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Motivation

software transactions: modern concurrency control mechanism

proposed/being developed for a number of PLs

enhanced performance + programmability

price to pay: memory resource consumption



Resource consumption & SW transactions

optimistic concurrency control: not “prevent” potential
interference at the entry of a CR, but check and potentially
repair/compensate/undo (potential) conflicts at the end

conflict management (conflict detection + potential roll-back)
⇒ info to reconstruct the original state needs to be stored .



Model: Transactional Featherweight Java

TFJ: formal proposal for Java + transactions
[Jagannathan et al., 2005]

transactions model:

nested
multi-threaded
non-lexical scope

“inheritance” of the resource consumption of parent thread

child threads: joining commit ⇒ implicit synchronization ⇒
main complication



TFJ syntax

P ::= 0 | P ‖ P | p〈e〉 processes/threads

L ::= class C{~f :~T ;K ; ~M} class definitions

K ::= C (~f : ~T ){this.~f := ~f } constructors

M ::= m(~x :~T ){e} : T methods
e ::= v | v .f | v .f := v |if v then e else e
| let x :T = e in e | v .m(~v) expressions
| new C (~v) | spawn e | onacid | commit

v ::= r | x | null values
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Nested and multi-threaded transactions
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Nested and multi-threaded transactions
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Nested and multi-threaded transactions
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Goal & complications

Goal

Static estimation on upper bounds of resource consumption

memory consumption = number of transactions potentially
running at in parallel × local resource consumption

challenges:

“concurrent” analysis (6= safe-commits . . . iFM’10, FSEN’10
[Mai Thuong Tran and Steffen, 2010, Johnsen et al., 2012])
implicit join-synchronization via commits (6= “Resource bounds
for components” (ICTAC’05, FMOODS’05
[Truong, 2005, Truong and Bezem, 2005] . . . ))
multithreading and nested transactions ⇒ parent-child
relationship between threads relevant



Challenges

compositional , syntax directed analysis

⇒ “interface information”

e.g., nesting depth (cf. “safe commit”):

“ single threaded ”: pre and post are enough

n `commit:: n − 1

n1 ` e1 :: n2 n2 ` e2 :: n3

n1 ` e1; e2 :: n3

parallel execution
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compositional , syntax directed analysis
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` P1 :: t1 ` P2 :: t2

` P1 ‖ P2 : t1 + t2



Challenges

compositional , syntax directed analysis

⇒ “interface information”

e.g., nesting depth (cf. “safe commit”):

parallel execution

‖ without synchronization

` P1 :: t1 ` P2 :: t2

` P1 ‖ P2 : t1 + t2

; explicit sequentialization/join

` P1 :: t1 ` P2 :: t2

` P1;P2 : t1 ∨ t2



Challenges

compositional , syntax directed analysis

⇒ “interface information”

e.g., nesting depth (cf. “safe commit”):

parallel execution

here:

neither independent parallelism nor full sequentialization

implicit join synchronization via commits

(spawn e1); e2



Seq. composition & Joining commit

onac id ; // th r ead 0 (main th r ead )
onac id ;

spawn ( e1 ; commit ; commit ) ; // th r ead 1
onac id ;

spawn ( e2 ; commit ; commit ; commit ) ; // th r ead 2
commit ;
e3

commit ;
e4 ;

in the following:
onacid ⇒ [
commit ⇒ ]

e1 = [; [; [; . . . ; ]; ]; ] = [3; . . . ; ]3

e2 = [4; . . . ; ]4

e3 = [5; . . . ; ]5

e4 = [6; . . . ; ]6



Seq. composition & Joining commit

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]



Seq. composition & Joining commit

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

el

er

;



Seq. composition & Joining commit

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]



Judgment & interface information

Judgment

n1 ` e :: n2, h, l ,~t, S

current thread

n1 and n2: balance, pre- and post-condition
h, l : maximum/minimum during execution

not (only) current thread

compositionality

for ; : S : contribution of spawned threads after execution
of e

for ‖ : ~t: sequence of total weights of current + spawned
threads during e, separated by joining commits



Judgment & interface information

Judgment

n1 ` e :: n2, h, l ,~t, S

current thread

n1 and n2: balance, pre- and post-condition
h, l : maximum/minimum during execution

not (only) current thread

compositionality

for ; : S : contribution of spawned threads after execution
of e

for ‖ : ~t: sequence of total weights of current + spawned
threads during e, separated by joining commits



Sample derivation: pre- and post

...

0 ` [ [ ; spawn (e1 ] ] ) :: 2

...

2 ` [ ; spawn (e2 ] ] ] ); ] ; e3 ] ; e4 :: 1

0 ` [ [ ; spawn (e1; ] ] ) ; [ ; spawn (e2; ] ] ] ); ] ; e3 ] ; e4 :: 1

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

el

er

;

n = 0 n = 2 n = 2 n = 1



Sample derivation (high and low)

...

0 ` [ [ ; spawn (e1 ] ] ) :: 2, 0

...

2 ` [ ; spawn (e2 ] ] ] ); ] ; e3 ] ; e4 :: 7, 1

0 ` [ [ ; spawn (e1; ] ] ) ; [ ; spawn (e2; ] ] ] ); ] ; e3 ] ; e4 :: 7, 0

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

el

er

;

n = 0 n = 2 n = 2 n = 1



Sample derivation (par. contribution and synchronization)

.

.

.

0 ` [ [ ; spawn (e1 ] ] ) :: [7], {(2, 3)}

.

.

.

2 ` [ ; spawn (e2 ] ] ] ); ] ; e3 ] ; e4 :: [10, 8], {(1, 0)}

0 ` [ [ ; spawn (e1; ] ] ) ; [ ; spawn (e2; ] ] ] ); ] ; e3 ] ; e4 :: t, {(1, 0), (1, 0)}

t = 7 ∨ (10 + |{(2, 3)}|) ∨ (8 + |{(1, 0)}|)

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

el

er

;

n = 0 n = 2 n = 2 n = 1



Sample derivation: different split

.

.

.

0 ` [ 2; spawn e1; [ ; (spawn e2); ] :: [15], {(2, 3), (0, 2)}

.

.

.

2 ` e3; ] ; e4 :: [7, 7], {}

0 ` [ 2; spawn e1; [ ; (spawn e2); ] ; e3 ] ; e4 :: 1, 7, 0, t, {(1, 0), (1, 0)}



Sequential composition

n1 ` e1 :: n2, h1, l1,~s, S1 n2 ` e2 :: n3, h2, l2,~t, S2

h = h1 ∨ h2 l = l1 ∧ l2 p = n2 − l1 S = S1 ↓l2 ∪ S2 ~u = ~s⊕p(S15n2
~t)

T-Let
n1 `let x :T = e1 in e2 :: n3, h, l , ~u, S



Sequential composition

n1 ` e1 :: n2, h1, l1,~s, S1 n2 ` e2 :: n3, h2, l2,~t, S2

h = h1 ∨ h1 l = l1 ∧ l2

~s = s1, . . . , sk ~t = t1, . . . , tm k,m ≥ 1 p = n2 − l1

t′1 = t1 + |S1| t′2 = t2 + |S1 ↓n2−1| t′3 = t3 + |S1 ↓n2−2| . . .

S = S1 ↓l2 ∪ S2

~u = s1, . . . , sk−1, sk ∨ t′1 ∨ . . . ∨ t′p , t
′
p+1, . . . , t

′
m

T-Let
n1 ` e1; e2 :: n3, h, l , ~u,S



Parallel composition

similarly complex

merging trees / forests using join-commits-labels

using tree representation of future joining commit behavior



Parallel composition

similarly complex (“hidden” in def. of ⊗)

merging trees / forests using join-commits-labels

using tree representation of future joining commit behavior t1

and t2

Γ1 ` P1 : t1 Γ2 ` P2 : t2

T-Par
Γ1, Γ2 ` P1 ‖ P2 : t1 ⊗ t2



Results and future work

Soundness

Soundness of the analysis: “subject reduction”

higher-order functions

type inference

machine checked proof of SR (Coq/OTT)

different synchronization model
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