of re-
questing that, for instance in rule TA-APP in Table 7, the argument of a function of type
T̂2

ϕ−→ T̂1 is of a subtype T̂ ′2 of T̂2, i.e., instead of requiring T̂ ′2 ≤ T̂2 in that situation, the
corresponding rule will generate new constraints in requiring the subtype relationship
to hold (see Definition 3). As an invariant, the type system makes sure that lock types
are always of the form Lρ , i.e., using flow variables and similarly that only variables X
are used for the latent effects for function types.

Definition 3 (Constraint generation). The judgment T̂1 ≤ T̂2 `C (read as “requiring
T̂1 ≤ T̂2 generates the constraints C”) is inductively given as follows:

B≤ B ` /0 C-BASIC Lρ1 ≤ Lρ2 ` {ρ1 v ρ2} C-LOCK

T̂ ′1 ≤ T̂1 `C1 T̂2 ≤ T̂ ′2 `C2 C3 = {X v X ′}
C-ARROW

T̂1
X−→ T̂2 ≤ T̂ ′1

X ′−→ T̂ ′2 `C1,C2,C3

In the presence of subtyping/sub-effecting, the overall type of a conditional needs
to be an upper bound on the types/effects of the two branches (resp. the least upper
bound in case of a minimal solution). To generate the most general constraints, fresh
variables are used for the result type. This is captured in the following definition. Note
that given T̂ by T̂1 ∨ T̂2 ` T̂ ;C, type T̂ in itself does not represent the least upper bound
of T̂1 and T̂2. The use of fresh variables assures, however, that the minimal solution of
the generated constraints makes T̂ into the least upper bound.

Definition 4 (Least upper bound). The partial operation ∨ on annotated types (and
in abuse of notation, on effects), giving back a set of constraints plus a type (resp. an
effect) is inductively given by the rules of Table 6. The operation ∧ is defined dually.

The rules for the type and effect system then are given in Table 7. A variable has
no effect and its type (scheme) is looked up from the context Γ . The constraints C that
may occur in the type scheme, are given back as constraints of the variable x, replacing
the ∀-bound variables ~Y in C by fresh ones. Lock creation at point π (cf. TA-NEWL)

10

B1 = B2
LT-BASIC

B1 ∨ B2 = B1; /0

ρ fresh Lρ1 ≤ Lρ `C1 Lρ2 ≤ Lρ `C2
LT-LOCK

Lρ1 ∨ Lρ2 = Lρ ;C1,C2

T̂ ′1 ∧ T̂ ′′1 = T̂ ;C1 T̂ ′2 ∨ T̂ ′′2 = T̂ ′;C2 X1 tX2 = X ;C3
LT-ARROW

T̂ ′1
X1−→ T̂ ′2 ∨ T̂ ′′1

X2−→ T̂ ′′2 = T̂1
X−→ T̂2;C1,C2,C3

X fresh C = {ϕ1 v X ,ϕ2 v X}
LE-EFF

ϕ1 tϕ2 = X ;C

Table 6: Least upper bound

is of the type Lρ , has an empty effect and the generated constraint requires ρ w {π},
using a fresh ρ . As values, abstractions have no effect (cf. TA-ABS rules) and again,
fresh variables are appropriately used. In rule TA-ABS1, the latent effect of the result
type is represented by X under the generated constraint X w ϕ , where ϕ is the effect
of the function body checked in the premise. The context in the premise is extended by
x:dTeA, where the operation dTeA annotates all occurrences of lock types L with fresh
variables and introduces fresh effect variables for the latent effects. Rule TA-ABS2
for recursive functions works analogously, with an additional constraint generated by
requiring T̂2 ≥ T̂ ′2 , where T̂ ′2 is the type of function body e checked in the premise.

For applications (cf. TA-APP), both the function and the arguments are evaluated
and therefore have no effect. As usual, the type of the argument need to be a subtype
of the input type of the function, and corresponding constraints C3 are generated by
T̂ ′2 ≤ T̂2 `C3. For the overall effect, again a fresh effect variable is used which is con-
nected with the latent effect of the function by the additional constraint X w ϕ . For
conditionals, rule TA-COND ensures both the resulting type and the effect are upper
bounds of the types resp. effects of the two branches by generating two additional con-
straints C and C′ (cf. Table 6 from Definition 4). The let-construct (cf. TA-LET) for the
sequential composition has as effect ϕ1;ϕ2. To support context-sensitivity (correspond-
ing to let-polymorphism), the let-rule is where the generalization over the type-level
variables happens, i.e., the introduction of ∀-quantified types in the binding for x when
extending Γ . In first approximation, given T̂1 of e1, variables which do not occur free
in Γ can be generalized over to obtain Ŝ1. To make the rule deterministic and to use
the most “polymorphic” representation for Ŝ, which is necessary for an algorithmic
formulation, Ŝ quantifies over the maximal number of variables for which such gener-
alization is sound. In the setting here, the quantification affects not type variables, but
only flow variables ρ and effect variables X . As those variables are connected by thev-
relations in the constraints, also variables which do not literally occur in Γ and ϕ may
indirectly affect the variables which do and thus cannot be generalized over either (see
Amtoft, Nielson, and Nielson [2]). The close-operation close(Γ ,ϕ,C, T̂) first computes
the set of all “relevant” free variables in a type T̂ and the constraint C by the opera-
tion close↑↓(T̂1,C1) (cf. Definition 5(2)). Among the set of free variables, those are free
in the context or in the effect and the corresponding downward closure (cf. Definition
5(1)) are non-generalizable and are excluded.

Definition 5 (Closure).

11

Γ (x) = ∀~Y :C.T̂ ~Y ′ fresh θ = [~Y ′/~Y]
TA-VAR

Γ ` x : θ T̂ :: ε;θC

ρ fresh
TA-NEWL

Γ ` newπ L : Lρ :: ε;ρ w {π}

T̂1 = dT1eA Γ ,x:T̂1 ` e : T̂2 :: ϕ;C X fresh
TA-ABS1

Γ ` fn x:T1.e : T̂1
X−→ T̂2 :: ε;C,X w ϕ

T̂1
X−→ T̂2 = dT1→ T2eA Γ , f :T̂1

X−→ T̂2,x:T̂1 ` e : T̂ ′2 :: ϕ;C1 T̂ ′2 ≤ T̂2 `C2
TA-ABS2

Γ ` fun f :T1→ T2,x:T1.e : T̂1
X−→ T̂2 :: ε;C1,C2,X w ϕ

Γ ` v1 : T̂2
ϕ−→ T̂1 :: ε;C1 Γ ` v2 : T̂ ′2 :: ε;C2 T̂ ′2 ≤ T̂2 `C3 X fresh

TA-APP

Γ ` v1 v2 : T̂1 :: X ;C1,C2,C3,X w ϕ

bT̂c= bT̂1c= bT̂2c T̂ ;C = T̂1 ∨ T̂2 X ;C′ = ϕ1 tϕ2

Γ ` v : Bool:: ε;C0 Γ ` e1 : T̂1 :: ϕ1;C1 Γ ` e2 : T̂2 :: ϕ2;C2
TA-COND

Γ ` if v then e1 else e2 : T̂ :: X ;C0,C1,C2,C,C′

Γ ` e1 : T̂1 :: ϕ1;C1 bT̂1c= T1

Ŝ1 = close(Γ ,ϕ1,C1, T̂1) Γ ,x:Ŝ1 ` e2 : T̂2 :: ϕ2;C2
TA-LET

Γ ` let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2;C1,C2

Γ ` t : T̂ :: ϕ;C X fresh
TA-SPAWN

Γ `spawn t : Unit:: X ;C,X wspawn ϕ

Γ ` v : Lρ :: ε;C X fresh
TA-LOCK

Γ ` v. lock: Lρ :: X ;C,X w ρ.lock

Γ ` v : Lρ :: ε;C X fresh
TA-UNLOCK

Γ ` v. lock: Lρ :: X ;C,X w ρ.unlock

Table 7: Algorithmic effect inference

1. A set of variables ~Y is downward closed wrt. C if the following implication holds:
if Y ∈ ~Y , and a constraint ϕ v Y ∈ C or r v Y ∈ C, then also fv(ϕ) ⊆ ~Y resp.
fv(r) ⊆ ~Y . The downward closure of a set of variables ~Y wrt. a constraint set C
(written close↓(~Y ,C)) is the smallest set ~Y ′ s.t. ~Y ′ ⊇~Y and ~Y ′ is downward closed
wrt. C.

2. A set of variables~Y is upward-downward closed wrt. C if the following implication
holds: if Y ∈ ~Y , and c ∈ C with Y ∈ fv(c) and Y ′ ∈ fv(c), then also Y ′ ∈ ~Y . The
upward-downward closure of a set of variables ~Y wrt. a constraint set C (written
close↑↓(~Y ,C)) is the smallest set ~Y ′ s.t. ~Y ′ ⊇~Y and ~Y ′ is upward-downward closed
wrt. C.

Definition 6 (Closure). The closure close(Γ ,ϕ,C, T̂) of a type T̂ wrt. a context Γ , an
effect ϕ , and constraints C is given as type scheme ∀~Y :C′.T̂ , where~Y = close↑↓(fv(T̂),C)\
close↓(fv(Γ ,ϕ),C) and C′ is the largest set where C′ ⊆C with for all constraints c∈C′,
fv(c)∩~Y 6= /0.

12

The spawn expression is of unit type (cf. TA-SPAWN) and again a fresh variable
is used in the generated constraint. Finally, rules TA-LOCK and TA-UNLOCK deal
with locking and unlocking an existing lock created at the potential program points
indicated by ρ . Both expressions have the same type Lρ , while the effects are ρ. lock
and ρ. unlock.

The type and effect system works on the thread local level. The definition for
the global level is straightforward. If all the processes are well-typed, so is the cor-
responding global program. A process p is well-typed, denoted as ` p〈t〉 :: p〈ϕ;C〉, if
` t : T̂ :: ϕ;C. In abuse of notation, we use Φ to abbreviate p1〈ϕ1;C1〉 ‖ . . . ‖ pn〈ϕn;Cn〉.

3.3 Semantics of the behavior

Next we are going to define the transition relation on the abstract behavior by using
the effect-constraints. Given a constraint set C where C ` a;ϕ2 v ϕ1, we interpret it as
ϕ1 may first perform an a-step before executing ϕ2. See also [2]. The a is one of the
labels from Table 5 and do not include τ-labels. The relation C ` ϕ1 v ϕ2 is defined in
Table 8.

Definition 7. The transition relation between configurations of the form C; σ̂ ` Φ is
given inductively by the rules of Table 9, where we write C ` ϕ1

a=⇒v ϕ2 for C ` a;ϕ2 v
ϕ1. The σ̂ represents an abstract heap, which is a finite mapping from a flow variable ρ

and a process identity p to a natural number.

Each transition is labeled with one of the labels in Table 5, and correspondingly cap-
ture the three possible steps we describe in the behavior, namely creating a new process
with a given behavior, locking and unlocking. Analogous to the corresponding case in
the concrete semantics, rule RE-SPAWN covers the spawning of a new (abstract) thread
and leaves the abstract heap unchanged. Taking a lock is specified by rule RE-LOCK
which increases the corresponding lock count by one. Unlocking works similarly by
decreasing the lock count by one (cf. RE-UNLOCK), where the second premise makes

ε;ϕ ≡ ϕ EE-UNIT ϕ1;(ϕ2;ϕ3)≡ (ϕ1;ϕ2);ϕ3 EE-ASSOC

C,ϕ v X ` ϕ v X S-AXE

ϕ1 ≡ ϕ2
S-REFLE

C ` ϕ1 v ϕ2

C,r ⊆ ρ ` r ⊆ ρ S-AXL C ` r ⊆ r S-REFLL

C ` r1 ⊆ r2 C ` r2 ⊆ r3
S-TRANSL

C ` r1 ⊆ r3

C ` ϕ1 v ϕ2 C ` ϕ2 v ϕ3
S-TRANSE

C ` ϕ1 v ϕ3

C ` ϕ1 v ϕ ′1 C ` ϕ2 v ϕ ′2
S-SEQ

C ` ϕ1;ϕ2 v ϕ
′
1;ϕ

′
2

C ` ϕ1 v ϕ2
S-SPAWN

C `spawn ϕ1 vspawn ϕ2

C ` r1 ⊆ r2
S-LOCK

C ` r1.lock v r2.lock

C ` r1 ⊆ r2
S-UNLOCK

C ` r1.unlock v r2.unlock

Table 8: Orders on behaviors

13

C; σ̂ `Φ1
a=⇒v C; σ̂ ′ `Φ ′1

RE-PAR

C; σ̂ `Φ1 ‖Φ2
a=⇒v C; σ̂

′ `Φ
′
1 ‖Φ2

C ` ϕ
spawn(ϕ ′′)
======⇒v ϕ ′

RE-SPAWN

C; σ̂ ` p1〈ϕ〉
p1〈spawn(ϕ

′′)〉
========⇒v C; σ̂ ` p1〈ϕ ′〉 ‖ p2〈ϕ ′′〉

C ` ϕ
ρ.lock
===⇒v ϕ ′ σ̂ ′(ρ, p) = σ̂(ρ, p)+1

RE-LOCK

C; σ̂ ` p〈ϕ〉 p〈ρ.lock〉
=====⇒v C; σ̂

′ ` p〈ϕ ′〉

C ` ϕ
ρ.unlock
=====⇒v ϕ ′ σ̂(ρ, p)≥ 1 σ̂ ′(ρ, p) = σ̂(ρ, p)−1

RE-UNLOCK

C; σ̂ ` p〈ϕ〉 p〈ρ.unlock〉
======⇒v C; σ̂

′ ` p〈ϕ ′〉

Table 9: Global transitions

sure the lock count stays non-negative. The transitions of a global effect Φ consist of
the transitions of the individual thread (cf. RE-PAR).

As stipulated by rule RE-LOCK, the step to take an abstract lock is always enabled,
which is in obvious contrast to the behavior of concrete locks. The ensure that the
abstraction preserves deadlocks requires to adapt the definition of what it means that a
(abstract) behavior waits on a lock (cf. Definition 1 for concrete programs and heaps).

Definition 8 (Waiting for a lock (=⇒v)). Given a configuration C; σ̂ ` Φ where Φ =
Φ ′ ‖ p〈ϕ〉, a process p waits for a lock ρ in σ̂ ` Φ , written as waitsv(C; σ̂ ` Φ , p,ρ),

if C ` ϕ
ρ.lock
===⇒v ϕ ′ but σ̂(ρ,q)≥ 1 for some q 6= p.

Definition 9 (Deadlock). A configuration C; σ̂ `Φ is deadlocked if σ̂(ρi, pi)≥ 1 and
furthermore waits(C; σ̂ `Φ , pi,ρi+k1) (where k≥ 2 and for all 0≤ i≤ k−1). The +k is
meant as addition modulo k. A configuration C; σ̂ `Φ contains a deadlock, if, starting
from C; σ̂ `Φ , a deadlocked configuration is reachable; otherwise the configuration is
deadlock free.

3.4 Soundness

A crucial part for proving the soundness of the algorithm wrt. the semantics is preser-
vation of well-typedness under reduction. This includes to check that the operational
interpretation of the program is over-approximated by the effect given by the type sys-
tem. This proof of over-approximation means establishing a simulation relation between
a program and its effect, where in our setting, this relation has to be sensitive to dead-
locks. Defining the simulation relation requires to relate concrete heaps with abstract
ones where concrete locks are summarized by their point of creation. See the discus-
sion in Section 1.2 for rationale behind the abstraction function and the design of the
corresponding deadlock sensitive simulation:

14

Definition 10 (Wait-sensitive heap abstraction). Given a concrete and an abstract
heap σ1 and σ̂2, and a mapping θ from the lock references of σ1 to the abstract
locks of σ̂2, σ̂2 is a wait-sensitive heap abstraction of σ1 wrt. θ , written σ1 ≤θ σ̂2,
if ∑l∈{l′ | θ l′=ρ}σ1(l, p)≤ σ̂2(ρ, p), for all p and ρ . The definition is used analogously
for comparing two abstract heaps. In the special case of mapping between the concrete
and an abstract heap, we write ≡θ if the sum of the counters of the concrete locks
coincides with the count of the abstract lock.

Definition 11 (Deadlock sensitive simulation .D
v). Assume a heap-mapping θ and

a corresponding wait-sensitive abstraction ≤θ . A binary relation R between configu-
rations is a deadlock sensitive simulation relation (or just simulation for short) if the
following holds. Assume C1; σ̂1 `Φ1 R C2; σ̂2 `Φ2 with σ̂1 ≤θ σ̂2. Then:

1. If C1; σ̂1 ` Φ1
p〈a〉
==⇒v C1; σ̂ ′1 ` Φ ′1, then C2; σ̂2 ` Φ2

p〈a〉
==⇒v C2; σ̂ ′2 ` Φ ′2 for some

C2; σ̂ ′2 `Φ ′2 with σ̂ ′1 ≤θ σ̂ ′2 and C1; σ̂ ′1 `Φ ′1R C2; σ̂ ′2 `Φ ′2.
2. If waitsv((C1; σ̂1 `Φ1), p,ρ), then waitsv((C2; σ̂2 `Φ2), p,θ(ρ)).

Configuration C1; σ̂1 `Φ1 is simulated by C2; σ̂2 `Φ2 (written C1; σ̂1 `Φ1 .D
vC2; σ̂2 `

Φ2), if there exists a deadlock sensitive simulation s.t. C1; σ̂1 `Φ1 R C2; σ̂2 `Φ2.
The definition is used analogously for simulations between program and effect con-

figurations, i.e., for σ1 ` P .D
v C; σ̂2 ` Φ . In that case, the transition relation

p〈a〉
==⇒v is

replaced by
p〈a〉
==⇒ for the program configurations.

C1; σ̂1 `Φ1 C1; σ̂ ′1 `Φ ′1

C2; σ̂2 `Φ2 C2; σ̂ ′2 `Φ ′2

v

p〈a〉

R

v

p〈a〉

R

Fig. 2: Deadlock sensitive simulation .D
v

The notation
p〈a〉
==⇒ is a weak transition relation which is defined as

p〈τ〉−−→∗ p〈a〉−−→. This
relation captures the internal steps which are ignored when relating two transition sys-
tems by simulation.

It is obvious that the binary relation .D
v is itself a deadlock simulation. The relation

is transitive and reflexive. Thus, if C; σ̂1 `Φ1 .D
v C; σ̂2 `Φ2, the property of deadlock

freedom is straightforwardly carried from the more abstract behavior to the concrete
one (cf. Lemma 1).

Lemma 1 (Preservation of deadlock freedom). Assume C; σ̂1 `Φ1 .D
v C; σ̂2 `Φ2. If

C; σ̂2 `Φ2 is deadlock free, then so is C; σ̂1 `Φ1.

The next lemma shows the compositionality of the deadlock simulation relation wrt.
parallel composition.

15

Lemma 2 (Composition). Assume C; σ̂1 ` p〈ϕ1〉 .D
v C; σ̂2 ` p〈ϕ2〉, then C; σ̂1 ` Φ ‖

p〈ϕ1〉.D
v C; σ̂2 `Φ ‖ p〈ϕ2〉.

To show the soundness of algorithmic type and effect inference, the proof is formu-
lated as a form of a subject reduction result such that it captures the deadlock-sensitive
simulation. The part for the preservation of typing under substitution is fairly standard
and therefore omitted here. As for the effects, the type system derives the formal be-
havioral description, i.e. over-approximation, for the future behavior of a program; one
hence cannot expect to the effect is preserved for each reduction step. Furthermore,
many steps which are irrelevant to the behavior of lock manipulations, i.e., internal
steps, are ignored. Thus, we relate the behavior of the program and the behavior of the
effects via a deadlock-sensitive simulation relation.

Lemma 3 (Subject reduction). Let Γ ` p〈t〉 :: p〈ϕ;C〉, and σ1 ≡θ̂
σ̂2. Assume fur-

thermore θ |= C.

1. σ1 ` p〈t〉 p〈τ〉−−→ σ ′1 ` p〈t ′〉, then Γ ` p〈t ′〉 :: p〈ϕ ′;C′〉 with C ` θ ′C′ for some θ ′, and
furthermore C ` ϕ w θ ′ϕ ′, and σ ′1 ≡θ̂

σ̂2.

2. (a) σ1 ` p〈t〉 p〈a〉−−→ σ ′1 ` p〈t ′〉 where a 6= spawn ϕ ′′, then C; σ̂2 ` p〈ϕ〉 p〈a〉
==⇒vC; σ̂ ′2 `

p〈ϕ ′〉, Γ ` p〈t ′〉 :: p〈ϕ ′′;C′〉 with C ` θ ′C′, and furthermore C ` ϕ ′ w θ ′ϕ ′′ and
σ ′1 ≡θ̂

σ̂ ′2.

(b) σ1 ` p〈t〉 p〈a〉−−→ σ1 ` p〈t ′′〉 ‖ p′〈t ′〉 where a = spawn ϕ ′, then C; σ̂2 ` p〈ϕ〉 p〈a〉
==⇒v

C; σ̂2 ` p〈ϕ ′′〉 ‖ p′〈ϕ ′〉 and such that Γ ` p〈t ′′〉 :: p〈ϕ ′′′;C′′〉 with C ` θ ′′C′′ and
C ` ϕ ′′ w θ ′′ϕ ′′′, and furthermore Γ ` p′〈t ′〉 :: p′〈ϕ ′′′′;C′〉 with C ` θ ′C′ and
C ` ϕ ′ w θ ′ϕ ′′′′.

3. If waits(σ1 ` p〈t〉, p, l), then waitsv(C; σ̂2 ` p〈ϕ〉, p, θ̂ l).

The well-typedness relation between a program and its effect straightforwardly im-
plies a deadlock-preserving simulation:

Corollary 1. Given σ1 ≡θ σ̂2 and Γ ` p〈t〉 :: p〈ϕ;C〉, then σ1 ` p〈t〉.D
v C; σ̂2 ` p〈ϕ〉.

4 Conclusion

We have presented a constraint-based type and effect inference algorithm for deadlock
checking. It infers a behavioral description of a thread’s behavior concerning its lock
interactions which then is used to explore the abstract state space to detect potential
deadlocks. The static analysis is developed for a concurrent calculus with higher-order
functions and dynamic lock creation. Covering lock creation by an appropriate abstrac-
tion extends our earlier work [14] for deadlock detection using behavior abstraction.
Another important extension of that work is to enhance the precision by making the
analysis context-sensitive and furthermore to support effect inference ([14] in contrast
required the programmer to provide the behavior annotations manually). The analysis
is shown sound, i.e., the abstraction preserves deadlocks of the program. Formally that
is captured by an appropriate notion of simulation (“deadlock-sensitive simulation”).

16

Related work Deadlocks are a well-known problem in concurrent programming and
a vast number of techniques for deadlock checking have been investigated and imple-
mented for various languages. One common way to prevent deadlocks is to arrange
locks in a certain partial order such that no cyclic wait on locks/resources, which is
one of the four necessary conditions for deadlocks [4], can occur. For instance, Boyap-
ati, Lee, and Rinard [3] prevent deadlocks by introducing deadlock types and imposing
an order among these. The paper also covers type inference and polymorphism wrt.
the lock levels. Instead of preventing deadlocks statically, Agarwal, Wang, and Stoller
[1] use deadlock types to improve the efficiency for run-time checking with a static
type system. The type inference algorithms by Suenaga, and Vasconcelos et al. [16,18]
assure deadlock freedom in a well-typed program with a strict partial order on lock
acquisition. Similar to our approach, Naik et al. [13] detect potential deadlocks with
a model-checking approach by abstracting threads and locks by their allocation sites.
The approach is neither sound nor complete. Instead of checking for deadlocks, the ap-
proach by Kidd et al. [10] generates an abstraction of a program to check for data races
in concurrent Java programs, by abstracting unlimited number of Java objects into a
finite set of abstract ones whose locks are binary.

Future work As mentioned in the introduction, there are four principal sources of infin-
ity in the state-space obtained by the effect inference system. For the unboundedness of
dynamic lock creation, we presented an appropriate sound abstraction. We expect that
the techniques for dealing with the unboundedness of lock counters and of the call stack
can be straightforwardly carried over from the non-context-sensitive setting of [14], as
sketched in Section 1.2. All mentioned abstractions are compatible with our notion of
deadlock-sensitive simulation in the sense that being more abstract —identifying more
locks, choosing a smaller bound on the lock counters or on the allowed stack depth—
leads to a larger behavior wrt. our notion of simulation. This allows an incremental
approach, starting from a coarse-grained abstraction, which may be refined in case of
spurious deadlocks. To find sound abstractions for process creation as the last source of
infinity seems more challenging and a naive approach by simply summarizing processes
by their point of creation is certainly not enough.

We have developed a prototype implementation of the state-exploration part in the
monomorphic setting of [14]. We plan to adapt the implementation to the more general
setting and to incorporate with an implementation of the type inference system.

A Appendix

A.1 Annotated semantics and type system

The transitions of the operational semantics shown in Table 2 on page 6 for local steps
and 3 on page 7 for global steps are properly labeled for deadlock checking. While the
transitions for the local ones are annotated with p〈τ〉, the annotated semantics for the
global steps are presented in Table 10 on the following page.

The specification of our type and effect inference algorithm (cf. Table 7 on page 12)
is presented in Table 11 on page 32, while the global type system is shown in Table 12
on page 32.

17

t1 −→ t2
R-LIFT

σ ` p〈t1〉
p〈τ〉−−→ σ ` p〈t2〉

σ ` P1
p〈α〉−−→ σ ′ ` P′1

R-PAR

σ ` P1 ‖ P2
p〈α〉−−→ σ

′ ` P′1 ‖ P2

σ ` p1〈let x:T = spawn tϕ

2 in t1〉
p1〈spawn(ϕ)〉
−−−−−−−−→ σ ` p1〈let x:T = () in t1〉 ‖ p2〈t2〉 R-SPAWN

σ ′ = σ [lρ 7→ free] l is fresh
R-NEWL

σ ` p〈let x:T = new Lin t〉 p〈τ〉−−→ σ
′ ` p〈let x:T = lρ in t〉

σ(lρ) = free∨σ(lρ) = p(n) σ ′ = σ +p lρ

R-LOCK

σ ` p〈let x:T = lρ . lock in t〉 p〈lρ .lock〉−−−−−−→ σ
′ ` p〈let x:T = lρ in t〉

σ(lρ) = p(n) σ ′ = σ −p lρ

R-UNLOCK

σ ` p〈let x:T = lρ . unlock in t〉 p〈lρ .unlock〉−−−−−−−→ σ
′ ` p〈let x:T = lρ in t〉

Table 10: Global steps

B Additional technical lemmas

In the following, we collect some additional lemmas, needed in particular for subject
reduction.

B.1 Miscellaneous

Lemma 4. Wlog: C1 `C2 implies fv(C1)⊇ fv(C2).

Proof. Straightforward.

Lemma 5. If dom(θ)⊆ fv(C), then ran(θ)⊆ fv(θC).

Proof. Straightforward. ut

Lemma 6. C1 ` θC2 and dom(θ)⊆ fv(C2), then ran(θ)⊆ fv(C1).

Proof. A direct consequence of Lemmas 4 and 5. ut

Note that fv(θC2)⊆C2 does not hold.

Lemma 7. Assume C1 ` θC2 and~Y /∈ fv(C1) and dom(θ)⊆~Y . Then

1. dom(θ)∩ fv(C1) = /0.
2. dom(θ)∩ ran(θ) = /0.
3. If~Y ⊆ fv(C2), then dom(θ) =~Y .
4. ~Y = fv(C2)\ fv(C1).

18

Proof. For part 1: the conditions dom(θ) ⊆~Y and ~Y ∩ fv(C1) = /0 immediately imply
the result. For part 2: The condition C1 ` θC2 gives with Lemma 4 that

fv(C1)⊇ fv(θC2) . (2)

Wlog. we can assume that dom(θ)⊆C2 and thus Lemma 5 gives ran(θ)⊆ fv(θC2). To-
gether with equation (2), this means ran(θ)⊆ fv(C1). Thus the result follows with part
1. For part 3, the inclusion dom(θ)⊆~Y is given as assumption. For the opposite direc-
tion, assume for a contradiction there exists a variable Y ′ ∈~Y but Y ′ /∈ dom(θ). The as-
sumption~Y ⊆ fv(C2) implies Y ′ ∈ fv(C2). Since Y ′ /∈ dom(θ), this implies Y ′ ∈ fv(θC2),
as well. Equation (2) implies that also Y ′ ∈ fv(C1). This contradicts the condition that
fv(C1)∩~Y = /0. For part 4: that~Y ⊆ fv(C2)\ fv(C1) follows from part 3 and the fact that
dom(θ)⊆C2. For the opposite direction, assume for a contradiction that there exists a
Y ′ ∈ fv(C2)\ fv(C1) and Y ′ /∈~Y . Since Y ′ ∈ fv(C2) but Y ′ /∈ dom(θ), Y ′ ∈ fv(θC2)⊆C1,
which contradicts above assumption. ut

B.2 Subject reduction

Next we prove subject reduction, connecting the type and effect system with the opera-
tional semantics. The proof of subject reduction is best not done using the algorithmic
formulation, i.e., on the derivation rules from Table 7. On the other hand, also the orig-
inal specification from Section A.1 is problematic for performing the proof. The reason
for that lies in the presence of non-syntax-directed rules, of which there are three: sub-
typing/sub-effeting on the one hand and generalization and instantiation on the other.
The rules of operational semantics are syntax-directed which means that the syntactic
structure of an expression or thread determines which step can be taken: the reduction
strategy is deterministic (for a single thread). In contrast, the type system does not fix
the typing rule for a given syntactic structure which, connecting the type derivations
with the operational semantics in the subject reduction proof, necessitates considering
different combinations of rules justifying a given typing judgement. To avoid that com-
plication, subject reduction is done for a more disciplined system which works without
those three mentioned rules.

The compromise system can be considered as a variant of the specification, where
the use of the mentioned non-syntax-directed rules is restricted to specific points in a
deriviation; derivations adhering to that more disciplined use of the rules are called nor-
malized. As for generalization/specialization: a normalized derivation uses instantiation
as “early” as possible and generalization as “late” as possible: Instantiation is done only
directly after an application of rule T-VAR, i.e., when looking up an variable from the
typing context, and generalization is used only preceding an application of T-LET, i.e.,
before extending the typing context with a variable.

For the type system, we will put some general well-formedness restrictions on the
form of allowed type schemes, basically restricting which sets of variables can be quan-
tified over. Remember that constraints c ∈ C need to be of the form ρ w r or X w ϕ ,
i.e., for upper bounds, only variables are allowed. Correspondingly, in a type scheme
∀~Y :C.T̂ and for a constraint for instance of the form X wϕ ∈C, if a variable Y1 occurring
free in ϕ is bound, then also its direct upper bound X needs to be bound (analogously

19

for constraints concerning ρ-variables). In other words, the set of variables used in the
quantification needs to be upward closed, in the following sense.

Definition 12 (Upward closure). A set of variables ~Y is upward closed wrt. C, if the
following implication holds: if Y ∈~Y and Y ∈ fv(ϕ) or Y ∈ fv(r) for a constraint ϕ v
Y ′ ∈ C resp. r v Y ′ ∈ C, then also Y ′ ∈~Y . The upward closure of a set of variables ~Y
wrt. a constraint set C (written close↑(~Y ,C)) is the smallest set ~Y ′ s.t. ~Y ′ ⊇~Y and ~Y ′ is
upward closed wrt. C.

Besides the mentioned closure condition on the set of quantified variables, each
constraint used in the type scheme should contain at least one quantified variable (oth-
erwise there would be no need to put the corresponding condition into the qualifying
constraints, the condition may equally well be captured by the global constraints). Fi-
nally, at least one of the quantified variables should actually occur in the type and all
quantified variables should actually occur in the qualifying constraints.

Definition 13 (Well-formedness). A type scheme ∀~Y :C.T̂ is well-formed if the follow-
ing holds

1. ~Y is upward closed wrt. C.
2. if c ∈C, then fv(c)∩~Y 6= /0.
3. /0 6= (~Y ∩ fv(T̂)) and~Y ⊆ fv(C).

The generic instance relation between two type schemes is defined as follows:

Definition 14 (Generic instance). A type scheme ∀~Y1:C1.T̂1 is a generic instance of
∀~Y2:C2.T̂2 wrt. a constraint C, written as C ` ∀~Y1:C1.T̂1 .g ∀~Y2:C2.T̂2, iff there exists a
substitution θ where dom(θ)⊆ ~Y2 such that

1. C,C1 ` θC2
2. C,C1 ` θ T̂2 ≤ T̂1
3. No y in ~Y1 is free in ∀~Y2:C2.T̂2.

For generalization and instantiation, we need the following definition (cf. [2]).

Definition 15 (Solvable). A type scheme ∀~Y :C1T̂ is solvable from C2 by substitution θ ,
if dom(θ)⊆~Y and C2 ` θC1. The type scheme is called solvable from C2 if there exists
a substitution such that it solves it.

The normalized system of the type system in Table 11 on page 32 is defined in
Table 13 on page 33.

The following lemmas (about occurrence of free variables in connection with sub-
effecting and upward closure) will be needed in the proof of subject reduction.

Lemma 8. Given C ` ϕ2 w ϕ1 and let ~Y be upward closed wrt. C. If y1 ∈~Y and y1 ∈
fv(ϕ1), then y2 ∈ fv(ϕ2) for some y2 ∈~Y .

Proof. Straightforward. ut

Lemma 9. Given two constraint sets C and C′ and a set of variables~Y with~Y ∩ fv(C) =
/0. If~Y is upward closed wrt. C′, then it is upward closed wrt. C,C′ as well.

20

Proof. Straightforward. ut

Lemma 10. Assume C,C′ ` ϕ2 w ϕ1 and further ~Y is upward closed wrt. C′ and ~Y ∩
fv(C) = /0. If fv(ϕ2)∩~Y = /0, then~Y ∩ fv(ϕ1) = /0.

Proof. Immediate by Lemma 8 and 9. ut

Lemma 11. If C,C′ ` ϕ2 w ϕ1, C ` θC′, and dom(θ)∩ fv(C,ϕ1,ϕ2) = /0, then C ` ϕ2 w
ϕ1.

Proof. Straightforward. ut

Lemma 12. Assume C1,C′1 ` C2, and furthermore C1 ` θC′1 for some substitution θ

with dom(θ)∩ fv(C1,C2) = /0. Then C1 `C2.

Proof. Straightforward. ut

Lemma 13. If C,C2 ` θ1C1 and C ` θ2C2 for some substitutions θ1 and θ2, where
dom(θ2)∩ fv(C), then C ` θC1, for some substitution θ .

Proof. Applying θ2 to the first assumption gives θ2(C,C2) ` θ2θ1C1, i.e., θ2C,θ2C2 `
θ2θ1C1. Since dom(θ2)∩ fv(C) = /0, this further gives C,θ2C2 ` θ2θ1C1. The assumption
C ` θ2C2 thus implies with Lemma 12 C ` θ2θ1C1, as required. ut

Lemma 14 (Substitution). If C;Γ ,x:Ŝ1 ` t : Ŝ2 :: ϕ and C;Γ ` v : Ŝ1, then C;Γ ` t[v/x] :
Ŝ2 :: ϕ .
Proof. ut

For the basic step of β -reduction in the proof of subject reduction, one needs preser-
vation of typing under substitution. Since the proof of subject reduction uses the nor-
malized system and since the typing context may associate type schemes to variables
whereas expressions can carry only types), the formulation of the substitution lemma
is slightly more involved (see Lemma 16 below). The next lemma is helpful for the
substitution lemma in the crucial case for variables.

Lemma 15. Assume C1,C2;Γ ` t : T̂ :: ϕ . If C2 ` θC1 with dom(θ)∩ fv(Γ ,C2,ϕ) = /0,
then C2;Γ ` t : θ T̂ :: ϕ .

Proof. Straightforward.

Lemma 16 (Substitution). Assume C2;Γ ,x:∀~Y :C1.T̂1 `n t : T̂2 :: ϕ and C1,C2;Γ `n v :
T̂1. If further C2 ` θC1 where dom(θ) =~Y , then C2;Γ `n t[v/x] : θ T̂2 :: ϕ .

Proof. Straightforward, with the help of Lemma 15. ut

The following substitution Lemma 17 resp., the Corollary 2 for the normalized sys-
tem, is more general than the previous one in that the value being substituted is allowed
to be a subtype of the variable; on the other hand, we can restrict our attention to types,
not type schemes.

21

Lemma 17 (Substitution). Assume C;Γ ,x:T̂1 ` t : T̂2 :: ϕ and C;Γ ` v : T̂ ′1 . If further
C ` T̂ ′1 ≤ T̂1, then C;Γ ` t[v/x] : T̂2 :: ϕ ..

Proof. Straightforward.

Corollary 2 (Substitution). Assume C;Γ ,x:T̂1 ` t : T̂2 :: ϕ and C;Γ `n v : T̂ ′1 . If further
C ` T̂ ′1 ≤ T̂1, then C;Γ ` t[v/x] : T̂ ′2 :: ϕ ′ where C ` T̂ ′2 ≤ T̂2 and C ` ϕ ′ v ϕ , for some
T̂ ′2 and ϕ ′.

Proof. A direct consequence of Lemma 17 plus soundness and completeness of the
normalized system. ut

The following is a simple property connecting subtyping and generic instances.

Lemma 18. If C,C′ ` T̂1 ≤ T̂2, then C ` ∀~Y :C′.T̂1 &g ∀~Y :C′.T̂2.

Proof. An easy consequence of Definition 14 of generic instance, choosing C1 = C2
and θ = id. ut

The following lemma expressed that typing is preserved when a typing assumption
in the context is “strengthened” by using larger type wrt. the .g-order (thereby weak-
ening the judgment). The lemma is formulated for the specification of the type system.
Corollary 3, the formulation as needed in the proof of subject reduction, is an easy
consequence.

Lemma 19 (Weakening (type schemes)). Assume C;Γ ,x:Ŝ1 ` e : Ŝ2 :: ϕ and C ` Ŝ1 .g

Ŝ′1. Then, C;Γ ,x:Ŝ′1 ` e : Ŝ2 :: ϕ .

Proof. Straightforward. ut

Corollary 3 (Weakening (type schemes)). Assume C;Γ ,x:Ŝ1 `n e : T̂2 :: ϕ and C `
Ŝ1 .g Ŝ′1. Then, C;Γ ,x:Ŝ′1 `n e : T̂ ′2 :: ϕ ′ where C ` T̂2 ≥ T̂ ′2 and C ` ϕ w ϕ ′.

Proof. A direct consequence of Lemma 19. ut

22

Remark 1 (Subject reduction). This formulation of subject reduction differs from ear-
lier formulation, in particular the one from the article [14] which pursued the same
methodology but without tackling inference and without context sensitivity.

A general difference between the old setting and the new setting is that effects can
now contain variables, whereas in the earlier setting, all effects where concrete. As
a consequence, effects (with variables) have no direct operational interpretation in the
form of a standard SOS semantics. Instead, the subeffect relationv (which is defined on
effects containing variables and relative to constraints) is used as basis for the behavior

of effects (leading to
p〈a〉
==⇒v). Attempts to simply reuse the old subject reduction proof

an transfer it to the new definition failed. Therefore it seemed necessary to re-do subject

reduction, now based on the new
p〈a〉
==⇒v-relation. . . .

In [14], we could prove ϕ = ϕ ′ since we had subsumption. ut

Lemma 20 (Subject reduction (effects)). Let Γ ` p〈t〉 :: p〈ϕ;C〉, and σ1 ≡θ̂
σ2. As-

sume furthermore θ |= C.

1. σ1 ` p〈t〉 p〈τ〉−−→ σ ′1 ` p〈t ′〉, then Γ ` p〈t ′〉 :: p〈ϕ ′;C〉 with C ` ϕ w ϕ ′, and σ ′1 ≡θ̂
σ2.

2. (a) σ1 ` p〈t〉 p〈a〉−−→ σ ′1 ` p〈t ′〉 where a 6= spawn ϕ ′′, then C;σ2 ` p〈ϕ〉 p〈a〉
==⇒vC;σ ′2 `

p〈ϕ ′〉, Γ ` p〈t ′〉 :: p〈ϕ ′′;C〉, and furthermore C ` ϕ ′ ≡ ϕ ′′ and σ ′1 ≡θ̂
σ ′2.

(b) σ1 ` p〈t〉 p〈a〉−−→ σ1 ` p〈t ′′〉 ‖ p′〈t ′〉 where a = spawn ϕ ′, then C;σ2 ` p〈ϕ〉 p〈a〉
==⇒v

C;σ2 ` p〈ϕ ′′〉 ‖ p′〈ϕ ′〉 and such that Γ ` p〈t ′′〉 :: p〈ϕ ′′′;C〉where C `ϕ ′′≡ϕ ′′′,
and Γ ` p′〈t ′〉 :: p′〈ϕ ′;C〉.

3. If waits(σ1 ` p〈t〉, p, lρ), then waitsv(σ2 ` p〈ϕ〉, p,ρ).

C;σ2 ` p〈ϕ〉 C;σ2 ` p〈ϕ ′〉

σ1 ` p〈t〉 σ1 ` p〈t ′〉

w

::

p〈τ〉

::

(a)

C;σ2 ` p〈ϕ〉 C;σ ′2 ` p〈ϕ ′〉

σ1 ` p〈t〉 σ ′1 ` p〈t ′〉

v

p〈a〉

::

p〈a〉

::

(b)

Fig. 3: Subject reduction

Proof. We are given Γ ` p〈t〉 :: p〈ϕ;C〉. In part 1, furthermore σ1 ` p〈t〉 p〈τ〉−−→σ1 ` p〈t ′〉.
In case of steps justified by the rules for local steps of Table 2, σ1 remains unchanged.
We proceed by case distinction on the rules for the local transition steps from Table 2
(together with R-LIFT from Table 3).

23

Case: R-RED: p〈let x:T = v in t〉 p〈τ〉−−→ p〈t[v/x]〉
By well-typedness, we are given Γ ` p〈let x:T = v in t〉 :: p〈ϕ;C〉, so inverting rules
T-THREAD and T-LET gives:

C1,C2;Γ ` v : T̂1 :: ϕ1 bT̂1c= T1 ~Y not free in C2,Γ ,ϕ1 C2;Γ ,x:∀~Y :C1.T̂1 ` t : T̂2 :: ϕ2
T-LET

C2;Γ ` let x:T1 = v in t :: ϕ1;ϕ2

Γ ` p〈let x:T1 = v in t〉 :: p〈ϕ1;ϕ2;C2〉

with ϕ = ϕ1;ϕ2 and where furthermore C2 ` θC1 with dom(θ) ⊆ ~Y and dom(θ)∩
fv(Γ ,C2,ϕ1) = /0. For the effect of the value v, we have ϕ1 = ε (cf. the corresponding
rules for values T-VAR, T-LREF, T-ABS1, and T-ABS2 from Table 13 on page 33). By
preservation of typing under substitution (Lemma 16) we get from the last premise from
above that C2;Γ ` t[v/x] : θ T̂2 :: ϕ2, and thus

C2;Γ ` t[v/x] : θ T̂2 :: ϕ2
T-THREAD

Γ ` p〈t[v/x]〉 :: p〈ϕ2;C2〉

where by rule EE-UNIT, ϕ1;ϕ2 = ε;ϕ2 ≡ ϕ2, and by rule SE-REFL, C ` ϕ1;ϕ2 w ϕ2,
as required.

Case: R-LET: p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉
p〈τ〉−−→ p〈let x1:T1 = e1 in

(let x2:T2 = t1 in t2)〉
We are given that Γ ` p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉 :: p〈(ϕ1;ϕ2);ϕ3;C〉.
Then, by inverting rules T-THREAD, and T-LET twice, we get:

C1,C2,C;Γ ` e1 : T̂1 :: ϕ1 C2,C;Γ ,x1:∀~Y1:C1.T̂1 ` t1 : T̂2 :: ϕ2

C2,C;Γ ` let x1:T1 = e1 in t1 : T̂2 :: ϕ1;ϕ2 C;Γ ,x2:∀~Y2:C2.T̂2 ` t2 : T̂3 :: ϕ3

C;Γ ` let x2:T2 = (let x1:T1 = e1 in t1) in t2 : T̂3 :: (ϕ1;ϕ2);ϕ3

Γ ` p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉 :: p〈(ϕ1;ϕ2);ϕ3;C〉

(3)

We have further that

~Y1 /∈ fv(C2,C,Γ ,ϕ1) dom(θ1)⊆~Y1 C2,C ` θ1C1 (4)
~Y2 /∈ fv(C,Γ ,ϕ1;ϕ2) dom(θ2)⊆~Y2 C ` θ2C2 (5)

Consider now the following derivation tree (using two times T-LET and T-THREAD)
and the additional premises from equations (7) and (8).

C1,C;Γ ` e1 : T̂1 :: ϕ1

C2,C;Γ ,x1:∀~Y1:C1.T̂1 ` t1 : T̂2 :: ϕ2 C;Γ ,x1:∀~Y1:C1.T̂1,x2:∀~Y2:C2.T̂2 ` t2 : T̂3 :: ϕ3

C;Γ ,x:∀~Y1:C1.T̂1 `let x2:T2 = t1 in t2 : T̂3 :: ϕ2;ϕ3

C;Γ `let x1:T1 = e1 in (let x2:T2 = t1 in t2) : T̂3 :: ϕ1;(ϕ2;ϕ3)

Γ ` p〈let x1:T1 = e1 in (let x2:T2 = t1 in t2)〉 :: p〈ϕ1;(ϕ2;ϕ3);C〉

(6)

~Y1 /∈ fv(C,Γ ,ϕ1) dom(θ ′1)⊆~Y1 C ` θ
′
1C1 (7)

~Y2 /∈ fv(C,Γ ,x1:∀~Y1:C1.T̂1,ϕ2) dom(θ ′2)⊆~Y2 C ` θ
′
2C2 (8)

24

They can be justified as follows.
The first condition of (7) directly follows from the corresponding one from (4). The

above conditions (4) imply with Lemma 7(1), dom(θ1)∩ fv(C2,C) = /0, i.e., in particular
dom(θ1)∩ fv(C) = /0. Thus, with Lemma 13, the rightmost conditions from (4) and from
(5) imply C ` θ ′1C1. As for equation (8): The first condition follow from the first one of
(5) wlog., the remaining two are unchanged from (5).

The leftmost C1,C2,C;Γ ` e1 : T̂1 :: ϕ1 leaf in the tree from (3) can be strengthened
to the

C1,C;Γ ` e1 : θ2T̂1 :: ϕ1 (9)

using Lemma 15. Note that the conditions C1,C ` θ2C2 and dom(θ2)∩fv(C,C1,Γ , T̂ ,ϕ1)=
/0 hold as well (the dom(θ2)∩ fv(C1, T̂1) holds wlog.). Thus, the judgment of equa-
tion (9) corresponds to the left-most subgoal of the tree in (6) The second sub-goal of
(6) is directly covered by the second subgoal of (3). The third sub-goal of (6) follows
from the third one of (3) by weakening wrt. the typing context. Thus, we conclude by
EE-ASSOCS and SE-REFL that C ` (ϕ1;ϕ2);ϕ3 w ϕ1;(ϕ2;ϕ3).

Case: R-IF1: p〈let x:T = if true then e1 else e2 in t〉 p〈τ〉−−→ p〈let x:T = e1 in t〉
From the well-typedness assumption and inverting rules T-THREAD, T-LET, and T-IF1,
we get:

C,C′ ` T̂ ′ ≥ T̂1 C,C′ ` T̂ ′ ≥ T̂2 C,C′ ` ϕ ′ w ϕ1 C,C′ ` ϕ ′ w ϕ2
C,C′;Γ `true : Bool:: ε C,C′;Γ ` e1 : T̂1 :: ϕ1 C,C′;Γ ` e2 : T̂2 :: ϕ2

C,C′;Γ `let x:T = if true then e1 else e2 : T̂ ′ :: ϕ
′ C;Γ ,x:∀~Y ′:C′.T̂ ′ ` t : T̂ :: ϕ

C;Γ `let x:T = if true then e1 else e2 in t : T̂ :: ϕ
′;ϕ

Γ ` p〈let x:T = if true then e1 else e2 in t〉 :: p〈ϕ ′;ϕ;C〉

where ~Y ′ 6∈ fv(C,Γ ,ϕ ′),C ` θC′ and dom(θ) ⊆ ~Y ′ for some θ . Lemma 18 gives C `
∀~Y ′:C′.T̂ ′.g ∀~Y ′:C′.T̂1, and further by Corollary 3, the right-most subgoal can be weak-
ened to C;Γ ,x:∀~Y ′:C′.T̂1 ` t : T̂ ′′ :: ϕ ′′ for some T̂ ′′ and ϕ ′′, where C ` T̂ ′′ ≤ T̂ and
C ` ϕ ′′ v ϕ .

Then, we get by applying T-LET and T-THREAD that

C,C′;Γ ` e1 : T̂1 :: ϕ1 C;Γ ,x:∀~Y ′:C′.T̂1 ` t : T̂ ′′ :: ϕ
′′

C;Γ `let x:T = e1 in t : T̂ ′′ :: ϕ1;ϕ
′′

Γ ` p〈let x:T = e1 in t〉 :: p〈ϕ1;ϕ
′′;C〉

We are given ~Y ′ ∩ fv(C,Γ ,ϕ ′) = /0 and well-formedness of ∀~Y ′:C′.T̂ ′ implies ~Y ′ is up-
ward closed wrt. to C′. Both together with C,C′ ` ϕ ′ w ϕ1 give by Lemma 10 that
~Y ′∩ fv(ϕ1) = /0. Thus, by Lemma 11 implies C `ϕ ′wϕ1. This together with C `ϕ wϕ ′′

implies by SE-SEQ C ` ϕ ′;ϕ w ϕ1;ϕ ′′, which concludes the case.
The case for R-IF2 works analogously.

Case: R-APP1: p〈let x2:T2 = (fn x1:T1.t1) v in t2〉
p〈τ〉−−→ p〈let x2:T2 = t1[v/x1] in t2〉

From the well-typedness assumption and inverting rules T-THREAD, T-LET, T-APP

25

and T-ABS1, we get:

bT̂1c= T1 C,C′;Γ ,x1:T̂1 ` t1 : T̂ ′1 :: ϕ1

C,C′;Γ `fn x1:T1.t1 : T̂1
ϕ1−→ T̂ ′1 :: ε C,C′;Γ ` v : T̂ ′′1 :: ε C,C′ ` T̂1 ≥ T̂ ′′1

C,C′;Γ ` (fn x1:T1.t1) v : T̂ ′1 :: ϕ1 C;Γ ,x2:∀~Y :C′.T̂ ′1 ` t2 : T̂2 :: ϕ2

C;Γ `let x2:T2 = (fn x1:T1.t1) v in t2 : T̂2 :: ϕ1;ϕ2

Γ ` p〈let x2:T2 = (fn x1:T1.t1) v in t2〉 :: p〈ϕ1;ϕ2;C〉

(10)

where ~Y 6∈ fv(C,Γ ,ϕ ′),C ` θC′ and dom(θ) ⊆ ~Y for some θ . Using the substitution
lemma (Corollary 2) on the left-most subgoal gives C,C′;Γ ` t1[v/x1] : T̂ ′′′1 :: ϕ ′1 where

C,C′ ` T̂ ′′′1 ≤ T̂ ′1 (11)

and C,C′ ` ϕ ′1 v ϕ1. Equation (11) implies with Lemma 18 ∀~Y :C′.T̂ ′′′1 &g ∀~Y :C′.T̂ ′1 .
Thus by using weakening (Corollary 3) on the right-most subgoal of (10) we get C;Γ ,x2:∀~Y :C′.T̂ ′′′1 `
t2 : T̂ ′2 :: ϕ ′2 with C ` T̂ ′2 ≤ T̂2 and C ` ϕ ′2 v ϕ2. Thus we can derive

C,C′;Γ ` t1[v/x1] : T̂ ′′′1 :: ϕ
′
1 C;Γ ,x2:∀~Y :C′.T̂ ′′′1 ` t2 : T̂ ′2 :: ϕ

′
2

C;Γ `let x2:T = t1[v/x1] in t2 : T̂ ′2 :: ϕ
′
1;ϕ

′
2

Γ ` p〈let x2:T = t1[v/x1] in t2〉 :: p〈ϕ ′1;ϕ
′
2;C〉

Therefore, we conclude the case observing that C ` ϕ1;ϕ2 w ϕ ′1;ϕ ′2 (by SE-SEQ).

Case: R-APP2:p〈let x2:T2 =(fun f :Tf .x1:T1.t1)v in t2〉
p〈τ〉−−→

p〈let x2:T2 = t1[v/x1][fun f :Tf .x1:T1.t1/ f] in t2〉
From the well-typedness assumption and inverting rules T-THREAD, T-LET, T-APP
and T-ABS2, we get:

bT̂f c= Tf T̂f = T̂1
ϕ1−→ T̂ ′1

C;C′;Γ ,x1:T̂1, f :T̂f ` t1 : T̂ ′1 :: ϕ1

C,C′;Γ `fun f :Tf .x1:T1.t1 : T̂1
ϕ1−→ T̂ ′1 :: ε C,C′;Γ ` v : T̂ ′′1 :: ε C,C′ ` T̂1 ≥ T̂ ′′1

C,C′;Γ ` (fun f :Tf .x1:T1.t1) v : T̂ ′1 :: ϕ1 C;Γ ,x2:∀~Y :C′.T̂ ′1 ` t2 : T̂2 :: ϕ2

C;Γ `let x2:T2 = (fun f :Tf .x1:T1.t1) v in t2 : T̂2 :: ϕ1;ϕ2

Γ ` p〈let x2:T2 = (fun f :Tf .x1:T1.t1) v in t2〉 :: p〈ϕ1;ϕ2;C〉
(12)

where~Y 6∈ fv(C,Γ ,ϕ ′),C ` θC′ and dom(θ)⊆~Y for some θ . Using two times the substi-
tution lemma (Corollary 2) on the left-most subgoal gives C,C′;Γ ` t1[v/x1][fun f :Tf .x1:T1.t1/ f] :
T̂ ′′′1 :: ϕ ′1 where

C,C′ ` T̂ ′′′1 ≤ T̂ ′1 (13)

and C,C′ ` ϕ ′1 v ϕ1. Equation (13) implies with Lemma 18 ∀~Y :C′.T̂ ′′′1 &g ∀~Y :C′.T̂ ′1 .
Thus by using weakening (Corollary 3) on the right-most subgoal of (12) we get C;Γ ,x2:∀~Y :C′.T̂ ′′′1 `
t2 : T̂ ′2 :: ϕ ′2 with C ` T̂ ′2 ≤ T̂2 and C ` ϕ ′2 v ϕ2. Therefore we can derive:

C,C′;Γ ` t1[v/x1][fun f :Tf .x1:T1.t1/ f] : T̂ ′′′1 :: ϕ
′
1 C;Γ ,x2:∀~Y :C′.T̂ ′1 ` t2 : T̂ ′2 :: ϕ

′
2

C;Γ `let x2:T2 = t1[v/x1][fun f :Tf .x1:T1.t1/ f] in t2 : T̂ ′2 :: ϕ
′
1;ϕ

′
2

Γ ` p〈let x2:T2 = t1[v/x1][fun f :Tf .x1:T1.t1/ f] in t2〉 :: p〈ϕ ′1;ϕ
′
2;C〉

26

Thus, by SE-SEQ, C ` ϕ1;ϕ2 w ϕ ′1;ϕ ′2, as required.

Case: R-NEWL: σ1 ` p〈let x:T = newπ
ρ L in t〉 p〈τ〉−−→ σ ′1 ` p〈let x:T = lρ in t〉

where σ ′1 = σ1[lρ 7→ free] for a fresh l. By the well-typedness assumption and inverting
T-THREAD, T-LET, and T-NEWL we get

C,C′ ` ρ w {π}

C,C′;Γ ` newπ
ρ L : Lρ :: ε C;Γ ,x:∀~Y :C′.Lρ ` t : T̂ :: ϕ

C;Γ `let x:T = newπ
ρ L in t : T̂ :: ε;ϕ

Γ ` p〈let x:T = newπ
ρ L in t〉 :: p〈ε;ϕ;C〉

where~Y 6∈ fv(C,Γ),C ` θC′, and dom(θ)⊆~Y for some θ . Using T-LET and T-THREAD
gives:

C,C′;Γ ` lρ : Lρ :: ε C;Γ ,x:∀~Y :C′.Lρ ` t : T̂ :: ϕ

C;Γ `let x:T = lρ in t : T̂ :: ε;ϕ

Γ ` p〈let x:T = lρ in t〉 :: p〈ε;ϕ;C〉

Then, by SE-REFL, C ` ε;ϕ w ε;ϕ . Finally, σ1 ≡θ̂
σ2 before the step implies that also

σ ′1 ≡θ̂
σ2 after the step, as the new lock is free initially.

Case: R-LOCK: σ1 ` p〈let x:T = lρ . lock in t〉 p〈lρ .lock〉−−−−−→ σ ′1 ` p〈let x:T = lρ in t〉
where σ1(lρ) = free or σ1(lρ) = p(n) and σ ′1 = σ1 +p lρ . By the well-typedness as-
sumption and by inverting rules T-THREAD, T-LET, T-LOCK, and T-LREF, we get:

C,C′;Γ ` lρ : Lρ :: ε C,C′ ` X w ρ.lock

C;C′ ` lρ . lock: Lρ :: X C;Γ ,x:∀~Y :C′.Lρ ` t : T̂ :: ϕ

C;Γ `let x:T = lρ . lock in t : T̂ :: X ;ϕ

Γ ` p〈let x:T = lρ . lock in t〉 :: p〈X ;ϕ;C〉

where~Y 6∈ fv(C,Γ ,X),C ` θC′, and dom(θ)⊆~Y for some θ . By rules T-LREF, T-LET
and T-THREAD, we can derive

C,C′;Γ ` lρ : Lρ :: ε C;Γ ,x:∀~Y :C′.Lρ ` t : T̂ :: ϕ

C;Γ `let x:T = lρ in t : T̂ :: ε;ϕ

Γ ` p〈let x:T = lρ in t〉 :: p〈ε;ϕ;C〉

We are given ~Y ∩ fv(C,X) = /0 and well-formedness of ∀~Y :C′.Lρ implies ~Y is upward
closed wrt. C′. Both together with C,C′ ` X w ρ. lock give by Lemma 10 that also
~Y ∩ fv(ρ.lock) = /0. Thus, all conditions of Lemma 11 are satified, yielding C ` X w
ρ.lock. Then, by SE-SEQ C ` X ;ϕ w ρ.lock;ϕ , i.e., C ` X ;ϕ

ρ.lock
===⇒v ϕ . Then, by

RE-LOCK we get

C;σ2 ` p〈X ;ϕ〉 p〈ρ.lock〉
=====⇒v C;σ

′
2 ` p〈ϕ〉 (14)

27

where σ ′(ρ, p) = σ(ρ, p)+ 1. Thus, the assumption σ1 ≡θ̂
σ2 before the step implies

σ ′1 ≡θ̂
σ ′2 after the step. Finally, by EE-UNIT, C ` ε;ϕ ≡ ϕ , as required.

The case for R-UNLOCK works analogously.
Part 2b deals with spawn-steps.

Case: R-SPAWN: σ1 ` p1〈let x:T = spawn tϕ2
2 in t1〉

p1〈spawn(ϕ2)〉−−−−−−−→ σ1 ` p1〈let x:T =
() in t1〉 ‖ p2〈t2〉
By the well-typedness assumption and inverting rules T-THREAD, T-LET, and T-SPAWN
gives

C,C′;Γ ` t2 : T̂2 :: ϕ2 C,C′ ` X wspawn ϕ2

C,C′;Γ `spawn tϕ2
2 :Unit:: X C;Γ ,x:∀~Y :C′. Unit ` t1 : T̂1 :: ϕ1

C;Γ `let x:T = spawn tϕ2
2 in t1 : T̂1 :: X ;ϕ1

Γ ` p1〈let x:T = spawn tϕ2
2 in t1〉 :: p1〈X ;ϕ1;C〉

where ~Y 6∈ fv(C,Γ ,X),C ` θC′, and dom(θ) ⊆ ~Y for some θ . Applying rules T-LET
and T-THREAD gives:

C,C′ ` p2 : Unit:: ε C;Γ ,x:∀~Y :C′. Unit ` t1 : T̂1 :: ϕ1

C;Γ `let x:T = p2 in t1 : T̂1 :: ε;ϕ1

Γ ` p1〈let x:T = p2 in t1〉 :: p1〈ε;ϕ1;C〉

By well-formedness, ∀~Y :C′. Unit implies~Y = /0 and C′= /0. Therefore, C,C′ `X wspawn
ϕ2 implies C ` X wspawn ϕ2. Then, by SE-SEQ C ` X ;ϕ1 wspawn ϕ2;ϕ1, i.e. C `
X ;ϕ1

spawn(ϕ2)
=====⇒v ϕ1. Hence we get by RE-SPAWN

C;σ ` p1〈X ;ϕ1〉
p1〈spawn(ϕ2)〉
========⇒v C;σ ` p1〈ϕ1〉 ‖ p2〈ϕ2〉 (15)

By EE-UNIT, C ` ε;ϕ1 ≡ ϕ1, as required.
Since C′ = /0, the left-most subgoal is written as C;Γ ` t2 : T̂2 :: ϕ2. Then, we con-

clude the case by T-THREAD:

C;Γ ` t2 : T̂2 :: ϕ2

Γ ` p2〈t2〉 :: p2〈ϕ2〉

For part 3, we are given waits(σ1 ` p〈t〉, p, lρ), i.e., by Definition 1, it is not the case

that σ1 ` p〈t〉 p〈lρ.lock〉−−−−−→ but σ ′1 ` p〈t〉 p〈lρ.lock〉−−−−−→ for some σ ′1 which implies that for some
process q,

σ1(lρ) = q(n) with q 6= p . (16)

The definition further implies that the thread t is of the form let x:T = lρ . lock in t ′,

and we are given more specifically that σ1 ` p〈let x:T = lρ . lock in t ′〉 6 p〈l
ρ.lock〉−−−−−→. The

28

well-typedness assumption and inverting rules T-THREAD, T-LET and T-LOCK gives

C,C′;Γ ` lρ : Lρ :: ε C,C′ ` X w ρ.lock

C;C′ ` lρ . lock: Lρ :: X C;Γ ,x:∀~Y :C′.Lρ ` t ′ : T̂ :: ϕ

C;Γ `let x:T = lρ . lock in t ′ : T̂ :: X ;ϕ

Γ ` p〈let x:T = lρ . lock in t ′〉 :: p〈X ;ϕ;C〉

where~Y 6∈ fv(C,Γ ,X),C ` θC′ and dom(θ)⊆~Y for some θ .
We are given ~Y ∩ fv(C,X) = /0, and furthermore, well-formedness of ∀~Y :C′.Lρ im-

plies~Y is upward closed wrt. C′. Both together with C,C′ ` X w ρ.lock give by Lemma
10 that also~Y ∩ fv(ρ.lock) = /0. Thus, all conditions of Lemma 11 are satified, yielding

C ` X w ρ.lock. Then, by SE-SEQ C ` X ;ϕ w ρ.lock;ϕ , i.e. C ` X ;ϕ
ρ.lock
===⇒v ϕ .

The assumption σ1 ≡θ̂
σ2 and equation (16) imply by the wait-equivalence defi-

nition (Definition 10) that σ2(ρ,q) ≥ 1. Thus, by Definition 8, we have waitsv(σ2 `
p〈X ;ϕ〉, p,ρ), as required. ut

The well-typedness relation between a program and its effect straightforwardly im-
plies a deadlock-preserving simulation:

Corollary 4. Given σ1 ≡θ σ2 and Γ ` p〈t〉 :: p〈ϕ;C〉, then σ1 ` p〈t〉.D
v C;σ2 ` p〈ϕ〉.

Proof. The weak transition relation
p〈a〉
==⇒ is defined as

p〈τ〉−−→∗ p〈a〉−−→. Thus the result follows
from subject reduction by induction on the number of τ-steps. ut

B.3 Equivalence of the two formulations

Lemma 21 (Soundness). Given Γ `a t : T̂ :: ϕ;C, then C;Γ `s t : T̂ :: ϕ .

Proof. By straightforward induction on the derivation. ut

Lemma 22 (Completeness). Assume C;Γ `s t : T̂ :: ϕ , then Γ `a t : T̂ ′ :: ϕ ′;C′ such
that

1. C ` θ ′C′,
2. C ` θ ′T̂ ′ ≤ T̂ , and
3. C ` θ ′ϕ ′ v ϕ ,

for some θ ′.

Proof. Similar to the proof in [15]. ut

B.4 Additional proofs

Proof (Preservation of deadlock freedom, Lemma 1 on page 15). Similar to the proof
of the corresponding lemma in [14]. ut

Proof (Composition lemma 2 on page 16). Straightforward. ut

29

Proof (Subject Reduction Lemma 3 on page 16). We are given that Γ `a p〈t〉 :: p〈ϕ;C〉,
and furthermore in part 1, σ1 ` p〈t〉 p〈τ〉−−→ σ ′1 ` p〈t ′〉. By soundness, we have Γ `s p〈t〉 ::
p〈ϕ;C〉. Then, we get by part 1 in Lemma 20 that

Γ `s p〈t ′〉 :: p〈ϕ ′′;C〉 with C ` ϕ w ϕ
′′, and σ

′
1 ≡θ̂

σ2 . (17)

By the first condition in equation (17) and the completeness (cf. Lemma 22), we get

Γ `a p〈t ′〉 :: p〈ϕ ′;C′〉, C ` θ
′C′ and C ` θ

′
ϕ
′ v ϕ

′′ (18)

The second inequality in equation (17) and the last one in equation (18) give by tran-
sitivity that C ` ϕ w θ ′ϕ ′. This together with Γ `a p〈t ′〉 :: p〈ϕ ′;C′〉 and C ` θ ′C′ in
equation (18), and σ ′1 ≡θ̂

σ2 in equation (17) conclude part 1.
It is analogously for the other parts. ut

Proof (Corollary 1 on page 16). The result follows from soundness in Lemma 21,
Corollary 4 and commpleteness in Lemma 22. ut

References

1. R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks with state analysis and
run-time monitoring. In S. Ur, E. Bin, and Y. Wolfsthal, editors, Proceedings of the Haifa
Verification Conference 2005, volume 3875 of Lecture Notes in Computer Science, pages
191–207. Springer-Verlag, 2006.

2. T. Amtoft, H. R. Nielson, and F. Nielson. Type and Effect Systems: Behaviours for Concur-
rency. Imperial College Press, 1999.

3. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data
races and deadlocks. In Object Oriented Programming: Systems, Languages, and Applica-
tions (OOPSLA) ’02 (Seattle, USA). ACM, Nov. 2002. In SIGPLAN Notices.

4. E. G. Coffman Jr., M. Elphick, and A. Shoshani. System deadlocks. Computing Surveys,
3(2):67–78, June 1971.

5. L. Damas. Type Assignment in Programming Languages. PhD thesis, Laboratory for Foun-
dations of Computer Science, University of Edinburgh, 1985. CST-33-85.

6. L. Damas and R. Milner. Principal type-schemes for functional programming languages. In
Ninth Annual Symposium on Principles of Programming Languages (POPL) (Albuquerque,
NM), pages 207–212. ACM, January 1982.

7. E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123, Technologi-
cal University, Eindhoven, 1965. Reprinted in [8].

8. F. Genyus. Programming Languages. Academic Press, 1968.
9. J. R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of

the American Mathematical Society, 146:29–60, Dec. 1969.
10. N. Kidd, T. W. Reps, J. Dolby, and M. Vaziri. Finding concurrency-related bugs using ran-

dom isolation. STTT, 13(6):495–518, 2011.
11. R. Milner. A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17(3):348–375, Dec. 1978.
12. C. Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU, University

of Copenhagen, Denmark, 1997. Technical Report DIKU-TR-97/1.

30

13. M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock detection. In 31st Inter-
national Conference on Software Engineering (ICSE09). IEEE, 2009.

14. K. I. Pun, M. Steffen, and V. Stolz. Deadlock checking by a behavioral effect system for lock
handling. Journal of Logic and Algebraic Programming, 81(3):331–354, Mar. 2012. A pre-
liminary version was published as University of Oslo, Dept. of Computer Science Technical
Report 404, March 2011.

15. K. I. Pun, M. Steffen, and V. Stolz. Deadlock checking by data race detection. Technical
report 421, University of Oslo, Dept. of Informatics, Oct. 2012.

16. K. Suenaga. Type-based deadlock-freedom verification for non-block-structured lock prim-
itives and mutable references. In G. Ramalingam, editor, APLAS 2008, volume 5356 of
Lecture Notes in Computer Science, pages 155–170. Springer-Verlag, 2008.

17. J.-P. Talpin and P. Jouvelot. Polymorphic Type, Region and Effect Inference. Journal of
Functional Programming, 2(3):245–271, 1992.

18. V. Vasconcelos, F. Martins, and T. Cogumbreiro. Type inference for deadlock detection
in a multithreaded polymorphic typed assembly language. In A. R. Beresford and S. J.
Gay, editors, Pre-Proceedings of the Workshop on Programming Language Approaches to
Concurrent and Communication-Centric Software (PLACES 2009), volume 17 of EPTCS,
pages 95–109, 2009.

31

Γ (x) = Ŝ
T-VAR

C;Γ ` x : Ŝ :: ε

C ` ρ w {π}
T-NEWL

C;Γ ` newπ
ρ L : Lρ :: ε

T-LREF

C;Γ ` lρ : Lρ :: ε

bT1c= T̂1 C;Γ ,x:T̂1 ` e : T̂2 :: ϕ

T-ABS1

C;Γ ` fn x:T1.e : T̂1
ϕ−→ T̂2 :: ε

bT̂1
ϕ−→ T̂2c= T1→ T2 C;Γ , f :T̂1

ϕ−→ T̂2,x:T̂1 ` e : T̂2 :: ϕ

T-ABS2

C;Γ ` fun f :T1→ T2,x:T1.e : T̂1
ϕ−→ T̂2 :: ε

C;Γ ` v1 : T̂2
ϕ−→ T̂1 :: ε C;Γ ` v2 : T̂2 :: ε

T-APP

C;Γ ` v1 v2 : T̂1 :: ϕ

C;Γ ` v : Bool:: ε C;Γ ` e1 : T̂ :: ϕ C;Γ ` e2 : T̂ :: ϕ

TA-COND

C;Γ ` if v then e1 else e2 : T̂ :: ϕ

C;Γ ` e1 : Ŝ1 :: ϕ1 bŜ1c= T1 C;Γ ,x:Ŝ1 ` e2 : T̂2 :: ϕ2
T-LET

C;Γ ` let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2

C;Γ ` t : T̂ :: ϕ C ` X wspawn ϕ

T-SPAWN

C;Γ `spawn tϕ : Unit:: X

C;Γ ` v : Lρ :: ε C ` X w ρ.lock
T-LOCK

C;Γ ` v. lock: Lρ :: X

C;Γ ` v : Lρ :: ε C ` X w ρ.unlock
T-UNLOCK

C;Γ ` v. unlock: Lρ :: X

C1,C2;Γ ` e : T̂ :: ϕ ~Y not free in Γ ,C1,ϕ ∀~Y :C2.T̂ solvable from C1 ∀~Y :C2.T̂ ` wf
T-GEN

C1;Γ ` e : ∀~Y :C2.T̂ :: ϕ

C1;Γ ` e : ∀~Y :C2.T̂ :: ϕ ∀~Y :C2.T̂ solvable from C1 by θ

T-INST

C1;Γ ` e : θ T̂ :: ϕ

C;Γ ` e : T̂ :: ϕ C ` T̂ ′ ≥ T̂ ,ϕ ′ w ϕ

T-SUB

C;Γ ` e : T̂ ′ :: ϕ
′

Table 11: Type and effect system

C;` t : T :: ϕ

T-THREAD

` p〈t〉 : ok :: p〈ϕ;C〉

` P1 : ok :: Φ1 ` P2 : ok :: Φ2
T-PAR

` P1 ‖ P2 : ok :: Φ1 ‖Φ2

Table 12: Type and effect system (Global)

32

Γ (x) = ∀~Y :C′.T̂ ∀~Y :C′.T̂ solvable from C by θ

T-VAR

C;Γ ` x : θ T̂ :: ε

C ` ρ w {π}
T-NEWL

C;Γ ` newπ
ρ L : Lρ :: X

T-LREF

C;Γ ` lρ : Lρ :: ε

bT̂1c= T1 C;Γ ,x:T̂1 ` e : T̂2 :: ϕ

T-ABS1

C;Γ ` fn x:T1.e : T̂1
ϕ−→ T̂2 :: ε

bT̂1
ϕ−→ T̂2c= T1→ T2 C;Γ , f :T̂1

ϕ−→ T̂2,x:T̂1 ` e : T̂2 :: ϕ

T-ABS2

C;Γ ` fun f :T1→ T2,x:T1.e : T̂1
ϕ−→ T̂2 :: ε

C;Γ ` v1 : T̂2
ϕ−→ T̂1 :: ε C;Γ ` v2 : T̂ ′2 :: ε C ` T̂2 ≥ T̂ ′2

T-APP

C;Γ ` v1 v2 : T̂1 :: ϕ

C ` T̂ ≥ T̂1 C ` T̂ ≥ T̂2 C ` ϕ w ϕ1 C ` ϕ w ϕ2

C;Γ ` v : Bool:: ε C;Γ ` e1 : T̂1 :: ϕ1 C;Γ ` e2 : T̂2 :: ϕ2
TA-COND

C;Γ ` if v then e1 else e2 : T̂ :: ϕ

~Y not free in Γ ,C1,ϕ1 ∀~Y :C2.T̂1 solvable from C1 ∀~Y :C2.T̂1 ` wf
C1,C2;Γ ` e1 : T̂1 :: ϕ1 bT̂1c= T1 C1;Γ ,x:∀~Y :C2.T̂1 ` e2 : T̂2 :: ϕ2

T-LET

C1;Γ ` let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2

C;Γ ` t : T̂ :: ϕ C ` X wspawn ϕ

T-SPAWN

C;Γ `spawn tϕ : Unit:: X

C;Γ ` v : Lρ :: ε C ` X w ρ.lock
T-LOCK

C;Γ ` v. lock: Lρ :: X

C;Γ ` v : Lρ :: ε C ` X w ρ.unlock
T-UNLOCK

C;Γ ` v. unlock: Lρ :: X

Table 13: Type and effect system (syntax directed)

33

	Lock-Polymorphic Behaviour Inference for Deadlock Checking
	Introduction
	Effect inference on the thread local level
	Deadlock preserving abstractions on the global level

	Calculus
	Type system
	Types, effects, and constraints
	Type inference
	Semantics of the behavior
	Soundness

	Conclusion
	Appendix
	Annotated semantics and type system

	Additional technical lemmas
	Miscellaneous
	Subject reduction
	Equivalence of the two formulations
	Additional proofs

	References

