
Compositional Static Analysis for
Implicit Join Synchronization

in a Transactional Setting

Mai Thuong Tran, Martin Steffen, and Hoang Truong

University of Oslo, Norway
Vietnam National University, Viê.t Nam

SEFM 2013,

Madrid, Spain, 27. 09. 2013

http://www.uio.no

Motivation

software transactions: modern concurrency control mechanism

proposed/being developed for a number of PLs

enhanced performance + programmability

price to pay: memory resource consumption

Resource consumption & SW transactions

optimistic concurrency control: not “prevent” potential
interference at the entry of a CR, but check and potentially
repair/compensate/undo (potential) conflicts at the end

conflict management (conflict detection + potential roll-back)
⇒ info to reconstruct the original state needs to be stored .

Model: Transactional Featherweight Java

TFJ: formal proposal for Java + transactions
[Jagannathan et al., 2005]

transactions model:

nested
multi-threaded
non-lexical scope

“inheritance” of the resource consumption of parent thread

child threads: joining commit ⇒ implicit synchronization ⇒
main complication

TFJ syntax

P ::= 0 | P ‖ P | p〈e〉 processes/threads

L ::= class C{~f :~T ;K ; ~M} class definitions

K ::= C (~f : ~T){this.~f := ~f } constructors

M ::= m(~x :~T){e} : T methods
e ::= v | v .f | v .f := v |if v then e else e
| let x :T = e in e | v .m(~v) expressions
| new C (~v) | spawn e | onacid | commit

v ::= r | x | null values

Nested and multi-threaded transactions

[]

[]]

[]

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

l1:∅

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

l1:log1

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

l1:log1

l1:log1

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

l1:log2

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

l1:log2, l2:∅

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

l1:log2, l2:log3

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

l1:log ′2

Nested and multi-threaded transactions

l1
l2

l3

[]

[]]

[]

l1:log ′4

Goal & complications

Goal

Static estimation on upper bounds of resource consumption

memory consumption = number of transactions potentially
running at in parallel × local resource consumption

challenges:

“concurrent” analysis (6= safe-commits . . . iFM’10, FSEN’10
[Mai Thuong Tran and Steffen, 2010, Johnsen et al., 2012])
implicit join-synchronization via commits (6= “Resource bounds
for components” (ICTAC’05, FMOODS’05
[Truong, 2005, Truong and Bezem, 2005] . . .))
multithreading and nested transactions ⇒ parent-child
relationship between threads relevant

Challenges

compositional , syntax directed analysis

⇒ “interface information”

e.g., nesting depth (cf. “safe commit”):

“ single threaded ”: pre and post are enough

n `commit:: n − 1

n1 ` e1 :: n2 n2 ` e2 :: n3

n1 ` e1; e2 :: n3

parallel execution

Challenges

compositional , syntax directed analysis

⇒ “interface information”

e.g., nesting depth (cf. “safe commit”):

parallel execution

‖ without synchronization

` P1 :: t1 ` P2 :: t2

` P1 ‖ P2 : t1 + t2

Challenges

compositional , syntax directed analysis

⇒ “interface information”

e.g., nesting depth (cf. “safe commit”):

parallel execution

‖ without synchronization

` P1 :: t1 ` P2 :: t2

` P1 ‖ P2 : t1 + t2

; explicit sequentialization/join

` P1 :: t1 ` P2 :: t2

` P1;P2 : t1 ∨ t2

Challenges

compositional , syntax directed analysis

⇒ “interface information”

e.g., nesting depth (cf. “safe commit”):

parallel execution

here:

neither independent parallelism nor full sequentialization

implicit join synchronization via commits

(spawn e1); e2

Seq. composition & Joining commit

onac id ; // th r ead 0 (main th r ead)
onac id ;

spawn (e1 ; commit ; commit) ; // th r ead 1
onac id ;

spawn (e2 ; commit ; commit ; commit) ; // th r ead 2
commit ;
e3

commit ;
e4 ;

in the following:
onacid ⇒ [
commit ⇒]

e1 = [; [; [; . . . ;];];] = [3; . . . ;]3

e2 = [4; . . . ;]4

e3 = [5; . . . ;]5

e4 = [6; . . . ;]6

Seq. composition & Joining commit

[[[] e3] e4

e1]]

e2]]]

Seq. composition & Joining commit

[[[] e3] e4

e1]]

e2]]]

el

er

;

Seq. composition & Joining commit

[[[] e3] e4

e1]]

e2]]]

[[[] e3] e4

e1]]

e2]]]

Judgment & interface information

Judgment

n1 ` e :: n2, h, l ,~t, S

current thread

n1 and n2: balance, pre- and post-condition
h, l : maximum/minimum during execution

not (only) current thread

compositionality

for ; : S : contribution of spawned threads after execution
of e

for ‖ : ~t: sequence of total weights of current + spawned
threads during e, separated by joining commits

Judgment & interface information

Judgment

n1 ` e :: n2, h, l ,~t, S

current thread

n1 and n2: balance, pre- and post-condition
h, l : maximum/minimum during execution

not (only) current thread

compositionality

for ; : S : contribution of spawned threads after execution
of e

for ‖ : ~t: sequence of total weights of current + spawned
threads during e, separated by joining commits

Sample derivation: pre- and post

...

0 ` [[; spawn (e1]]) :: 2

...

2 ` [; spawn (e2]]]);] ; e3] ; e4 :: 1

0 ` [[; spawn (e1;]]) ; [; spawn (e2;]]]);] ; e3] ; e4 :: 1

[[[] e3] e4

e1]]

e2]]]

el

er

;

n = 0 n = 2 n = 2 n = 1

Sample derivation (high and low)

...

0 ` [[; spawn (e1]]) :: 2, 0

...

2 ` [; spawn (e2]]]);] ; e3] ; e4 :: 7, 1

0 ` [[; spawn (e1;]]) ; [; spawn (e2;]]]);] ; e3] ; e4 :: 7, 0

[[[] e3] e4

e1]]

e2]]]

el

er

;

n = 0 n = 2 n = 2 n = 1

Sample derivation (par. contribution and synchronization)

.

.

.

0 ` [[; spawn (e1]]) :: [7], {(2, 3)}

.

.

.

2 ` [; spawn (e2]]]);] ; e3] ; e4 :: [10, 8], {(1, 0)}

0 ` [[; spawn (e1;]]) ; [; spawn (e2;]]]);] ; e3] ; e4 :: t, {(1, 0), (1, 0)}

t = 7 ∨ (10 + |{(2, 3)}|) ∨ (8 + |{(1, 0)}|)

[[[] e3] e4

e1]]

e2]]]

el

er

;

n = 0 n = 2 n = 2 n = 1

Sample derivation: different split

.

.

.

0 ` [2; spawn e1; [; (spawn e2);] :: [15], {(2, 3), (0, 2)}

.

.

.

2 ` e3;] ; e4 :: [7, 7], {}

0 ` [2; spawn e1; [; (spawn e2);] ; e3] ; e4 :: 1, 7, 0, t, {(1, 0), (1, 0)}

Sequential composition

n1 ` e1 :: n2, h1, l1,~s, S1 n2 ` e2 :: n3, h2, l2,~t, S2

h = h1 ∨ h2 l = l1 ∧ l2 p = n2 − l1 S = S1 ↓l2 ∪ S2 ~u = ~s⊕p(S15n2
~t)

T-Let
n1 `let x :T = e1 in e2 :: n3, h, l , ~u, S

Sequential composition

n1 ` e1 :: n2, h1, l1,~s, S1 n2 ` e2 :: n3, h2, l2,~t, S2

h = h1 ∨ h1 l = l1 ∧ l2

~s = s1, . . . , sk ~t = t1, . . . , tm k,m ≥ 1 p = n2 − l1

t′1 = t1 + |S1| t′2 = t2 + |S1 ↓n2−1| t′3 = t3 + |S1 ↓n2−2| . . .

S = S1 ↓l2 ∪ S2

~u = s1, . . . , sk−1, sk ∨ t′1 ∨ . . . ∨ t′p , t
′
p+1, . . . , t

′
m

T-Let
n1 ` e1; e2 :: n3, h, l , ~u,S

Parallel composition

similarly complex

merging trees / forests using join-commits-labels

using tree representation of future joining commit behavior

Parallel composition

similarly complex (“hidden” in def. of ⊗)

merging trees / forests using join-commits-labels

using tree representation of future joining commit behavior t1

and t2

Γ1 ` P1 : t1 Γ2 ` P2 : t2

T-Par
Γ1, Γ2 ` P1 ‖ P2 : t1 ⊗ t2

Results and future work

Soundness

Soundness of the analysis: “subject reduction”

higher-order functions

type inference

machine checked proof of SR (Coq/OTT)

different synchronization model

References I

[Jagannathan et al., 2005] Jagannathan, S., Vitek, J., Welc, A., and Hosking, A. (2005).
A transactional object calculus.
Science of Computer Programming, 57(2):164–186.

[Johnsen et al., 2012] Johnsen, E. B., Mai Thuong Tran, T., Owe, O., and Steffen, M. (2012).
Safe locking for multi-threaded Java with exceptions.
Journal of Logic and Algebraic Programming, special issue of selected contributions to NWPT’10.
available online 3. March 2012.

[Mai Thuong Tran and Steffen, 2010] Mai Thuong Tran, T. and Steffen, M. (2010).
Safe commits for Transactional Featherweight Java.
In Méry, D. and Merz, S., editors, Proc. of the 8th Intl. Conf. on Integrated Formal Methods (iFM 2010),
Lecture Notes in Computer Science, pages 290–304. Springer-Verlag.
An earlier and longer version has appeared as UiO, Dept. of Informatics Technical Report 392, Oct. 2009.

[Mai Thuong Tran et al., 2011] Mai Thuong Tran, T., Steffen, M., and Truong, H. (2011).
Estimating resource bounds for software transactions.
Technical report 414, University of Oslo, Dept. of Informatics.

[Truong, 2005] Truong, H. (2005).
Guaranteeing resource bounds for component software.
In Steffen, M. and Zavattaro, G., editors, FMOODS ’05, volume 3535 of Lecture Notes in Computer Science,
pages 179–194. Springer-Verlag.

[Truong and Bezem, 2005] Truong, H. and Bezem, M. (2005).
Finding resource bounds in the presence of explicit deallocation.
In ICTAC’05, volume 3722 of Lecture Notes in Computer Science, pages 227–241. Springer-Verlag.

