Effect-Polymorphic Behaviour Inference
for Deadlock Checking*

Ka I Pun, Martin Steffen, and Volker Stolz
University of Oslo, Department of Informatics

Abstract. We present a constraint-based effect inference algorithm for deadlock
checking. The static analysis is developed for a concurrent calculus with higher-
order functions and dynamic lock creation. The analysis is context-sensitive and
locks are summarised based on their creation-site. The resulting effects can be
checked for deadlocks using state space exploration. We use a specific deadlock-
sensitive simulation relation to show that the effects soundly over-approximate
the behaviour of a program, in particular that deadlocks in the program are pre-
served in the effects.

1 Introduction

Deadlocks are a common problem for concurrent programs with shared resources. Ac-
cording to [4], a deadlocked state is marked by a number of processes, which forms a
cycle where each process is unwilling to release its own resource, and is waiting on the
resource held by its neighbour. The inherent non-determinism makes deadlocks hard to
detect and to reproduce. We present a static analysis using behavioural effects to de-
tect deadlocks in a higher-order concurrent calculus. Deadlock freedom, an important
safety property for concurrent programs, is a thread-global property, i.e., two or more
processes form a deadlock. The presented approach works in two stages: in a first stage,
an effect-type system uses a static behavioural abstraction of the codes’ behaviour, con-
centrating on the lock interactions. To detect potential deadlocks on the global level, the
combined individual abstract thread behaviours are explored in the second stage.

Two challenges need to be tackled to make the approach applicable in practice. For
the first stage on the thread local level, the static analysis must be able to derive the ab-
stract behaviour, not just check compliance of the code with a user-provided description.
This is the problem of type and effect inference or reconstruction. As usual, the abstract
behaviour needs to over-approximate the concrete one, i.e., concrete and abstract de-
scriptions are connected by some simulation relation: everything the concrete system
does, the abstract one can do as well. For the second stage, exploring the (abstract) state
space on the global level, obtaining finite abstractions is crucial. In our setting, there are
four principal sources of infinity: the calculus allows 1) recursion, supports 2) dynamic
thread creation, as well as 3) dynamic lock creation, and 4) unbounded lock counters
for re-entrant locks. Our approach offers sound abstractions for the mentioned sources
of unboundedness, except for dynamic thread creation. We first shortly present in a
non-technical manner the ideas behind the abstractions before giving the formal theory.

* Partly funded by the EU projects FP7-610582 (ENVISAGE) and FP7-612985 (UPSCALE).

http://www.envisage-project.eu
http://www.upscale-project.eu

1.1 Effect inference on the thread local level

In the first stage of the analysis, a behavioural type and effect system is used to over-
approximate the lock-interactions of a single thread. To force the user to annotate the
program with the expected behaviour in the form of effects is impractical, so the type
and especially the behaviour should be inferred automatically. Effect inference, includ-
ing inferring behavioural effects, has been studied earlier and applied to various settings,
including obtaining static over-approximations of behaviour for concurrent languages
by Amtoft et al. [2]. We apply effect inference to deadlock detection and as is standard
(cf. e.g., [11U16l2]), the inference system is constraint-based, where the constraints in
particular express an approximate order between behaviours. Besides being able to in-
fer the behaviour, it is important that the static approximation is as precise as possible.
For that it is important that the analysis may distinguish different instances of a func-
tion body depending on their calling context, i.e., the analysis should be polymorphic
or context-sensitive. This can be seen as an extension of let-polymorphism to effects
and using constraints. The effect reconstruction resembles the known type-inference
algorithm for let-polymorphism by Damas and Milner [6)5] and this has been used for
effect-inference in various settings, e.g., in the works mentioned above.

Deadlock checking in our earlier work [13] was not polymorphic (and we did not
address effect inference). The extension in this paper leads to an increase in precision
wrt. checking for deadlocks, as illustrated by the small example below, where the two
lock creation statements are labeled by 7; and 7:

let x; = new™ L in let xp = new™ L in
let f = fn x:L . (x.lock; x.lock)
in spawn(£f(x2)); f£(x1)

The main thread, after creating two locks and defining function f, spawns a thread,
and afterward, the main thread and the child thread run in parallel, each one executing
an instance of f with different actual lock parameters. In a setting with re-entrant locks,
the program is obviously deadlock-free. Part of the type system of [13] determines the
potential origin of locks by data-flow analysis. The analysis cannot distinguish the two
instances of f (the analysis is context-insensitive), and therefore forces that the type
of the formal parameter is, at best, L{m-m} Based on that approximate information, a
deadlock looks possible through a “deadly embrace” [7] where one thread takes first
lock m; and then 7, and the other thread takes them in reverse order, i.e., the analy-
sis would report a (spurious) deadlock. The context-sensitive analysis presented here
correctly analyzes the example as deadlock-free.

1.2 Deadlock preserving abstractions on the global level

Lock abstraction For dynamic data allocation, a standard abstraction is to summa-
rize all data allocated at a given program point into one abstract representation. In the
presence of loops or recursion, the abstracting function mapping concrete locks to their
abstract representation is necessarily non-injective. For concrete, ordinary programs it
is clear that identifying locks may change the behaviour of the program. Identification
of locks is in general tricky (and here in particular in connection with deadlocks): on

the one hand it leads to less steps, in that lock-protected critical sections may become
larger. On the other hand it may lead to more steps at the same time, and deadlocks
may disappear when identifying locks. This form of summarizing lock abstraction is
problematic when analyzing properties of concurrent programs, and has been observed
elsewhere as well, cf. e.g., Kidd et al. in [9].

To obtain a sound abstraction for deadlock detection when identifying locks in the
described way, one faces thus the following dilemma: a) the abstract level, using the
abstract locks, needs to show at least the behaviour of the concrete level, i.e., we expect
that they are related by a form of simulation. On the other hand, to preserve not only
the possibility of doing steps, but also deadlocks, the opposite must hold sometimes: b)
a concrete program waiting on a lock and unable to make a step thereby, must imply
an analogous situation on the abstract level, lest we should miss deadlocks. Let’s write
1,11,1,... for concrete lock references and 7, ', . .. for program points of lock creation,
i.e., abstract locks. To satisfy a): when a concrete program takes a lock, the abstract one
must be able to “take” the corresponding abstract lock, say 7. A consequence of a) is
that taking an abstract lock is always enabled. That is consistent with the abstraction
as described where the abstract lock 7 confuses an arbitrary number of concrete locks
including, e.g., those freshly created, which may be taken.

Thus, abstract locks lose their “mutual exclusion” capacity: whereas a concrete heap
is a mapping which associates to each lock reference the number of times that at most
one process is holding it, an abstract heap 6 records how many times an abstract lock
7 is held by the various processes, e.g., thrice by one process and twice by another. The
corresponding natural number abstractly represents the sum of the lock values of all
concrete locks (per process). Without ever blocking, the abstraction leads to more pos-
sible steps, but to cater for b), the abstraction still needs to appropriately define, given
an abstract heap and an abstract lock 7, when a process waits on the abstract lock, as
this may indicate a deadlock. The definition has to capture all possibilities of waiting on
one of the corresponding concrete locks (see Definition[6]later). The sketched intuitions
to obtain a sound abstract summary representation for locks and correspondingly for
heaps lead also to a corresponding refinement of “over-approximation” in terms of sim-
ulation: not only must the a) positive behaviour be preserved as in standard simulation,
but also the b) possibility of waiting on a lock and ultimately the possibility of deadlock
needs to be preserved. For this we introduce the notion of deadlock sensitive simulation
(see Definition E]) The definition is analogous to the one from [13]. However, it takes
into account now that the analysis is polymorphic and the definition is no longer based
on a direct operational interpretation of the behaviour of the effects. Instead it is based
on the behavioural constraints used in the inference systems.

The points discussed are illustrated in Fig.[I] where the left diagram Fig. [Ta]depicts
two threads running in parallel and trying to take two concrete locks, /1 and I, while Fig.
[[blillustrates an abstraction of the left one where the two concrete locks are summarized
by the abstract lock 7 (typically because being created at the same program point). The
concrete program obviously may run into a deadlock by reaching commonly the states
qo1 and g1, where the first process is waiting on /; and the second process on /;. With
the abstraction sketched above, the abstract behaviour, having reached the correspond-
ing states go; and §11, can proceed (in two steps) to the common states gpo and g2,

Po P1 P1

start —) start —) start start @
l).lock l.1lock T.lock m.lock

b.lock l;.1ock m.1lo 7. lock

(a) Concrete (b) Abstract

@-’:
E

B®
®

Fig. 1: Lock abstraction

reaching an abstract heap where the abstract lock 7 is “held” twice by each process. In
the state go; and g1, however, the analysis will correctly detect that, with the given lock
abstraction, the first process may actually wait on 7, resp. on one of its concretizations,
and dually for the second process, thereby detecting the deadly embrace. Allowing this
form of abstraction, summarizing concrete locks into an abstract one, improves our
earlier analysis [13]], which could therefore deal only with a static number of locks.

Counter abstraction and further behaviour abstraction Two remaining causes of
an infinite state space are the values of lock counters, which may grow unboundedly,
and the fact that for each thread, the effect behaviour abstractly represents the stack
of function calls for that thread. Sequential composition as construct for abstract be-
havioural effects allows to represent non-tail-recursive behaviour (corresponding to the
context-free call-and-return behaviour of the underlying program). To curb that source
of infinity, we allow for replacing the behaviour by a tail-recursive over-approximation.
The precision of the approximation can be adapted in choosing the depth of calls after
which the call-structure collapses into an arbitrary, chaotic behaviour. A finite abstrac-
tion for the lock-counters is achieved similarly by imposing an upper bound on the
considered lock counter, beyond which the locks behave non-deterministically. Again,
for both abstractions it is crucial, that the abstraction preserves also deadlocks, which
we capture again using the notion of deadlock-sensitive simulation. These two abstrac-
tions have been formulated and proven in the non-context-sensitive setting of [[13]].

To summarize, compared to [[13], the paper makes the following contributions: 1)
the effect analysis is generalized to a context-sensitive formulation, using constraints,
for which we provide 2) an inference algorithm. Finally, 3) we allow summarizing mul-
tiple concrete locks into abstract ones, while still preserving deadlocks.

The rest of the paper is organized as follows. After presenting syntax and semantics
of the concurrent calculus in Section [2] the behavioural type system is presented in
Section [3] which also includes the soundness result in the form of subject reduction.
The conclusion in Section @ discusses related and future work.

2 Calculus

This section presents the syntax and semantics for our calculus. The abstract syntax is
given in Table [T] (the types 7" will be covered in more detail in Section [3). A program

P consists of processes p(¢) running in parallel, where p is a process identifier and ¢
is a thread, i.e., the code being executed. The empty program is represented by 0. We
assume, as usual, parallel composition || to be associative and commutative. A thread ¢
is either a value v or a sequential composition written as let x:7 = e in ¢, where the
let-construct binds the local variable x in #. Expressions include function applications
and conditionals. Threads are created with the expression spawn ¢. For lock manipula-
tion, new L yields the reference to a newly created lock (initially free), and the opera-
tions v. lock and v. unlock deal with acquiring and releasing a lock. Values which are
evaluated expressions are variables, lock references, and function abstractions, where
fun f:T.x:T.t represents recursive function definitions.

P:=0| p{t) | P|P program
t=v |letx:T =eint thread
ex=t | vv |if vtheneelsee | spawnt |newlL

| v.lock| v.unlock expr.
vi=ux |l |true|false|fnx:Tt |fun f:T.x:T.t values

Table 1: Abstract syntax
Semantics

The small-step operational semantics, presented next, distinguishes between local and
global steps (cf. Table[2). The local steps are straightforward and therefore left out here.
Global configurations are of the form o - P where P is a program and the heap o is
a finite mapping from lock identifiers to the status of each lock, which can be either
free or a tuple indicating the number of times a lock has been taken by a thread. For
the analysis later, we allow ourselves also to write o(/,p) =n+1if 6(l) = p(n+1)
(indicating the pair of process identifier p and lock count n) and (I, p) = O other-
wise. The global steps are given as transitions between global configurations. It will
be handy later to assume the transitions appropriately labeled (cf. Table [2). Thread-
local transition steps are lifted to the global level by rule R-LIFT. A global step is a
thread-local step made by one of the individual threads sharing the same ¢ (cf. rule
R-PAR). R-SPAWN creates a new thread with a fresh identity running in parallel with
the parent thread. All the identities are unique at the global level. Creating a new lock,
which is initially free, allocates a fresh lock reference / in the heap (cf. rule R-NEWL).
The locking step (cf. rule R-LOCK) takes a lock when it is either free or already be-
ing held by the requesting process. To update the heap, we define: If 6(I) = free, then
o+,l=oc[l—p(l)] andif () = p(n), then 6+, = o[l p(n+1)]. Dually 6 —,
is defined as follows: if (I) = p(n+1), then 6 —, I = o[l p(n)], and if o(I) = p(1),
then 6 —, [= o[l free]. Unlocking works correspondingly, i.e., it sets the lock as
being free resp. decreases the lock count by one (cf. rule R-UNLOCK).

To later relate the operational behaviour to its behavioural abstraction, we label
the transition of the operational semantics appropriately. In particular, steps for lock

manipulations are labelled to indicate which process has taken or released which lock.

. ops 11oc!
For instance, the labelled transition step 2oR, eans that a process p takes a lock

labelled /. We discuss further details about the labels in the next section.
Before defining the notion of deadlock, we first characterize the situation in which
one thread in a program attempts to acquire a lock which is not available as follows:

=t
R-LIFT ob pi(letx:xT =spawn t, int)) = ok p;(letx:T = () inny) || p2(t2) R-SPAWN
ok pin) = ok pla)
ock-P —o'FP o' = o[l free] 1 is fresh
R-PAR R-NEWL
okP |P—0o' PP ot p(letx:T =newlint) — o'+ p(letx:T =1/ int)

o(l) =freevo(l) = p(n) o'=0c+,1
R-Lock

ok p(let x:T =1.1lock int) — ¢’ p(let x:T =1 int)

o(l)=p(n) o'=0—,1

R-UNLOCK
ot p(let x:T =1/.unlock int) — ¢’ I p(let x:T =l int)

Table 2: Global steps

Definition 1 (Waiting for a lock). Given a configuration 6 & P, a process p waits for
p(llock)

a lock | in 6 &= P, written as waits(c & P, p,l), if it is not the case that c - P ———,
. . [lock
and if furthermore there exists a 6’ s.t. ' = P L NS

The notion of (resource) deadlock used is rather standard, where a number of pro-
cesses waiting for each other’s locks in a cyclic manner constitute a deadlock (see also
[L3]). In our setting with re-entrant locks, a process cannot deadlock “on itself”.

Definition 2 (Deadlock). A configuration o - P is deadlocked if o(I;) = pi(n;) and
furthermore waits(c = P, p;,liy,1) (for all 0 <i < k—1 and where k > 2). The +
represents addition modulo k. A configuration ¢ - P contains a deadlock, if, starting
from o & P, a deadlocked configuration is reachable; otherwise, it is deadlock free.

3 Type system

Next we present an effect type system to derive behavioural information which is used,
in a second step, to detect potential deadlocks. The type system derives flow information
about which locks may be used at various points in the program. Additionally, it derives
an abstract, i.e., approximate representation of the code’s behaviour. The representation
extends our earlier system [13|] by making the analysis context-sensitive and further-
more by supporting type and effect inference, both important from a practical point of
view. Being context-sensitive, making the effect system polymorphic, increases the pre-
cision of the analysis. Furthermore, inference removes the burden from the programmer
to annotate the program appropriately to allow checking for potential deadlock. These
extensions follow standard techniques for behaviour inference, see for instance Amtoft
et al. [2] and type-based flow analysis, see e.g., Mossin [11]. The system here makes
use of explicit constraints. Type systems are, most commonly, formulated in a syntax-
directed manner, i.e., analyzing the program code in a divide-and-conquer manner. That
obviously results in an efficient analysis of the code. However, a syntax-directed for-
mulation of the deduction rules of the type system, which forces to analyze the code

following the syntactic structure of the program, may have disadvantages as well. Us-
ing constraints in a type system decouples the syntax-directed phase of the analysis,
which collects the constraints, from the task of actually solving the constraints. For-
mulations of type systems without relying on constraints can be seen as solving the
underlying constraints “on-the-fly”, while recurring through the structure of the code.

3.1 Types, effects, and constraints

The analysis performs a data flow analysis to track the usage of locks. For that purpose,
the lock creation statements are equipped with labels, writing new”™ L, where 7 is taken
from a countably infinite set of labels. As usual, the labels 7 are assumed unique in a
given program. The grammar for annotations, types, and effects is given in Tables[3]and
[l We use r to denote sets of &rs with p representing corresponding variables. Types in-
clude basic types, represented by B, such as the unit type Unit, booleans, integers, etc.,
functional types with latent effect ¢, and lock types L where the annotation r captures
the flow information about the potential places where the lock is created. This informa-
tion will be reconstructed, and the user writes types without annotations (the “underly-
ing” types) in the program. We write 7' (and its syntactic variants) as meta-variables for
the underlying types, and 7' (and its syntactic variants) for the annotated types, as given
in the grammar. The universally quantified types, represented by S, capture functions
which are polymorphic in locations and effects.

Yu=p | X type-level variables
ru=p | {x} | rur lock/label sets

T =B |1 |TST types
Su=w.C.TST | T type schemes
C:=0|p3drC|XIJ¢,C constraints

Table 3: Types and type schemes

Whereas the type of an expression captures the results of the computations of the
expression if it terminates, the effect captures the behaviour during the computations.
For the deadlock analysis, we capture the lock interactions as effects, i.e., which locks
are accessed during execution and in which order. The effects (cf. Table) are split
between a (thread-) local level ¢ and a global level @. The empty effect is denoted
by &, representing behaviour without lock operations. Sequential composition is repre-
sented by ¢;; @. The choice between two effects ¢ + ¢, as well as recursive effects
recX ., is actually not generated by the algorithm; they would show up when solving
the constraints generated by the algorithm. We included their syntax for completeness.
Note also that recursion is not polymorphic. Labels a capture the three basic effects:
spawning a new process with behaviour ¢ is represented by spawn ¢, while r. lock
and r.unlock respectively capture lock manipulations, acquiring and releasing a lock,
where r refers to the possible points of creation. Silent transitions are represented by 7.
Lock-creation has no corresponding effect, as newly created locks are initially free, i.e.,
with a lock-count of 0. On the abstract level, locks are summarized by the sum of all
locks created at given point. Hence lock creation will be represented by a 7-transition.
Constraints C finally are finite sets of in-equations of the form p J r or of X 1 ¢, where

D=0 plo) | ©| P effects (global)
o:=¢| 00| 0+ | a| X | recX.@ effects (local)

a = spawn @ | r.lock | r.unlock labels/basic effects
oa=al“T transition labels

Table 4: Effects

p is, as mentioned, a flow variable and X an effect or behaviour variable. To allow poly-
morphism we use type schemes S, i.e., prefix-quantified types of the form veC. T,
where Y are variables p or X. The qualifying constraints C in the type scheme impose
restrictions on the bound variables. The formal system presented in this paper uses a
constraint-based flow analysis as proposed by Mossin [11] for lock information. Like-
wise, the effects captured as a sequence of behaviour are formulated using constraints.

3.2 Type inference

Next we present a type inference algorithm which derives types and effects and gen-
erates corresponding constraints (see Table [6] below). It is formulated in a rule-based
manner, with judgments of the form: I' e : T :: @;C. The system is syntax-directed,
i.e., algorithmic, where I" and e are considered as “input”, and the annotated type T, the
effect ¢, and the set of constraints C as “output”. Concentrating on the flow information
and the effect part, expressions e are type-annotated with the underlying types, as given
in Table@ In contrast, e contains no flow or effect annotations; those are derived by the
algorithmic type system. It would be straightforward to have the underlying types recon-
structed as well, using standard type inference a la Hindley/Milner/Damas [6/5/8]]. For
simplicity, we focus on the type annotations and the effect part. For locks, the flow an-
notation over-approximates the point of lock creation, and finally, ¢ over-approximates
the lock-interactions while evaluating e. As usual, the behavioural over-approximation
is a form of simulation. For our purpose, we will define a particular, deadlock-sensitive
form of simulation. These intended over-approximations are understood relative to the
generated constraints C, i.e., all solutions of C give rise to a sound over-approximation
in the mentioned sense. Solutions to a constraint set C are ground substitutions 6, as-
signing label sets to flow variables p and effect variables X. We write 6 = C if 6 is a
solution to C.

Ultimately, one is interested in the minimal solution of the constraints, as it provides
the most precise information. Solving the constraints is done after the algorithmic type
system, but to allow for the most precise solution afterward, each rule should generate
the most general constraint set, i.e., the one which allows the maximal set of solutions.
This is achieved using fresh variables for each additional constraint. In the system be-
low, new constraints are generated from requesting that types are in a “subtype” rela-
tionship. In our setting, “subtyping” concerns the flow annotations on the lock types
and the latent effects on function types. For instance in rule TA-APP in Table [6] the
argument of a function of type 7> 2 Tiisofa subtype Tz’ of 75, i.e., instead of requir-
ing Tz’ < 715 in that situation, the corresponding rule will generate new constraints in

requiring the subtype relationship to hold (see Definition [3). As an invariant, the type
system makes sure that lock types are always of the form LP, i.e., using flow variables
and similarly that only variables X are used for the latent effects for function types.

Definition 3 (Constraint generation). The judgment Ty < T> - C (read as “requiring
T\ < T» generates the constraints C”) is inductively given as follows:

T<hirc H<hrG G={XCX}
B<BF0 C-BasiC LPI <LP2+{p; C p,} C-LOCK . C-ARROW
i 50 <H S h0,0.6

In the presence of subtyping/sub-effecting, the overall type of a conditional needs
to be an upper bound on the types/effects of the two branches (resp. the least upper
bound in case of a minimal solution). To generate the most general constraints, fresh
variables are used for the result type. This is captured in the following definition. Note
that given 7' by 71 V T» - T';C, type T in itself does not represent the least upper bound
of 7} and T5. The use of fresh variables assures, however, that the minimal solution of
the generated constraints makes 7" into the least upper bound.

Definition 4 (Least upper bound). The partial operation N/ on annotated types (and
in abuse of notation, on effects), giving back a set of constraints plus a type (resp. an
effect) is inductively given by the rules of Table[5} The operation A is defined dually.

B =B, AT =100 TvE =06, XiUX=X;C3
LT-BAsic LT-ARROW
. RSN s Xo o an X s
B,V B, = B30 LTV 20 =15 10,0,
pfresh LPI<LPHC, LP2<LPHC, X fresh C={@1 CX,p CX}
LT-Lock LE-EFF
LPLV L2 =1P;Cy, G ¢Ue=X:C

Table 5: Least upper bound

The rules for the type and effect system then are given in Table [6] A variable has
no effect and its type (scheme) is looked up from the context I". The constraints C that
may occur in the type scheme, are given back as constraints of the variable x, replacing
the V-bound variables ¥ in C by fresh ones. Lock creation at point 7 (cf. TA-NEWL)
is of the type LP, has an empty effect and the generated constraint requires p J {x},
using a fresh p. As values, abstractions have no effect (cf. TA-ABS rules) and again,
fresh variables are appropriately used. In rule TA-ABS|, the latent effect of the result
type is represented by X under the generated constraint X 1 ¢, where ¢ is the effect
of the function body checked in the premise. The context in the premise is extended by
x:[T] 4, where the operation [T']4 annotates all occurrences of lock types L with fresh
variables and introduces fresh effect variables for the latent effects. Rule TA-ABS, for
recursive functions works analogously. For applications (cf. TA-APP), both the func-
tion and the arguments are evaluated and therefore have no effect. As usual, the type of
the argument needs to be a subtype of the input type of the function, and corresponding

10

constraints C3 are generated by Tz’ <THr Cs. For the overall effect, again a fresh effect
variable is used which is connected with the latent effect of the function by the addi-
tional constraint X _J ¢. For conditionals, rule TA-COND ensures both the resulting type
and the effect are upper bounds of the types resp. effects of the two branches by gener-
ating two additional constraints (cf. Table [5). The let-construct (cf. TA-LET) for the
sequential composition has an effect @y ; ¢,. To support context-sensitivity (correspond-
ing to let-polymorphism), the let-rule is where the generalization over the type-level
variables happens. In the first approximation, given e; is of 7}, variables which do not
occur free in I" can be generalized over to obtain S}, which quantifies over the maxi-
mal number of variables for which such generalization is sound. In the setting here, the
quantification affects only flow variables p and effect variables X. The close-operation
close(T", ¢,C,T) first computes the set of all “relevant” free variables in a type 7" and
the constraint C by the operation closer, (fv(T1),C) which finds the upward and down-
ward closure of the free variables in 77 wrt. C;. Among the set of free variables, those
that are free in the context or in the effect, as well as the corresponding downward clo-
sure, are non-generalizable and are excluded. (See also Amtoft et al. [2]). The spawn
expression is of unit type (cf. TA-SPAWN) and again a fresh variable is used in the
generated constraint. Finally, rules TA-LOCK and TA-UNLOCK deal with locking and
unlocking an existing lock created at the potential program points indicated by p. Both
expressions have the same type LP, while the effects are p. lock and p. unlock.

The type and effect system works on the thread local level. The definition for
the global level is straightforward. If all the processes are well-typed, so is the cor-
responding global program. A process p is well-typed, denoted as + p(t) :: p(@;C), if

F1:T :: @;C.In abuse of notation, we use P to abbreviate pi (@1;C1) || ... || pa{®n;Ca)-
L(x)=VY:C.T Y fresh 6=I[V")Y] fi=[na Txhire:Th:eC X fresh
TA-VAR TA-ABS;
TFx:07:e0C TrinxTie:T Shoec,Xde

T sz: [Ty = T2)a r,fT LTz,x:TI Fe:Tz’ BEOHE T2’§T2 =G,

TA-ABS,
CrFfunfiT, 5> GoxTie: T 5 huec,G,Xde

Fbv:hSfhaec, Thwn:fuec T<HhECG Xfresh

TA-APP
Tkviv:T2X:C,0,,C5,X 3 0]
7 _ 7 _ 7 A, _ 7 7 A
LTJ = LT]J = LTzJ T,CT VT X;C 7A(p] U p fresh
I'Fv:Boolig;Cy I'te :T1:¢i;C I'bFey:Thi @G TA-NEWL
TA-COND x
't new™ L: LPg;p J{n}

'+ if vthene elsee;: T ::X;Cy,Cy,Ca,C,C'

Phe:fizonc |fi]=T Che:f:g:C X fresh
Si = close(I', ¢1,Cy,Ty) CxSike: TG TA-SPAWN

TA-LET
s : it: X;C,X J
[k letxTi—e ines: B 01:02:C1,Co I' Fspawnt : Unit:: X;C,X Jspawn @
I'Fv:LPg,C X fresh I'Fv:LP:g,C X fresh
TA-Lock TA-UNLOCK
I'Fv. lock:LP :: X;C,X O p.lock '+ v.unlock: LP :: X;C,X 3 p.unlock

Table 6: Algorithmic effect inference

3.3 Semantics of the behaviour

Next we are going to define the transition relation on the abstract behaviour with the
effect-constraints. Given a constraint set C, we interpret C - a; @ T @ as ¢ may first
perform an a-step before executing ¢, where a is one of the labels from Table d] which
do not include the t-label. See also [2]. The relation C - ¢ C ¢; is defined in Table

Definition 5. The transition relation between configurations of the form C;6 + @ is
given inductively by the rules of Table where we write C - @ %; @ forClHa; o C
¢1. The G represents an abstract heap, which is a finite mapping from a flow variable p
and a process identity p to a natural number.

Each transition correspondingly captures the three possible steps we describe in the be-
haviour, namely creating a new process with a given behaviour, locking and unlocking.
Analogous to the corresponding case in the concrete semantics, rule RE-SPAWN covers
the creation of a new (abstract) thread and leaves the abstract heap unchanged. Taking a
lock increases the corresponding lock count by one (cf. RE-LOCK). Unlocking works
similarly by decreasing the lock count by one (cf. RE-UNLOCK), where the second
premise makes sure the lock count stays non-negative. The transitions of a global ef-
fect @ consist of the transitions of the individual thread (cf. RE-PAR). As stipulated by
rule RE-LOCK, the step to take an abstract lock is always enabled, which is in obvi-
ous contrast to the behaviour of concrete locks. To ensure that the abstraction preserves
deadlocks requires to adapt the definition of what it means that an abstract behaviour
waits on a lock (cf. also Definition [I|for concrete programs and heaps).

Definition 6 (Waiting for a lock (=)). Given a configuration C;6 - @ where @ =
@' || p(@), a process p waits for a lock p in &+ @, written as waitsc (C;6 - @, p,p),

ifCko g; o' but 6(p,q) > 1 for some q # p.
Definition 7 (Deadlock). A configuration C;6 + & is deadlocked if 6(p;, pi) > 1 and
furthermore waits(C; 6 = @, pj, Piy,1) (Where k > 2 and for all 0 < i < k—1). The + is

meant as addition modulo k. A configuration C; 6 F @ contains a deadlock, if, starting
from C;6 = @, a deadlocked configuration is reachable; otherwise it is deadlock free.

CroCo CheCo
e&0=¢ EE-UNIT 015 (P2:03) = (@1592); 03 EE-AssocC S-SEQ
CHoupConep
=P
C,rCpkrCp S-AXp C,oCXF@oLCX S-Axg CHrCr S-REFLp —— S-REFLg
C-oCo

CkricCn CkrnCr CFoC o CoC g3
S-TRANS,. S-TRANSg
Ckncrs CoiCo

CFoC o CkrCnr CkrnCn
S-SPAWN —— — S-Lock S-UNLOCK
C Fspawn ¢; Cspawn ¢ Ctri.lock C rp.lock CF rj.unlock C rp.unlock

Table 7: Orders on behaviours

12

loc N N /"
CHoZ==_¢' &(p,p)=6(p.p)+1 Cr o220 o
RE-LoCK RE-SpPAWN
N p(p.lock’ N . (spawn(¢'") .
C:6F plo) ZEZE 6/ - ply) C;6 - pi(g) A= c 6k pi(e) | pa(e”)
CHo£==2_ o' 6(p.p)>1 &'(p.p)=6(p,p)—1 Ci6F @ 2 C6' - @
pamioc RE-UNLOCK RE-PAR
Ci6 - plo) X 67+ ply)) CioF @ | @S Ci6'F] || @

Table 8: Global transitions

3.4 Soundness

A crucial part for soundness of the algorithm wrt. the semantics is preservation of well-
typedness under reduction. This includes to check that the operational semantics of the
program is over-approximated by the effect given by the type system captured by a
simulation relation; in our setting, this relation has to be sensitive to deadlocks. Defin-
ing the simulation relation requires to relate concrete heaps with abstract ones where
concrete locks are summarized by their point of creation.

Definition 8 (Wait-sensitive heap abstraction). Given a concrete and an abstract
heap o) and 63, and a mapping 0 from the lock references of o) to the abstract
locks of 63, 6, is a wait-sensitive heap abstraction of) wrt. 0, written 6] <g 6,
if Licqr | or=p) 61(1,p) < 62(p, p), for all p and p. The definition is used analogously
for comparing two abstract heaps. In the special case of mapping between the concrete
and an abstract heap, we write =¢ if the sum of the counters of the concrete locks
coincides with the count of the abstract lock.

Definition 9 (Deadlock sensitive simulation <2). Assume a heap-mapping 6 and a
corresponding wait-sensitive abstraction <g. A binary relation R between configura-
tions is a deadlock sensitive simulation relation (or just simulation for short) if the
following holds. Assume C1;61 F @ R Cy; 6, = D, with 61 <g 6. Then:

1 I Cii6 - & 220 €160 - @, then Coi6s - @y 2 o165 - ®) for some
Cz;(% = (Pé with 6{ <p 6£ and Cl;(AFI/ = (Di RCz;@z/ = (Pé
2. Ifwaitsc ((C1;61 = D1),p,p), then waitsc ((C2; 62+ @), p,0(p)).

Configuration Cy; 61 - @y is simulated by Cy; 6, = @, (written C1;61 - @y gg Cr,60 -
D,), if there exists a deadlock sensitive simulation s.t. C1;61 F @) R Cy;65 F ;.
The definition is used analogously for simulations between program and effect con-

. . A . . a .
figurations, i.e., for 61 = P <P C; 6, - ®. In that case, the transition relation gg is

replaced by *’i‘:; for the program configurations.

The notation P:w; is used for weak transitions, defined as 20+ 2@, This relation cap-

tures the internal steps which are ignored when relating two transition systems by sim-

ulation. It is obvious that the binary relation <P is itself a deadlock simulation. The

relation is transitive and reflexive. Thus, if C;; 61 = & SE Cy; 6, - @y, the property of

Cl;él = (I)] i)tcl;é'l/ = q)i
| -
R R
. | pla) A‘
Cy;60 - Dy :>EC2;Gé = (Pé

Fig. 2: Deadlock sensitive simulation ,<f£

deadlock freedom is straightforwardly carried over from the more abstract behaviour to
the concrete one (cf. Lemmal[T)).

Lemma 1 (Preservation of deadlock freedom). Assume Cy; 6 - @, §€ Cr.6, - .
If Cy; 65 = D, is deadlock free, then so is Cy; 61 - .

The next lemma shows compositionality of ,Sg wrt. parallel composition.

Lemma 2 (Compositionality). Assume C;61F p(@1) SE C:62F p(@2), then C; 61 +
D | p(e1) SEC:62 - @ || plga).

The soundness proof for the algorithmic type and effect inference is formulated as
a subject reduction result such that it captures the deadlock-sensitive simulation. The
part for the preservation of typing under substitution is fairly standard and therefore
omitted here. For the effects, the system derives the formal behavioural description
for a program’s future behaviour; one hence cannot expect the effect being preserved
by reduction. Thus, we relate the behaviour of the program and the behaviour of the
effects via a deadlock-sensitive simulation relation.

Lemma 3 (Subject reduction). Let I" - p(t) :: p(¢;C), 01 =4 62, and 6 |=C.

1. o1+ p(t) 2o, o p(t"), then "+ p(t') :: p(¢';C") with Ct+ 0'C’ for some €', and
furthermore C+ @ 3 0'¢’, and o] =, 6.

2. (a) o1+ plt) LN o) b p(t') where a # spawn @", then C; 6, p(¢) P:@LE C; 65+

p{@"), T p{t') :: p(@";C") with C+ 6'C, furthermore C+ ¢’ 1 6’9" and
G{ =5 6£
pla) " o _ / . A p:@;

(b) o1t p(t) — o1 Ep{") || p' (') where a = spawn @', then C; 6, & p{@) C
C;6, - p(o") || P'{@") and such that T+ p(t") :: p(@"",C") with C+ 6"C" and
Ct ¢" 30"¢", and furthermore I' = p'(t") :: p'{@"";C") with C+ 6'C’ and
CHo' 20'¢".

3. Ifwaits(oy - plt), p,1), then waits—(C; 6, F p(@), p, 01).

The well-typedness relation between a program and its effect straightforwardly im-
plies a deadlock-preserving simulation:

Corollary 1. Given 6y =9 6, and I' = p(t) :: p(@;C), then o1 b p(t) <SP C; 62+ p(o).

14

4 Conclusion

We have presented a constraint-based type and effect inference algorithm for deadlock
checking. It infers a behavioural description of a thread’s behaviour concerning its lock
interactions which then is used to explore the abstract state space to detect potential
deadlocks. The static analysis is developed for a concurrent calculus with higher-order
functions and dynamic lock creation. Covering lock creation by an appropriate abstrac-
tion extends our earlier work [[13]] for deadlock detection using behaviour abstraction.
Another important extension of that work is to enhance the precision by making the
analysis context-sensitive and furthermore to support effect inference ([[13] in contrast
required the programmer to provide the behaviour annotations manually). The analysis
is shown sound, i.e., the abstraction preserves deadlocks of the program. Formally that
is captured by an appropriate notion of simulation (“deadlock-sensitive simulation”).

Related work Deadlocks are a well-known problem in concurrent programming and a
vast number of techniques for statically and dynamically detecting deadlocks have been
investigated. One common way to prevent deadlocks is to arrange locks in a certain par-
tial order such that no cyclic wait on locks/resources, which is one of the four necessary
conditions for deadlocks [4], can occur. For instance, Boyapati et al. [3] prevent dead-
locks by introducing deadlock types and imposing an order among these. The paper also
covers type inference and polymorphism wrt. the lock levels. Likewise, the type infer-
ence algorithms by Suenaga [15] and Vasconcelos et al. [[17] assure deadlock freedom
in a well-typed program with a strict partial order on lock acquisition. In contrast, our
approach will certify two processes as safe if they take locks in orders 1-2-3 and 1-3-2,
even though no fixed global order exists. Agarwal et al. [[1]] use above deadlock types to
improve the efficiency for run-time checking with a static type system, by introducing
runtime checks only for those locks where the inferred deadlock type indicates potential
for deadlocks. Similar to our approach, Naik et al. [[12] detect potential deadlocks with
a model-checking approach by abstracting threads and locks by their allocation sites.
The approach is neither sound nor complete. Kobayashi [[10]] presents a constraint-based
type inference algorithm for detecting communication deadlocks in the 7m-calculus. In
contrast to our system, he attaches abstract usage information onto channels, not pro-
cesses. Cyclic dependencies there indicate potential deadlocks. Further differences are
that channel-based communication does not have to consider reentrance, and the lack of
functions avoids having to consider polymorphism and higher order. Instead of check-
ing for deadlocks, the approach by Kidd et al. [[9] generates an abstraction of a program
to check for data races in concurrent Java programs, by abstracting unlimited number
of Java objects into a finite set of abstract ones whose locks are binary.

Future work As mentioned, there are four principal sources of infinity in the state-space
obtained by the effect inference system. For the unboundedness of dynamic lock cre-
ation, we presented an appropriate sound abstraction. We expect that the techniques for
dealing with the unboundedness of lock counters and of the call stack can be straight-
forwardly carried over from the non-context-sensitive setting of [[13], as sketched in
Section All mentioned abstractions are compatible with our notion of deadlock-
sensitive simulation in that being more abstract —identifying more locks, choosing a

15

smaller bound on the lock counters or on the allowed stack depth— leads to a larger
behaviour wrt. our notion of simulation. This allows an incremental approach, starting
from a coarse-grained abstraction, which may be refined in case of spurious deadlocks.
To find sound abstractions for process creation as the last source of infinity seems more
challenging and a naive approach by simply summarizing processes by their point of
creation is certainly not enough. We have developed a prototype implementation of the
state-exploration part in the monomorphic setting of [[13]. We plan to adapt the imple-
mentation to the more general setting and to extend it with implementing type inference.

For lack of space, all proofs have been omitted here. Further details can found in an
extended version of this work (cf. the technical report [14]).

References

1. R. Agarwal, L. Wang, and S. Stoller. Detecting potential deadlocks with state analysis and
run-time monitoring. In Haifa Verification Conf. 05, volume 3875 of LNCS. Springer, 2006.
2. T. Amtoft, H. R. Nielson, and F. Nielson. Type and Effect Systems: Behaviours for Concur-
rency. Imperial College Press, 1999.
3. C.Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data
races and deadlocks. In OOPSLA ’02 (Seattle, USA). ACM, 2002. In SIGPLAN Notices.
4. E. G. Coffman Jr., M. Elphick, and A. Shoshani. System deadlocks. Computing Surveys,
3(2), 1971.
5. L. Damas. Type Assignment in Programming Languages. PhD thesis, Laboratory for Foun-
dations of Computer Science, University of Edinburgh, 1985. CST-33-85.
6. L. Damas and R. Milner. Principal type-schemes for functional programming languages. In
Ninth POPL (Albuquerque, NM). ACM, 1982.
7. E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123, TU Eind-
hoven, 1965.
8. J. R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of
the AMS, 146, 1969.
9. N. Kidd, T. W. Reps, J. Dolby, and M. Vaziri. Finding concurrency-related bugs using ran-
dom isolation. STTT, 13(6), 2011.
10. N. Kobayashi. A new type system for deadlock-free processes. In Proceedings of CONCUR
2006, volume 4137 of LNCS. Springer, 2006.
11. C. Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU, University
of Copenhagen, Denmark, 1997. Technical Report DIKU-TR-97/1.
12. M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock detection. In 3/st Inter-
national Conference on Software Engineering (ICSE 09). IEEE, 2009.
13. K. I. Pun, M. Steffen, and V. Stolz. Deadlock checking by a behavioral effect system for lock
handling. J. of Logic and Algebraic Programming, 81(3), 2012.
14. K. I. Pun, M. Steffen, and V. Stolz. Lock-polymorphic behaviour inference for deadlock
checking. Tech. report 436, UiO, IFI, 2013. Submitted for journal publication.
15. K. Suenaga. Type-based deadlock-freedom verification for non-block-structured lock prim-
itives and mutable references. In APLAS 2008, volume 5356 of LNCS. Springer, 2008.
16. J.-P. Talpin and P. Jouvelot. Polymorphic Type, Region and Effect Inference. J. of Functional
Programming, 2(3), 1992.
17. V. Vasconcelos, F. Martins, and T. Cogumbreiro. Type inference for deadlock detection in a
multithreaded polymorphic typed assembly language. In PLACES’09, volume 17 of EPTCS,
20009.

	Effect-Polymorphic Behaviour Inference for Deadlock Checking -3mm
	Introduction
	Effect inference on the thread local level
	Deadlock preserving abstractions on the global level

	Calculus
	Type system
	Types, effects, and constraints
	Type inference
	Semantics of the behaviour
	Soundness

	Conclusion

